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Abstract Eyes play important roles in emotion and paralinguistic communica-
tions. Detection of eye state is necessary for applications such as driver awareness
systems. In this paper, we develop an automatic system to detect eye-state ac-
tion units (AU) based on Facial Action Coding System (FACS) by use of Gabor
wavelets in a nearly frontal-viewed image sequence. Three eye-state AU (AU
41, AU42, and AU43) are detected. After tracking the eye corners in the whole
sequence, the eye appearance information is extracted at three points of each
eye (i.e., inner corner, outer corner, and the point between the inner corner and
the outer corner) as a set of multi-scale and multi-orientation Gabor coefficients.
Then, the normalized Gabor coefficients are fed into a neural-network-based eye-
state AU detector. An average recognition rate of 83% is obtained for 112 images
from 17 image sequences of 12 subjects.

1. Introduction

Facial Action Coding System (FACS) action unit recognition attracts attention for
facial expression analysis[1, 5, 6, 16, 14]. Eyes play important roles in emotion and
paralinguistic communications. Detection of eye state (i.e. whether the eye is open or
closed) is also necessary for applications such as driver awareness systems. Although
many methods exist for eye feature extraction and eye tracking, detecting qualitative
changes of eye states is relatively undeveloped [2, 4, 7, 9, 18, 19]. In our facial
expression analysis system, we developed a dual-state eye model for eye tracking[15].
In that paper, two eye states are detected by geometry feature information of the iris.
However, when the eye is narrowly-opened or the iris is difficult to detect, the eye state
may be wrongly identified as closed. We believe that the eye appearance information
will help to solve this difficulty and increase the number of AU that can be recognized
in the eye region.

Recently, Gabor wavelet has been applied to image analysis, fagmigon, facial
expression analysis [3, 5, 10, 13, 17, 20]. This research suggests that Gabor wavelet is
a promising tool to extract facial appearance information.

In this paper, we develop a facial appearance information based eye-state AU de-
tection system to detect AU 41 (upper-lid droop), AU 42 (slit), and AU 43 (closed).
Figure 1 depicts the overview of the eye-state AU detection system. First, the face
position is detected and the initial positions of the eye corners are given in the first



frame of the nearly frontal face image sequence. The eye corners then are tracked in the
image sequence. Next, a set of multi-scale and multi-orientation Gabor coefficients of
three eye points are calculated for each eye. Finally, the normalized Gabor coefficients
are fed into a neural-network-based detector to classify three states of the eye.
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Fig. 1. Eye state detection system.
2. Eye-State AUs

In FACS, there are nine eye-state AUs i.e. AU5, AU6, AU7, AU41, AU42, AU43,
AU44, AU45, and AU46. We recognized AU5(eye wide), AU6 (infra-orbital raise),
and AU7 (lower-lid raise) in previous work by feature-based information[11, 14]. In
this paper, we recognize AU41, AU42, and AU43 by appearance information. The
examples of these AUs are shown in Table 1. We classify these AU into three eye states:
open (AU41), very narrow (AU42), and closed (AU43). The closed eye is defined as
closure of the eyelid brought about by total relaxation of the levator palpebrae superioris
muscle, which controls the motion of the upper eyelid. The closed eye may also involve
weak contraction of the orbicularis oculi pars palpebralis muscle, a sphincter muscle
that surrounds the eye orbit. The very narrow eye is defined as the eyelids appearing
as narrowed as possible without being closed. Their appearance resembles a slit, the
sclera is not visible, and the pupil may be difficult to distinguish. Relaxation of the
levator palpebrae superioris is not quite complete. The open eye is defined as a barely
detectable drooping of the upper eyelid or small to moderate drooping of the upper
eyelid. See paper [8] for complete list of FACS action units.

3. Localizing Eye Points

To extract information about change of eye appearance, the eye position first must
be localized. Three points for each eye are used. As shown in Figure 2, these are the
inner and outer corners, and the mid-point between them. At each poiti;stale
and multi-orientation Gabor wavelet coefficients are calculated.

Inner corner: We found that the inner corners of the eyes are the most stable features



Table 1. Eye states and corresponding FACS action units

Open Very narrow Closed

AU41 AU42 AU43/45/46
Upper-lid Eyes are Eyes are
is slightly barely. completely
lowered. opened. closed.

- =

Fig. 2. Three points for each eye are used to detect eye states.
in a face and are relatively insensitive to deformation by facial expression. We assume
the initial location of the inner corner of the eye is given in the first frame. The inner
corners of the eyes then are automatically tracked in the subsequent image sequence
using a modified version of the Lucas-Kanade tracking algorithm [12], which estimates
feature-point movement efficiently with sub-pixel accuracy.

We assume that intensity values of any given region (feature window size) do not
change but merely shift from one position to another. Consider an intensity feature
templatel; («) over an x n regionR in the reference image at timeWe wish to find
the translationd of this region in the following framd,1(z + d) at timet + 1, by
minimizing a cost functior® defined as:

E =Y [lia(e +d) — L (2). 1)
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The minimization for finding the translatio#h can be calculated in iterations (See
paper[15] for details).

Outer corner and mid-point: Because the outer corners of the eyes are difficult to
detect and less stable than the inner corners, we assume they are collinear with the inner
corners. The width of the eye is obtained from the first frame. If there is not large
head motion, the width of the eye will not change much. The approximate positions of
the outer corners of eyes are calculated by the position of the inner corners and the eye
widths.

After obtaining the inner and outer corners of the eyes in each frame, the middle
points are easy to calculate from the position of the inner- and outer corners of the eyes.



4. Eye Appearance Information

We use Gabor wavelet to extract the information about change of eye appearance as a
set of multi-scale and multi-orientation coefficients. The response image can be written
as a correlation of the input imadéxz), with

o) = [ Ie)pelx — xo)dz, @

where the Gabor filtegy (x) can be formulated [3]:
k2 k2 ) o?
Pr(x) = —zexp(—ﬁxz) (ea:p(zkx) — exp(—i)) 3)
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wherek is the characteristic wave vector.

(c) AU43 (closed)

Fig. 3. Gabor images for different states of the eyes when the spatial
frequency= 7 in horizontal orientation.

In our system, we use = = and three spatial frequencies with wavenumbers
ki = (%, %, §) and six orientations from 0 te differing in 7/6. Only the magnitudes
are used because they vary slowly with theippos while the phases are very sensitive.
Therefore, for each point of the eye, we have 18 Gabor wavelet coefficients. Figure 3
shows the examples of different eye state and the corresponding Gabor filter responses
for the second spatial frequency; (= (%)) and horizontal orientation. The Gabor
coefficients appear highly sensitive to eye states even when the images of eyes are very

dark.



5. Eye State Detection

5.1. Image Databases

We have been developing a large-scale database for promoting quantitative study of
facial expression analysis [8]. The database currently contains a recording of the facial
behavior of 210 adults who are 18 to 50 years old; 69% female and 31% male; and 81%
Euro-American, 13% Africa-American, and 6% other groups. Subjects sat directly in
front of the camera and performed a series of facial expressions that included single
AUs and AU combinations. To date, 1,917 image sequences of 182 subjects have been
FACS coded for either the entire sequence or target action units. Approximately fifteen
percent of the 1,917 sequences were coded by a second certified FACS coder to validate
the accuracy of the coding.

In thisinvestigation, we focus on AU41, AU42, and AU43. We selected 33 sequences
from 21 subjects for training and 17 sequences from 12 subjects for testing. The data
distribution of training and test data sets for eye states is shown in Table 2.

Table 2. Data distribution of training and test data sets.

Data Set Eye states included
Open| Narrow | Closed| Total
Tramn 92 75 74 241
Test 56 40 16 112

To assess how reliably trained observers could make these distinctions, two research
assistants with expertise in FACS independently coded image sequences totaling 139
frames. Inter-observer agreement between them averaged 89%. More specifically,
inter-observer agreement was 94% for AU41, 84% for AU42, and 77% for AU43. For
FACS coders, the distinction between very narrow (AU 42) and closed (AU 43) was
more difficult.

5.2. Neural network-based eye state detector

As shown in Figure 4, we use a three-layer neural network with one hidden layer to
detect eye states. The inputs to the network are the Gabor coefficients of the eye feature
points. The outputs are the three states of the eyes.

In our system, the inputs of the neural network are normalized to have approximately
zero mean and equal variance.

5.3. Experimental Evaluations

We conducted three experiments to evaluate the performance of our system. The
first is detection of three states of the eye by using three feature points of the eye. The
second is the investigation of the importance of each feature pointsto eye state detection.
Finally, we study the significance of image scales.
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Fig. 4. Neural network-based detector for three states of the eye. The
inputs are the Gabor coefficients of the eye feature points, and the
output is one label out of the three states of the eyes.

Results of eye state detectionTable 3 shows the detection results for three eye states
when we use three feature points of the eye and three different spatial frequencies of
Gabor wavelet. The average recognition rate is 83%. More specifically, 93% for AU41,
70% for AU42, and 81% for AU43. These are comparable to the reliability of different
human coders.

Compared to expression analysis, three eye states are unnecessary for driver aware-
ness systems. Very narrow eye and closed eye can be combined into one class in driver
awareness systems. In that case, the accuracy of detection increases to 93%.

Table 3. Detection results by using three feature points of the eye.
The numbers in bold means can be combined into one class in driver
awareness systems.

Recognized eye states

Open| Narrow | Closed
Open 52 4 0
Narrow 4 28 8
Closed 0 3 13

Recognition rate of three state®3%
Recognition rate of two state83%

Importance of eye feature points: We also carried out experiments on detection of
the three eye states by using one point (the inner corner) of the eye and two points (the
inner corner and the middle point) of the eye. The recognition rates for using different
points of the eye are list in Table 4. The recognition rate of 81.3% for two points is
close to that (83%) for three points. When only the inner corner of the eye is used, the
recognition rate decreases to 66%. When only the outer corner of the eye is used, the
recognition rate decreases to 38%. The inner corner and middle point carry more useful
information than the outer corner for eye state detection.



Table 4. Detection results for three eye states by using different fea-
ture points of the eye. We found that the inner corner and middle
point carry more useful information than the outer corner for eye
state detection.

Used eye feature points
1 point 2 points 3 points
Inner | Outer | Outer & | Inner & | Inner, outer,
corner| corner| middle | middle | & middle
66% | 38% | 61.2% | 81.3% 83%

Significance of differentimage scalesTo investigate the effects of the different spatial
frequencies, we evaluated the experiments by using two of the spatial frequencies (i.e.,
wavenumberk; = (%,%,%)). Table 5 shows the resulting comparisons. An 80%
recognition rate is achieved when we use= (7, §). Itis higher than the recognition

rate 74% when we use the higher spatial frequenciesfj.e-, (%, 7))

Table 5. Detection results for three eye states by using different spa-
tial frequencies.

Spatial frequencies

) | k=(5.8) | k=(5.%:%)

80% 83%
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6. Conclusion

In this paper, we developed an appearance-based system to detect eye-state AUs:
AU41, AU42, and AU43. After localizing three feature points for each eye, a set of
multi-scale and multi-orientation Gabor coefficients is extracted. The Gabor coefficients
are fed to a neural-network-based detector to learn the correlations between the Gabor
coefficient patterns and specific eye states. A recognition rate of 83% was obtained
for 112 images from 17 image sequences of 12 subjects. This is comparable to the
agreement between different human coders. We have found that the inner corner of the
eye contains more useful information than the outer corner of the eye and the lower
spatial frequencies contribute more than the higher spatial frequencies.
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