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Abstract. In this paper, we introduce a new top-down framework for
automatic localization and recognition of text-based traffic guide pan-
els1 captured by car-mounted cameras from natural scene images. The
proposed framework involves two contributions. First, a novel Cascaded
Localization Network (CLN) joining two customized convolutional nets
is proposed to detect the guide panels and the scene text on them in
a coarse-to-fine manner. In this network, the popular character-wise
text saliency detection is replaced with string-wise text region detec-
tion, which avoids numerous bottom-up processing steps such as char-
acter clustering and segmentation. Text information contained within
detected text regions is then interpreted by a deep recurrent model with-
out character segmentation required. Second, a temporal fusion of text
region proposals across consecutive frames is introduced to significantly
reduce the redundant computation in neighboring frames. A new chal-
lenging Traffic Guide Panel dataset is collected to train and evaluate the
proposed framework, instead of the unsuited symbol-based traffic sign
datasets. Experimental results demonstrate that our proposed frame-
work outperforms multiple recently published text spotting frameworks
in real highway scenarios.

Keywords: Road Scene Understanding, Traffic Guide Panel, Text Spot-
ting, Video OCR

1 Introduction

With the recent advances in vehicle intelligence, advanced driver assistance, and
road surveying, the vehicle mounted systems are expected to have a deep under-
standing of the surrounding environment and provide reliable information for the
drivers or autonomous navigation. As one of the most important context indica-
tors in driving status, traffic signs (symbol-based or text-based) have attracted
considerable attention in the fields of detection and recognition. Symbol-based
traffic signs such as Stop or Exit signs usually have relatively smaller size and

1 http://tinyurl.com/wiki-guide-signs
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unique shape, while text-based traffic signs/panels often have a standard rect-
angular shape containing numerous text information.

Most existing algorithms for traffic sign recognition were developed specifi-
cally for symbol-based traffic signs under limited conditions. Some systems de-
manded sophisticated hardware setup to capture high-resolution images, and
others worked well on individual static frames but could not meet the efficiency
requirement of the real-time video processing. Moreover, these methods usually
ignored a large amount of valuable semantic information resided in the text-
based traffic signs such as guide signs or panels, as shown in Figure 1. The
semantic information from guide panel could notify drivers or autonomous con-
trol systems of interchange, toll plaza, and exit direction. In most cases, this
information is not completely available or up-to-date on car-mounted navigation
systems.

Fig. 1. Samples of traffic guide panels and the corresponding text information in the
highway environments.

In this paper, a framework is proposed to detect and recognize text-based
traffic guide panels captured in highway environments (see examples in Figure 1).
This framework could help deliver the text information from guide panels to hu-
man drivers as head-up display information, and also to autonomous driving
vehicles in case of un-updated digital mapping. On a set of continuous image
frames, we first detect candidate traffic guide panels in each frame by using a set
of learned convolutional neural network (CNN) features, and then eliminate false
positive candidates by using temporal information from the continuous frames.
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The preliminary guide panel candidates are then further enhanced. Afterward, a
fine CNN-based text detector is trained to localize all the detected text regions
within the guide panel candidates. These text regions are finally recognized by
a deep recurrent model in a sequence-to-sequence encoder-decoder fashion. Al-
though several general scene text detection and recognition methods [1,2,3] have
been developed to localize and recognize the text information in the natural
scenes, most of these methods used exhaustive manner such as sliding window
to search for all possible regions containing text information across an entire
image. This process is time-consuming and error-prone, leading to more false
alarms. The shape, color, and geometric cues of the traffic signs are not com-
pletely modeled in these approaches. In contrast, our proposed framework could
largely reduce the searching space in each frame and improve the efficiency.

The remainder of the paper is organized as follows: Section 2 reviews related
work on traffic sign reading and text spotting in the wild. Section 3 describes
our methodology for localizing the traffic guide panels and corresponding scene
texts, and the enhancement of the guide panels. The temporal information fusion
of consecutive video frames, and the recognition of the detected text regions are
described in details in Section 4. The collected highway traffic guide panels
benchmark dataset and the experimental results are presented and discussed in
Section 5. The proposed framework and future work are concluded in Section 6.
It is worth noting that the single-word based guide signs (e.g., STOP sign) are
out of the scope of this paper since their inside text information is always fixed
and they could be directly detected and recognized as specific types of traffic
signs.

2 Related Work

In recent years, many researchers worked on the research topics associated with
text extraction from natural scene images and its associated applications. Most
state-of-the-art methods of scene text extraction [1,2,4,5,6,7,8,9,10] comprise two
stages, detection to obtain image regions containing text information, and recog-
nition to transform image-based text information into text codes. The detec-
tion methods could be further divided into three groups: region-based methods,
e.g., [10], connected component based methods, e.g., [11,12,13], and convolu-
tional neural network (CNN) based methods, e.g., [8]. Region-based text detec-
tion approaches rely on local features like the texture to locate text regions, while
connected component-based methods focus on segmenting individual text char-
acters using specific text patterns such as the intensity, colors, and edges. And
CNN-based approaches usually attempt to generate the character saliency maps
based on the extracted CNN features on multiple scales, and apply clustering
afterward.

For the text recognition, a number of techniques [9,14,15] have been reported
which follow a bottom-up fashion to train their own scene character classifiers.
The recognized characters are then grouped into a word based on the context in-
formation, while some errors including spelling and ambiguities are recovered by
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incorporating the Lexicon and n-gram language model. Most of these methods
require robust and accurate character-level segmentation and recognition. To
avoid the above numerous local computation, several methods based on recur-
rent neural network (RNN) with long short-term memory (LSTM) are recently
proposed [16,17], which model a word image as an unsegmented sequence and
does not require character-level segmentation and recognition.

Although scene text extraction has been a fairly popular research field, there
are a limited number of publications that specifically concentrated on the ex-
traction of text information from traffic guide signs and panels captured in the
form of continuous frames by car-mounted cameras. The main challenges which
prevent the exploration might be the wide diversity of the information contained
within traffic panels which are difficult to analyze, and the computation complex-
ity of the popular text extraction approaches which cannot meet the efficiency
requirement in realistic environments.

Specifically, Gonzlez et al. [18] attempted to use maximally stable extremal
regions (MSERs) to detect both traffic signs and text characters. The traffic
panels were detected in each frame based on color segmentation and bag of
visual words, and the detected regions were further classified using both support
vector machines and Naive Bayes classifiers. However, this method was only
applied to the single frame and ignored the temporal information. Greenhalgh
et al. [19] introduced more scene cues like the scene structure to define search
regions within each frame, and exhaustedly located a large number of guide sign
candidates using MSERs, hue, saturation and value color thresholding. The text
characters contained within detected candidate regions are further detected as
MSERs and grouped into lines, before being interpreted with optical character
recognition (OCR) engines. This approach outperforms previous methods, but is
still sophisticated and computationally expensive. Notice, these methods mainly
only focus on locating the general traffic signs and rely on the OCR engines
for the following text detection and recognition inside the guide signs. However,
our proposed method attempts to provide more accurate and useful text region
proposals and their interpretation besides the basic guide panel locations which
are relatively meaningless to the drivers or autonomous driving systems.

For the system validation, several datasets have also been proposed, includ-
ing the German traffic sign detection benchmark [20], the German traffic sign
recognition benchmark [21], and the Belgian traffic sign dataset [22]. However,
these datasets focus on the detection of the symbol-based traffic sign, and there-
fore not applicable to the validation for extracting text information from the
guide panel.

3 Cascaded Localization of Text-based Guide Panels

In this section, the localization process of the traffic guide panels and the text
regions within are presented. The enhancement of the preliminarily localized
guide panels is also described. Specifically, to accurately and efficiently localize
the guide panels and text regions of interest, we establish a two-stage cascaded
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Fig. 2. Demonstration of localizing guide panel candidates. The highlighted grids in
orange represent where the center of the guide panel falls into, and predict the exact
shape of the corresponding bounding box. The green bounding box represents the final
regressed shape of the panel prediction. The input resolution of the first layer of the
guide panel localization net is 448× 448. And the total number of grids is 7× 7 = 49.

framework, and model each stage as a unified detection process, inspired by the
You Only Look Once (YOLO) detector [23]. The first stage of the proposed Cas-
caded Localization Network (CLN) aims to find all the guide panels candidates
with a high recall rate, and the second stage focuses on the accurate localization
of the text regions and eliminates the false alarms, including the non-panel and
redundant detections, with the text localization results.

3.1 Unified Localization of Traffic Guide Panels

For an image frame captured at the highway, we first search for all the possible
locations of traffic guide panels by integrating the separate components of object
detection into a single neural network. Therefore the network reasons globally
about the full image and all the candidates, and predicts all the bounding boxes
simultaneously. In practice, the detector first evenly divides the input highway
scene image (rescaled to 448× 448) into a S × S grid, in which each grid cell is
responsible for detecting and localizing the guide panel whose center falls into
this grid cell, by predicting B bounding boxes and confidence scores for those
boxes. The confidence scores represent the probability of the box containing
a guide panel and also the accuracy of the box prediction. The confidence is
formally defined as Pr(Panel) ∗ IoUGT

Pre, which would be forced to zero if there
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is no object existing in the cell, and otherwise equal the intersection over union
(IoU) between the predicted box and the ground truth.

Different from the original YOLO detector, here each bounding box is com-
posed of 7 predictions: {x, y, w, h, cos θ, sin θ} and the presence confidence. The
(x, y) coordinates and the width/height (w, h) denote respectively the location
(center of the box w.r.t. the bounds of the grid cell) and size of a bounding
box tightly enclosing the guide panel. θ represents the bounding box rotation.
And the presence confidence denotes the IoU between the predicted guide panel
bounding box and any ground truth bounding box. The implementation de-
tails of this localization network are as follows. We set S = 7, B = 2 in the
experiments on the newly collected Traffic Guide Panel dataset. The final pre-
diction is a S × S × (B ∗ 7 + 1) = 7 × 7 × 15 tensor. To boost the efficiency of
the localization process, this network has 9 convolutional layers followed by 2
fully connected layers w.r.t. the 24 convolutional layers used in regular YOLO
detector. We pretrain our convolutional layers on the ImageNet 1000-class com-
petition dataset [24], and fine-tune the model on the training set of the Traffic
Guide Panel dataset including the ground truth annotations for all the text-
based traffic guide panels. The localization results are illustrated in Figure 2.

Fig. 3. Illustration of the enhancement of initial localized guide panels by extending
each edge of the bounding box with 20%.

Compared with previously CNN-based object detection approaches which
attempt to generate the saliency map and verify the clustered bounding box for
specific object category, here the regression-based guide panel detector directly
outputs the localization results without extra panel/non-panel classification. The
generated bounding boxes of guide panels are then enlarged by 20% to each
side, as illustrated in Figure 3, since the predicted panel bounding boxes, are
sometimes too tight which will affect the following text region localization. In
addition, this enlargement is able to make up missing parts of guide panels from
small bounding boxes. This process also involves context information of the guide
panels to benefit the following recognition stage.

3.2 Fine Text Region Localization

In this section, we introduce the second stage CNN architecture of the cascaded
localization network for text region localization in the enhanced guide panel
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Fig. 4. Localization results of the text region candidates within detected traffic guide
panels. The highlighted grids in orange predict the exact shape of the bounding box, and
represent where the center of the text region candidates fall into. The green bounding
boxes represent the finally regressed shape of the text region prediction. The red dashed
bounding boxes represent the missed ground truth text region.

image patches. This stage also follows the strategy of the YOLO detector and
its variant [25] by constructing a fixed field of predictors, each of which specializes
in predicting the presence of a word string around a specific image location. To
better localize the text regions instead of the general objects, additional Hough
Voting predictor is implemented to pool evidence from the whole image. Since
the text occurrences are usually smaller and more variable compared to general
objects, the grid number is also increased from GI = 7 to GI = 14 to solve
the problems. In details, the architecture comprised 9 convolutional layers, each
of which is followed by the Rectified Linear Unit non-linearity (ReLU), four of
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which by a max-pooling layer (2× 2, with a stride of 2). The stride of all linear
filters is 1, and the resolution of feature maps is kept through zero padding.

In testing each grid cell is responsible to localize a word string if the word
center falls within this cell, by regressing five numbers: the text region presence
confidence c, and the other four parameters p = (x, y, w, h), where the (x, y)
coordinates represent the text location (center of the box w.r.t. the bounds of
the grid cell), and the width and height (w, h) represent the size of the text
region. Here we do not need to predict the bounding box rotations of multiple
text regions as in [25], since all the text lines are parallel to the edge of the guide
panels based on observation. Therefore, for an input guide panel patch of size
HI ×WI , we obtain a grid of (HI ×WI)/Σ2 predictions, one each for an image
cell of size Σ × Σ pixels. To effectively detect the large text instances in the
guide panel, we further apply the text region localization net on multiple scales.
The input image is first downsampled by factors {1, 1/2, 1/4}, and the localiza-
tion results at multiple down-scaled levels of the input image are finally merged
via non-maximal suppression. In two overlapping detections, the one with the
lower probability is suppressed. The final localization results are demonstrated
in Figure 4.

4 Recognizing Extracted Text Regions

On the localized guide panels and their text regions from a sequence of contin-
uous frames, text recognition is performed to extract readable text codes. The
temporal information across continuous frames is modeled to reduce the compu-
tation cost and eliminate the false alarms. This fusion step is unnecessary if the
proposed localization pipeline is applied on a static image or individual frame.
A deep recurrent model is then introduced to directly recognize all the localized
text regions.

4.1 Temporal Fusion in Consecutive Frames

In the practical driving process, the proposed cascaded localization networks
should run on each of the continuous frames captured from the car-mounted
camera/recorder, and the occurrence of the guide panels would be relatively
rare in a long frame sequence. Moreover, the resolution and quality of the guide
panel would gradually increase as car proceeded close and then suddenly vanish.
Therefore, it would be computationally time-consuming and unnecessary to ap-
ply all the cascaded localization stages for every video frame as many previous
traffic sign detection methods [13,18,19].

In our experiments, only the guide panel localizer is applied on each frame,
and the enhancement and text region localizer are only applied in the last t
frames, where the actual value of t is determined by the trade-off between the
effective text recognition time and average text recognition accuracy. The last
available frame is determined by the distance between the guide panel image



Recognizing Text-based Traffic Guide Panels with Cascaded Localization Net 9

patch and the three image boundaries (top, left, and right). Some specific local-
ization results are regarded as false alarms if they are not successfully localized
by the guide panels at the last t frames. In our test, t = 10 works well for the
fusion process, which usually takes 1/6 ∼ 1/3 of the whole time of successful
panel detection in the highway environments.

Fig. 5. The sequence-to-sequence encoder-decoder recognition demonstration of the
extracted text region candidates.

4.2 Recognizing Text Regions with Deep Recurrent Model

After the finally refined text regions are generated, the text recognition process
is modeled as a sequence labeling problem by using a deep recurrent model. In
the traditional framework of text recognition in traffic signs or license plates,
character segmentation has a great influence on the success of recognition. The
text information would be recognized incorrectly if the segmentation is improper,
even if a high-performance character recognizer is adopted. Here we model the
text region recognition problem as a single-pass sequence labeling process. In
details, each input text region x ideally contain a piece of text with horizontal
orientation from left to right. The overall procedure of the sequence labeling
based text region recognition starts with converting the text region bounding box
into a sequence of feature vectors which are extracted by using the pre-trained
9-layer CNN model sliding across the bounding box. Afterward, a bi-directional
recurrent neural network (RNN) model with long short-term memory (LSTM)
is trained to label the sequence features, with stochastic gradient descent (SGD)
algorithm. Connectionist temporal classification is applied at last to the output
layer of RNN to analyze the labeling results of RNN and generate the final
recognition result. The recognition process is demonstrated in Figure 5.
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5 Experimental Results

In this section, experiments are performed to verify the effectiveness of the pro-
posed Cascaded Localization Network on new Traffic Guide Panel dataset which
contains a variety of individual highway guide panels, compared with multiple
recent text spotting approaches in the realistic highway scenes.

Benchmark Dataset Since there is no publicly available dataset specif-
ically on traffic guide panels, we collect a new challenging dataset of traffic
guide panels at the highway. This dataset contains a variety of highway guide
panels {3841 high-resolution individual images in total, 2315 containing traffic
guide panel level annotations (1911 for training and 404 for testing, and all the
testing images are manually labeled with ground truth tight text region bound-
ing boxes), 1526 containing no traffic signs}. All the images are collected from
AAroads website2, and captured from the view of car-mounted dash camera,
including numerous kinds of traffic guide panel such as direction, toll plaza,
destination distance, and exit indication.

Fig. 6. Comparison of the Top-5 text region localization proposals from the proposed
approach and the best competing baseline method [8].

2 http://www.aaroads.com

http://www.aaroads.com
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In the experiments, all the traffic guide panel annotations in 1911 of the
2315 images are used to fine-tune the guide panel localization net. The text
region localization net is trained on the SynthText in the Wild Dataset [25],
which consisted of 800k images with approximately 8 million synthetic word
instances. Each text instance is annotated with its text-string-level, word-level,
and character-level bounding boxes.

Table 1. Text localization results and average processing times on the Traffic Guide
Panel dataset. Precision P and recall R at the maximum f-measure F , and the local-
ization time tl (in seconds).

Method P R F tl

Proposed 0.73 0.64 0.68 0.16

Jaderberg et al. [8] 0.59 0.71 0.64 4.53

Gomez et al. [26] 0.46 0.53 0.49 1.32

Epshtein et al. [11] 0.35 0.41 0.38 2.51

Comparison to existing methods First our proposed approach is com-
pared with three recent methods for lexicon-free text detection.

– Stroke Width Transform, Epshtein et al. [11]: a well-known method3 that
leverages the consistency of characters’ stroke width to detect arbitrary fonts.

– MSER Text Detection, Gomez et al. [26]: uses maximally stable extremal
regions (MSERs), a popular tool in text detection4, which is combined with
a perceptual organization framework.

– Deep Text Spotting, Jaderberg et al. [8]: a state-of-the-art method5 that uses
multiple stages of convolutional neural networks to predict text saliency score
at each pixel, and cluster to form the region predictions afterward.

For the first two methods, the outputs are ranked by the bounding box
size, which is a sensible way to favor the more prominent detected texts since
the codes do not produce confidence values. For [8], the summed text saliency
scores are used for candidates ranking. Table 1 shows the text localization perfor-
mance and computation efficiency (i.e., average processing time) on a standard
PC with dual 3.2 GHz CPU and a NVIDIA Geforce Titan X GPU. We fol-
low the standard PASCAL VOC detect criterion: a detection is correct if the
IoU between its bounding box and the ground truth exceeds 50%. Overall, our
method outperforms the existing text localization methods in the highway en-
vironments, and the gains over the two non-learning methods [11,26] are large

3 https://github.com/lluisgomez/DetectText
4 https://github.com/lluisgomez/text_extraction
5 https://bitbucket.org/jaderberg/eccv2014_textspotting

https://github.com/lluisgomez/DetectText
https://github.com/lluisgomez/text_extraction
https://bitbucket.org/jaderberg/eccv2014_textspotting
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Fig. 7. Failure cases of the proposed Cascaded Localization Networks due to kinds of
image degradations, e.g., reflection and occlusion.

in terms of f-measure. Moreover, the proposed method outperforms the conven-
tional R-CNN based text detection approach [8] on the precision and f-measure,
and is comparable in terms of recall rate. As to the computation efficiency, due
to the straightforward and precise regression architect, the proposed cascaded
localization network performs significantly faster than the previous learning and
non-learning methods.

Qualitative examples Finally, we present text detection examples in Fig-
ure 6 to qualitatively demonstrate the performance of the proposed approach and
the best competing baseline [8]. These images illustrate the advantages of our
proposed method for narrowing down the search space and improving the com-
putation efficiency. Failure cases in certain frames caused by image degradations,
such as uneven illumination, reflection, and occlusion, are demonstrated in Fig-
ure 7. However, these localization results could be effectively eliminated through
temporal fusion in practice.

6 Conclusion and Future Work

In this paper, we have presented a new top-down CNN-based cascaded frame-
work for automatic detection and recognition of text-based traffic guide panels in
the wild. The proposed framework performed in an efficient coarse-to-fine man-
ner, and effectively reduced the redundant computation in continuous frames.
The future work will focus on further improving the accuracy and efficiency of the
cascaded localization network on traffic guide panels, and extending the newly
collected text-based guide panel dataset to a larger scale for future validation
and comparison.
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