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ABSTRACT

Vision-based monocular human pose estimation, as one of the most fundamental and challenging prob-

lems in computer vision, aims to obtain posture of the human body from input images or video se-

quences. The recent developments of deep learning techniques have been brought significant progress

and remarkable breakthroughs in the field of human pose estimation. This survey extensively reviews

the recent deep learning-based 2D and 3D human pose estimation methods published since 2014. This

paper summarizes the challenges, main frameworks, benchmark datasets, evaluation metrics, perfor-

mance comparison, and discusses some promising future research directions.
c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The human pose estimation (HPE) task, which has been

developed for decades, aims to obtain posture of the human

body from given sensor inputs. Vision-based approaches are

often used to provide such a solution by using cameras. In

recent years, with deep learning shows good performance

on many computer version tasks such as image classification

(Krizhevsky et al., 2012), object detection (Ren et al., 2015),

semantic segmentation (Long et al., 2015), etc., HPE also

achieves rapid progress by employing deep learning technol-

ogy. The main developments include well-designed networks

with great estimation capability, richer datasets (Lin et al.,

2014; Joo et al., 2017; Mehta et al., 2017a) for feeding net-

works and more practical exploration of body models (Loper

et al., 2015; Kanazawa et al., 2018). Although there are some

existing reviews for HPE, however, there still lacks a survey to

summarize the most recent deep learning-based achievements.

This paper extensively reviews deep learning-based 2D/3D hu-

man pose estimation methods from monocular images or video

footage of humans. Algorithms relied on other sensors such

as depth (Shotton et al., 2012), infrared light source (Faessler

et al., 2014), radio frequency signal (Zhao et al., 2018), and

multi-view inputs (Rhodin et al., 2018b) are not included in this

survey.
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As one of the fundamental computer vision tasks, HPE is a

very important research field and can be applied to many ap-

plications such as action/activity recognition (Li et al., 2017b;

Luvizon et al., 2018; Li et al., 2018b), action detection (Li et al.,

2017a), human tracking (Insafutdinov et al., 2017), Movies and

animation, Virtual reality, Human-computer interaction, Video

surveillance, Medical assistance, Self-driving, Sports motion

analysis, etc.

Movies and animation: The generation of various vivid dig-

ital characters is inseparable from the capture of human move-

ments. Cheap and accurate human motion capture system can

better promote the development of the digital entertainment in-

dustry.

Virtual reality: Virtual reality is a very promising technol-

ogy that can be applied in both education and entertainment.

Estimation of human posture can further clarify the relation be-

tween human and virtual reality world and enhance the interac-

tive experience.

Humancomputer interaction (HCI): HPE is very important

for computers and robots to better understand the identification,

location, and action of people. With the posture of human (e.g.

gesture), computers and robots can execute instructions in an

easy way and be more intelligent.

Video surveillance: Video surveillance is one of the early ap-

plications to adopt HPE technology in tracking, action recogni-

tion, re-identification people within a specific range.

Medical assistance: In the application of medical assistance,

HPE can provide physicians with quantitative human motion

information especially for rehabilitation training and physical
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Fig. 1. Typical challenges of HPE in monocular images or videos. Exam-
ple images are from Max Planck Institute for Informatics (MPII) dataset
(Andriluka et al., 2014).

therapy.

Self-driving: Advanced self-driving has been developed

rapidly. With HPE, self-driving cars can respond more appro-

priately to pedestrians and offer more comprehensive interac-

tion with traffic coordinators.

Sport motion analysis: Estimating players’ posture in sport

videos can further obtain the statistics of athletes’ indicators

(e.g. running distance, number of jumps). During training, HPE

can provide a quantitative analysis of action details. In physical

education, instructors can make more objective evaluations of

students with HPE.

Monocular human pose estimation has some unique charac-

teristics and challenges. As shown in Fig. 1, the challenges of

human pose estimation mainly fall in three aspects:

• Flexible body configuration indicates complex interdepen-

dent joints and high degree-of-freedom limbs, which may

cause self-occlusions or rare/complex poses.

• Diverse body appearance includes different clothing and

self-similar parts.

• Complex environment may cause foreground occlusion,

occlusion or similar parts from nearby persons, various

viewing angles, and truncation in the camera view.

The papers of human pose estimation can be categorized

in different ways. Based on whether to use designed hu-

man body models or not, the methods can be categorized into

generative methods (model-based) and discriminative methods

(model-free). According to from which level (high-level ab-

straction or low-level pixel evidence) to start the processing,

they can be classified into top-down methods and bottom-up

methods. More details of different category strategies for HPE

approaches are summarized in Table 2 and described in Section

2.1.

As listed in Table 1, with the development of human pose

estimation in the past decades, several notable surveys sum-

marized the research work in this area. The surveys (Aggar-

wal and Cai, 1999; Gavrila, 1999; Poppe, 2007; Ji and Liu,

2010; Moeslund et al., 2011) reviewed the early work of hu-

man motion analysis in many aspects (e.g., detection and track-

ing, pose estimation, recognition) and described the relation be-

tween human pose estimation and other related tasks. While Hu

et al. (2004) summarized the research of human motion analy-

sis for video surveillance application, the reviews (Moeslund

and Granum, 2001; Moeslund et al., 2006) focused on the hu-

man motion capture systems. More recent surveys were mainly

focusing on relatively narrow directions, such as RGB-D-based

action recognition(Chen et al., 2013; Wang et al., 2018b), 3D

HPE (Sminchisescu, 2008; Holte et al., 2012; Sarafianos et al.,

2016), model-based HPE (Holte et al., 2012; Perez-Sala et al.,

2014), body parts-based HPE (Liu et al., 2015), and monocular-

based HPE (Sminchisescu, 2008; Gong et al., 2016).

Different from existing review papers, this survey extensively

summarizes the recent milestone work of deep learning-based

human pose estimation methods, which were mainly published

from 2014. In order to provide a comprehensive summary, this

survey includes a few research work which has been discussed

in some surveys (Liu et al., 2015; Gong et al., 2016; Sarafianos

et al., 2016), but most of the recent advances are not been pre-

sented in any survey before.

The remainder of this paper is organized as follows. Section

2 introduces the existing review papers for human motion anal-

ysis and HPE, different ways to category HPE methods, and the

widely used human body models. Sections 3 and 4 describe

2D HPE and 3D HPE approaches respectively. In each sec-

tion, we further describe HPE approaches for both single per-

son pose estimation and multi-person pose estimation. Since

data are a very important and fundamental element for deep

learning-based methods, the recent HPE datasets and the eval-

uation metrics are summarized in Section 5. Finally, Section

6 concludes the paper and discusses several promising future

research directions.

2. Categories of HPE Methods and Human Body Models

2.1. HPE Method Categories

This section summarizes the different categories of deep

learning-based HPE methods based on different characteris-

tics: 1) generative (human body model-based) and discrim-

inative (human body model-free); 2) top-down (from high-

level abstraction to low-level pixel evidence) and bottom-up

(from low-level pixel evidence to high-level abstraction); 3)

regression-based (directly mapping from input images to body

joint positions) and detection-based (generating intermediate

image patches or heatmaps of joint locations); and 4) one-stage

(end-to-end training) and multi-stage (stage-by-stage training).

Generative V.S. Discriminative: The main difference be-

tween generative and discriminative methods is whether a

method uses human body models or not. Based on the differ-

ent representations of human body models, generative meth-

ods can be processed in different ways such as prior beliefs

about the structure of the body model, geometrically projection

from different views to 2D or 3D space, high-dimensional para-

metric space optimization in regression manners. More details

of human body model representation can be found in Section
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Table 1. Summary of the related surveys of human motion analysis and HPE.
No. Survey & Reference Venue Content

1 Human motion analysis: A review (Aggarwal and

Cai, 1999)

CVIU A review of human motion analysis including body structure analysis,

motion tracking and action recognition.

2 The visual analysis of human movement: A survey

(Gavrila, 1999)

CVIU A survey of whole-body and hand motion analysis.

3 A survey of computer vision-based human motion

capture (Moeslund and Granum, 2001)

CVIU An overview based on motion capture system, including initialization,

tracking, pose estimation, and recognition.

4 A survey on visual surveillance of object motion and

behaviors (Hu et al., 2004)

TSMCS A summary of human motion analysis based one the framework of visual

surveillance in dynamic scenes.

5 A survey of advances in vision-based human motion

capture and analysis (Moeslund et al., 2006)

CVIU Further summary of human motion capture and analysis from 2000 to

2006, following (Moeslund and Granum, 2001).

6 Vision-based human motion analysis: An overview

(Poppe, 2007)

CVIU A summary of vision-based human motion analysis with markerless data.

7 3D human motion analysis in monocular video:

techniques and challenges (Sminchisescu, 2008)

Book

Chapter
An overview of reconstructing 3D human motion with video sequences

from single-view camera.

8 Advances in view-invariant human motion analysis:

A review (Ji and Liu, 2010)

TSMCS A summary of human motion analysis, including human detection,

view-invariant pose representation and estimation, and behavior

understanding.

9 Visual analysis of humans (Moeslund et al., 2011) Book A comprehensive overview of human analysis, including detection and

tracking, pose estimation, recognition, and applications with human body

and face.

10 Human pose estimation and activity recognition from

multi-view videos: Comparative explorations of

recent developments (Holte et al., 2012)

JSTSP A review of model-based 3D HPE and action recognition methods under

multi-view.

11 A survey of human motion analysis using depth

imagery (Chen et al., 2013)

PRL A survey of traditional RGB-D-based human action recognition methods,

including description of sensors, corresponding datasets, and approaches.

12 A survey on model based approaches for 2D and 3D

visual human pose recovery (Perez-Sala et al., 2014)

Sensors A survey of model-based approaches for HPE, grouped in five main

modules: appearance, viewpoint, spatial relations, temporal consistence,

and behavior.

13 A survey of human pose estimation: the body parts

parsing based methods (Liu et al., 2015)

JVCIR A survey of body parts parsing-based HPE methods under both single-view

and multiple-view from different input sources(images, videos, depth).

14 Human pose estimation from monocular images: A

comprehensive survey (Gong et al., 2016)

Sensors A survey of monocular-based traditional HPE methods with a few deep

learning-based methods.

15 3d human pose estimation: A review of the literature

and analysis of covariates (Sarafianos et al., 2016)

CVIU A review of 3D HPE methods with different type of inputs(e.g., single

image or video, monocular or multi-view).

16 RGB-D-based human motion recognition with deep

learning: A survey (Wang et al., 2018b)

CVIU A survey of RGB-D-based motion recognition in four categories:

RGB-based, depth-based, skeleton-based, and RGB-D-based.

17 Monocular Human Pose Estimation: A Survey of
Deep Learning-based Methods

Ours A comprehensive survey of deep learning-based monocular HPE
research and human pose datasets, organized into four groups: 2D

single HPE, 2D multi-HPE, 3D single HPE and 3D multi-HPE

2.2. Discriminative methods directly learn a mapping from in-

put sources to human pose space (learning-based) or search in

existing examples (example-based) without using human body

models. Discriminative methods are usually faster than gen-

erative methods but may have less robustness for poses never

trained with.

Top-down V.S. Bottom-up: For multi-person pose estima-

tion, HPE methods can generally be classified as top-down and

bottom-up methods according to the starting point of the predic-

tion: high-level abstraction or low-level pixel evidence. Top-

down methods start from high-level abstraction to first detect

persons and generate the person locations in bounding boxes.

Then pose estimation is conducted for each person. In contrast,

bottom-up methods first predict all body parts of every person

in the input image and then group them either by human body

model fitting or other algorithms. Note that body parts could be

joints, limbs, or small template patches depending on different

methods. With an increased number of people in an image, the

computation cost of top-down methods significantly increases,

while keeps stable for bottom-up methods. However, if there

are some people with a large overlap, bottom-up methods face

challenges to group corresponding body parts.

Regression-based V.S. Detection-based: Based on the

different problem formulations, deep learning-based human

pose estimation methods can be split into regression-based or

detection-based methods. The regression-based methods di-

rectly map the input image to the coordinates of body joints

or the parameters of human body models. The detection-based

methods treat the body parts as detection targets based on two

widely used representations: image patches and heatmaps of

joint locations. Direct mapping from images to joint coordi-

nates is very difficult since it is a highly nonlinear problem,

while small-region representation provides dense pixel infor-

mation with stronger robustness. Compared to the original

image size, the detected results of small-region representation

limit the accuracy of the final joint coordinates.

One-stage V.S. Multi-stage: The deep learning-based one-

stage methods aim to map the input image to human poses

by employing end-to-end networks, while multi-stage methods

usually predict human pose in multiple stages and are accom-

panied by intermediate supervision. For example, some multi-

person pose estimation methods first detect the locations of peo-

ple and then estimate the human pose for each detected person.

Other 3D human pose estimation methods first predict joint lo-
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Table 2. The Categories of deep learning-based monocular human pose estimation.
Direction Sub-direction Categories Sub-categories

2D HPE

2D Single

Regression-based

(1) Direct prediction: (Krizhevsky et al., 2012), on video (Pfister et al., 2014)

(2) Supervision improvement: transform heatmaps to joint coordinates (Luvizon et al., 2017; Nibali

et al., 2018), recursive refinement (Carreira et al., 2016), bone-based constraint (Sun et al., 2017)

(3) Multi-task: with body part detection (Li et al., 2014), with person detection and action classi-

fication (Gkioxari et al., 2014a), with heatmap-based joint detection (Fan et al., 2015), with action

recognition on video sequences (Luvizon et al., 2018)

Detection-based

(1) Patch-based: (Jain et al., 2013; Chen and Yuille, 2014; Ramakrishna et al., 2014)

(2) Network design: (Tompson et al., 2015; Bulat and Tzimiropoulos, 2016; Xiao et al., 2018),

multi-scale inputs (Rafi et al., 2016), heatmap-based improvement (Papandreou et al., 2017), Hour-

glass (Newell et al., 2016), CPM (Wei et al., 2016), PRM (Yang et al., 2017), feed forward mod-

ule (Belagiannis and Zisserman, 2017), HRNet (Sun et al., 2019), GAN (Chou et al., 2017; Chen

et al., 2017; Peng et al., 2018)

(3) Body structure constraint: (Tompson et al., 2014; Lifshitz et al., 2016; Yang et al., 2016;

Gkioxari et al., 2016; Chu et al., 2016, 2017; Ning et al., 2018; Ke et al., 2018; Tang et al., 2018a;

Tang and Wu, 2019)

(4) Temporal constraint: (Jain et al., 2014; Pfister et al., 2015; Luo et al., 2018)

(5) Network compression: (Tang et al., 2018b; Debnath et al., 2018; Feng et al., 2019)

2D Multiple

Top-down
coarse-to-fine (Iqbal and Gall, 2016; Huang et al., 2017), bounding box refinement (Fang et al., 2017),

multi-level feature fusion (Xiao et al., 2018; Chen et al., 2018), results refinement (Moon et al., 2019)

Bottom-up

(1) Two-stage: DeepCut (Pishchulin et al., 2016), DeeperCut (Insafutdinov et al., 2016), Open-

Pose (Cao et al., 2016), PPN (Nie et al., 2018), PifPafNet (Kreiss et al., 2019)

(2) Single-stage: heatmaps and associative embedding maps (Newell et al., 2017)

(3) Multi-task: instance segmentation (Papandreou et al., 2018), keypoint detection and semantic

segmentation (Kocabas et al., 2018)

3D HPE

3D Single

Model-free

(1) Single-stage: direct prediction (Li and Chan, 2014; Pavlakos et al., 2017), body structure con-

straint (Li et al., 2015b; Tekin et al., 2016; Sun et al., 2017; Pavlakos et al., 2018a)

(2) 2D-to-3D: (Martinez et al., 2017; Zhou et al., 2017; Tekin et al., 2017; Li and Lee, 2019; Qammaz

and Argyros, 2019; Chen and Ramanan, 2017; Moreno-Noguer, 2017; Wang et al., 2018a; Yang et al.,

2018)

Model-based

(1) SMPL-based: (Bogo et al., 2016; Tan et al., 2017; Pavlakos et al., 2018b; Omran et al., 2018;

Varol et al., 2018; Kanazawa et al., 2018; Arnab et al., 2019)

(2) Kinematic model-based: (Mehta et al., 2017a; Nie et al., 2017; Zhou et al., 2016; Mehta et al.,

2017c; Rhodin et al., 2018a)

(3) Other model-based: probabilistic model (Tome et al., 2017)

3D Multiple bottom-up (Mehta et al., 2017b), top-down (Rogez et al., 2017), SMPL-based (Zanfir et al., 2018),

real-time (Mehta et al., 2019)

cations in the 2D surface, then extend them to 3D space. The

training of one-stage methods is easier than multi-stage meth-

ods, but with less intermediate constraints.

This survey reviews the recent work in two main sections:

2D human pose estimation (Section 3) and 3D human pose es-

timation (Section 4). For each section, we further divide them

into subsections based on their respective characteristics (see a

summary of all the categories and the corresponding papers in

Table 2.)

2.2. Human Body models

Human body modeling is a key component of HPE. Human

body is a flexible and complex non-rigid object and has many

specific characteristics like kinematic structure, body shape,

surface texture, the position of body parts or body joints, etc.

A mature model for human body is not necessary to contain all

human body attributes but should satisfy the requirements for

specific tasks to build and describe human body pose. Based

on different levels of representations and application scenarios,

as shown in Fig. 2, there are three types of commonly used

human body models in HPE: skeleton-based model, contour-

based model, and volume-based model. For more detailed de-

scriptions of human body models, we refer interested readers

to two well-summarized papers (Liu et al., 2015; Gong et al.,

2016).

Fig. 2. Commonly used human body models. (a) skeleton-based model; (b)
contour-based models; (c) volume-based models.
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Skeleton-based Model: Skeleton-based model, also known

as stick-figure or kinematic model, represents a set of joint

(typically between 10 to 30) locations and the correspond-

ing limb orientations following the human body skeletal struc-

ture. The skeleton-based model can also be described as a

graph where vertices indicating joints and edges encoding con-

straints or prior connections of joints within the skeleton struc-

ture (Felzenszwalb and Huttenlocher, 2005). This human body

topology is very simple and flexible which is widely utilized in

both 2D and 3D HPE (Cao et al., 2016; Mehta et al., 2017c) and

human pose datasets (Andriluka et al., 2014; Wu et al., 2017).

With obvious advantages of simple and flexible representing, it

also has many shortcomings such as lacking texture informa-

tion which indicates there is no width and contour information

of human body.

Contour-based Model: The contour-based model is widely

used in earlier HPE methods which contains the rough width

and contour information of body limbs and torso. Human body

parts are approximately represented with rectangles or bound-

aries of person silhouette. Widely used contour-based models

include cardboard models (Ju et al., 1996) and Active Shape

Models (ASMs) (Cootes et al., 1995).

Volume-based Model: 3D human body shapes and poses are

generally represented by volume-based models with geometric

shapes or meshes. Earlier geometric shapes for modeling body

parts include cylinders, conics, etc. (Sidenbladh et al., 2000).

Modern volume-based models are represented in mesh form,

normally captured with 3D scans. Widely used volume-based

models includes Shape Completion and Animation of People

(SCAPE) (Anguelov et al., 2005), Skinned Multi-Person Linear

model (SMPL) (Loper et al., 2015), and a unified deformation

model (Joo et al., 2018).

3. 2D Human Pose Estimation

2D human pose estimation calculates the locations of human

joints from monocular images or videos. Before deep learning

brings a huge impact on vision-based human pose estimation,

traditional 2D HPE algorithms adopt hand-craft feature extrac-

tion and sophisticated body models to obtain local representa-

tions and global pose structures (Dantone et al., 2013; Chen

and Yuille, 2014; Gkioxari et al., 2014b). Here, the recent deep

learning-based 2D human pose estimation methods are catego-

rized into ”single person pose estimation” and ”multi-person

pose estimation.”

3.1. 2D single person pose estimation

2D single person pose estimation is to localize body joint po-

sitions of a single person in an input image. For images with

more persons, pre-processing is needed to crop the original im-

age so that there is only one person in the input image such as

using an upper-body detector (Eichner and Ferrari, 2012a) or

full-body detector (Ren et al., 2015), and cropping from origi-

nal images based on the annotated person center and body scale

(Andriluka et al., 2014; Newell et al., 2016). Early work of in-

troducing deep learning into human pose estimation mainly ex-

tended traditional HPE methods by simply replaced some com-

ponents of frameworks by neural networks (Jain et al., 2013;

Ouyang et al., 2014).

Based on the different formulations of human pose estima-

tion task, the proposed methods using CNNs can be classified

into two categories: regression-based methods and detection-

based methods. Regression-based methods attempt to learn a

mapping from image to kinematic body joint coordinates by an

end-to-end framework and generally directly produce joint co-

ordinates (Toshev and Szegedy, 2014). Detection-based meth-

ods are intended to predict approximate locations of body parts

(Chen and Yuille, 2014) or joints (Newell et al., 2016), usu-

ally are supervised by a sequence of rectangular windows (each

including a specific body part) (Jain et al., 2013; Chen and

Yuille, 2014) or heatmaps (each indicating one joint position

by a 2D Gaussian distribution centered at the joint location)

(Newell et al., 2016; Wei et al., 2016). Each of these two kinds

of methods has its advantages and disadvantages. Direct regres-

sion learning of only one single point is a difficulty since it is a

highly nonlinear problem and lacks robustness, while heatmap

learning is supervised by dense pixel information which re-

sults in better robustness. Compared to the original image size,

heatmap representation has much lower resolution due to the

pooling operation in CNNs, which limits the accuracy of joint

coordinate estimation. And obtaining joint coordinates from

heatmap is normally a non-differentiable process that blocks

the network to be trained end-to-end. The recent representa-

tive work for 2D single person pose estimation are summarized

in Table 3, the last column is the comparisons of PCKh@0.5

scores on the MPII testing set. More details of datasets and

evaluation metrics are described in Section 5.

3.1.1. Regression-based methods
AlexNet (Krizhevsky et al., 2012) was one of the early net-

works for deep learning-based HPE methods due to its simple

architecture and impressive performance. Toshev and Szegedy

(2014) firstly attempted to train an AlexNet-like deep neural

network to learn joint coordinates from full images in a very

straightforward manner without using any body model or part

detectors as shown in Fig. 3. Moreover, a cascade architec-

ture of multi-stage refining regressors is employed to refine the

cropped images from the previous stage and show improved

performance. Pfister et al. (2014) also applied an AlexNet-like

network using a sequence of concatenated frames as input to

predict the human pose in the videos.

Fig. 3. The framework of DeepPose (Toshev and Szegedy, 2014).

Only using joints without the surrounding information lacks

robustness. Converting heatmap supervision to numerical joint

positions supervision can retain the advantages of both repre-

sentations. Luvizon et al. (2017) proposed a Soft-argmax func-

tion to transform heatmaps to joint coordinates which can con-
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Table 3. Summary of 2D single person pose estimation methods. Note that the last column shows the PCKh@0.5 scores on the Max Planck Institute for
Informatics (MPII) Human Pose testing set.

Methods Backbone Input size Highlights PCKh (%)

Regression-based
(Toshev and Szegedy, 2014) AlexNet 220×220 Direct regression, multi-stage refinement -

(Carreira et al., 2016) GoogleNet 224×224 Iterative error feedback refinement from initial pose. 81.3

(Sun et al., 2017) ResNet-50 224×224 Bone based representation as additional constraint, general for both 2D/3D HPE 86.4

(Luvizon et al., 2017)
Inception-v4+

Hourglass
256×256 Multi-stage architecture, proposed soft-argmax function to convert heatmaps

into joint locations

91.2

Detection-based
(Tompson et al., 2014) AlexNet 320×240 Heatmap representation, multi-scale input, MRF-like Spatial-Model 79.6

(Yang et al., 2016) VGG 112×112 Jointly learning DCNNs with deformable mixture of parts models -

(Newell et al., 2016) Hourglass 256×256 Proposed stacked Hourglass architecture with intermediate supervision. 90.9

(Wei et al., 2016) CPM 368×368 Proposed Convolutional Pose Machines (CPM) with intermediate input and

supervision, learn spatial correlations among body parts

88.5

(Chu et al., 2017) Hourglass 256×256 Multi-resolution attention maps from multi-scale features, proposed micro

hourglass residual units to increase the receptive field

91.5

(Yang et al., 2017) Hourglass 256×256 Proposed Pyramid Residual Module (PRM) learns filters for input features with

different resolutions

92.0

(Chen et al., 2017) conv-deconv 256×256 GAN, stacked conv-deconv architecture, multi-task for pose and occlusion, two

discriminators for distinguishing whether the pose is ’real’ and the confidence is

strong

91.9

(Peng et al., 2018) Hourglass 256×256 GAN, proposed augmentation network to generate data augmentations without

looking for more data

91.5

(Ke et al., 2018) Hourglass 256×256 Improved Hourglass network with multi-scale intermediate supervision,

multi-scale feature combination, structure-aware loss and data augmentation of

joints masking

92.1

(Tang et al., 2018a) Hourglass 256×256 Compositional model, hierarchical representation of body parts for intermediate

supervision

92.3

(Sun et al., 2019) HRNet 256×256 high-resolution representations of features across the whole network,

multi-scale fusion.

92.3

(Tang and Wu, 2019) Hourglass 256×256 data-driven joint grouping, proposed part-based branching network (PBN) to

learn representations specific to each part group.

92.7

vert a detection-based network to a differentiable regression-

based one. Nibali et al. (2018) designed a differentiable spatial

to numerical transform (DSNT) layer to calculate joint coordi-

nates from heatmaps, which worked well with low-resolution

heatmaps.

Prediction of joint coordinates directly from input images

with few constrains is very hard, therefore more powerful net-

works were introduced with a refinement or body model struc-

ture. Carreira et al. (2016) proposed an Iterative Error Feed-

back network based on GoogleNet which recursively processes

the combination of the input image and output results. The

final pose is improved from an initial mean pose after itera-

tions. Sun et al. (2017) proposed a structure-aware regression

approach based on a ResNet-50. Instead of using joints to repre-

sent pose, a bone-based representation is designed by involving

body structure information to achieve more stable results than

only using joint positions. The bone-based representation also

works on 3D HPE.

Networks handling multiple closely related tasks of human

body may learn diverse features to improve the prediction of

joint coordinates. Li et al. (2014) employed an AlexNet-like

multi-task framework to handle the joint coordinate predic-

tion task from full images in a regression way, and the body

part detection task from image patches obtained by a sliding-

window. Gkioxari et al. (2014a) used a R-CNN architecture to

synchronously detect person, estimate pose, and classify action.

Fan et al. (2015) proposed a dual-source deep CNNs which take

image patches and full images as inputs and output heatmap

represented joint detection results of sliding windows together

with coordinate represented joint localization results. The fi-

nal estimated posture is obtained from the combination of the

two results. Luvizon et al. (2018) designed a network that can

jointly handle 2D/3D pose estimation and action recognition

from video sequences. The pose estimated in the middle of the

network can be used as a reference for action recognition.

3.1.2. Detection-based methods
Detection-based methods are developed from body part de-

tection methods. In traditional part-based HPE methods, body

parts are first detected from image patch candidates and then

are assembled to fit a human body model. The detected body

parts in early work are relatively big and generally represented

by rectangular sliding windows or patches. We refer to (Poppe,

2007; Gong et al., 2016) for a more detailed introduction. Some

early methods use neural networks as body part detectors to dis-

tinguish whether a candidate patch is a specific body part (Jain

et al., 2013), classify a candidate patch among predefined tem-

plates (Chen and Yuille, 2014) or predict the confidence map

belonging to multiple classes (Ramakrishna et al., 2014). Body

part detection methods are usually sensitive to complexity back-

ground and body occlusions. Therefore the independent image

patches with only local appearance may not be sufficiently dis-

criminative for body part detection.

In order to provide more supervision information than just

joint coordinates and to facilitate the training of CNNs, more

recent work employed heatmap to indicate the ground truth
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of the joint location (Tompson et al., 2014; Jain et al., 2014).

As shown in Fig. 4, each joint occupies a heatmap channel

with a 2D Gaussian distribution centered at the target joint lo-

cation. Moreover, Papandreou et al. (2017) proposed an im-

proved representation of the joint location, which is a combi-

nation of binary activation heatmap and corresponding offset.

Since heatmap representation is more robust than coordinate

representation, most of the recent research is based on heatmap

representation.

Fig. 4. Heatmap representation of different joints.

The neural network architecture is very important to make

better use of input information. Some approaches are mainly

based on classic networks with appropriate improvements, such

as GoogLeNet-based network with multi-scale inputs (Rafi

et al., 2016), ResNet-based network with deconvolutional lay-

ers Xiao et al. (2018). In terms of iterative refinement, some

work designed networks in a multi-stage style to refine results

from coarse prediction via end-to-end learning (Tompson et al.,

2015; Bulat and Tzimiropoulos, 2016; Newell et al., 2016; Wei

et al., 2016; Yang et al., 2017; Belagiannis and Zisserman,

2017). Such networks generally use intermediate supervision

to address vanishing gradients. Newell et al. (2016) proposed a

novel stacked hourglass architecture by using a residual module

as the component unit. Wei et al. (2016) proposed a multi-stage

prediction framework with input image for each stage. Yang

et al. (2017) designed a Pyramid Residual Module (PRMs) to

replace the residual module of the Hourglass network to en-

hance the invariance across scales of DCNNs by learning fea-

tures on various scales. Belagiannis and Zisserman (2017) com-

bined a 7 layers feedforward module with a recurrent module

to iteratively refine the results. This model learns to predict

location heatmaps for both joints and body limbs. Also, they

analyzed keypoint visibility with unbalanced ground truth dis-

tribution. To keep high-resolution representations of features

across the whole network, Sun et al. (2019) proposed a novel

High-Resolution Net (HRNet) with multi-scale feature fusion.

Different from earlier work which attempted to fit detected

body parts into body models, some recent work tried to encode

human body structure information into networks. Tompson

et al. (2014) jointly trained a network with a MRF-like spatial-

model for learning typical spatial relations between joints. Lif-

shitz et al. (2016) discretized an image into log-polar bins cen-

tered around each joint and employed a VGG-based network to

predict joint category confident for each pair-wise joints (binary

terms). With all relative confident scores, the final heatmap for

each joint can be generated by a deconvolutional network. Yang

et al. (2016) designed a two-stage network. Stage one is a con-

volutional neural network to predict joint locations in heatmap

representation. Stage two is a message-passing model con-

nected manually according to the human body structure to find

optimal joint locations with a max-sum algorithm. Gkioxari

et al. (2016) proposed a convolutional Recurrent Neural Net-

work to output joint location one by one following a chain

model. The output of each step depends on both the input image

and the previously predicted output. The network can handle

both images and videos with different connection strategy. Chu

et al. (2016) proposed to transform kernels by a bi-directional

tree to pass information between corresponding joints in a tree

body model. Chu et al. (2017) replaced the residual modules

of the Hourglass network with more sophisticated ones. The

Conditional Random Field (CRF) is utilized for attention maps

as intermediate supervisions for learning body structure infor-

mation. (Ning et al., 2018) designed a fractal network to im-

pose body prior knowledge to guide the network. The external

knowledge visual features are encoded into the basic network

by using a learned projection matrix. Ke et al. (2018) proposed

a multi-scale structure-aware network based on Hourglass net-

work with multi-scale supervision, multi-scale feature combi-

nation, structure-aware loss, and data augmentation of joints

masking. On the basic framework of Hourglass network, Tang

et al. (2018a) designed a hierarchical representation of body

parts for intermediate supervision to replace heatmap for each

joint. Thus the network learns the bottom-up/top-down body

structure, rather than only scattered joints. Tang and Wu (2019)

proposed a part-based branching network (PBN) to learn spe-

cific representations of each part group rather than predict all

joint heatmaps from one branch. The data-driven part groups

are then split by calculating mutual information of joints.

Generative Adversarial Networks (GANs) are also employed

to provide adversarial supervision for learning body structure

or network training. Chou et al. (2017) introduced adversar-

ial learning with two same Hourglass networks as generator

and discriminator respectively. The generator predicts heatmap

location of each joint, while the discriminator distinguishes

ground truth heatmaps from generated heatmaps. Chen et al.

(2017) proposed a structure-aware convolutional network with

one generator and two discriminators to incorporate priors of

human body structure. The generator is designed from the

Hourglass network to predict joint heatmaps as well as occlu-

sion heatmaps. The pose discriminator can discriminate against

reasonable body configuration from unreasonable body config-

uration. The confidence discriminator shows the confidence

score of predictions. Peng et al. (2018) studied how to jointly

optimize data augmentation and network training without look-

ing for more data. Instead of using random data augmentation,

they applied augmentations to increase the network loss while

the pose network learns from the generated augmentations.

Utilization of temporal information is also very important to

estimate 2D human poses in monocular video sequences. Jain

et al. (2014) designed a framework contains two-branch CNNs

taking multi-scale RGB frames and optical-flow maps as inputs.

The extracted features are concatenated before the last convo-

lutional layers. Pfister et al. (2015) used optical-flow maps as

a guide to align predicted heatmaps from neighboring frames

based on the temporal context of videos. Luo et al. (2018)

exploited temporal information with a Recurrent Neural Net-

work redesigned from CPM by changing multi-stage architec-

ture with LSTM structure.
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In order to estimate human poses on low-capacity devices,

network parameters can be reduced while still maintaining

competitive performance. Tang et al. (2018b) committed to

improving the network structure by proposing a densely con-

nected U-Nets and efficient usage of memory. This network is

similar to the idea of the Hourglass network while utilizing U-

Net as each component with a more optimized global connec-

tion across each stage resulting in fewer parameters and small

model size. Debnath et al. (2018) adapted MobileNets (Howard

et al., 2017) for pose estimation by designing a split stream ar-

chitecture at the final two layers of the MobileNets. Feng et al.

(2019) designed a lightweight variant of Hourglass network and

trained it with a full teacher Hourglass network by a Fast Pose

Distillation (FPD) training strategy.

In summary, the heatmap representation is more suitable for

network training than coordinate representation from detection-

based methods in deep learning-based 2D single person pose

estimation.

3.2. 2D multi-person pose estimation

Different from single person pose estimation, multi-person

pose estimation needs to handle both detection and localization

tasks since there is no prompt of how many persons in the in-

put images. According to from which level (high-level abstrac-

tion or low-level pixel evidence) to start the calculation, human

pose estimation methods can be classified into top-down meth-

ods and bottom-up methods.

Top-down methods generally employ person detectors to ob-

tain a set of the bounding box of people in the input image

and then directly leverage existing single-person pose estima-

tors to predict human poses. The predicted poses heavily de-

pend on the precision of the person detection. The runtime

for the whole system is proportional based on the number of

persons. While bottom-up methods directly predict all the 2D

joints of all persons and then assemble them into independent

skeletons. Correct grouping of joint points in a complex en-

vironment is a challenging research task. Table 4 summarizes

recent deep learning-based work about 2D multi-person pose

estimation methods in both top-down and bottom-up categories.

The last column of Table 4 is the Average Precision (AP) scores

on the COCO test-dev dataset. More details of datasets and

evaluation metrics are described in Section 5.

3.2.1. Top-down methods
The two most important components of top-down HPE meth-

ods are human body region candidate detector and a single per-

son pose estimator. Most of the research focused on human part

estimation based on existing human detectors such as Faster

R-CNN (Ren et al., 2015), Mask R-CNN (He et al., 2017),

FPN (Lin et al., 2017). Iqbal and Gall (2016) utilized a con-

volutional pose machine-based pose estimator to generate ini-

tial poses. Then integer linear programming (ILP) is applied to

obtain the final poses. Fang et al. (2017) adopted spatial trans-

former network (STN) (Jaderberg et al., 2015), Non-Maximum-

Suppression (NMS), and Hourglass network to facilitate pose

estimation in the presence of inaccurate human bounding boxes.

Huang et al. (2017) developed a coarse-fine network (CFN)

with Inception-v2 network (Szegedy et al., 2016) as the back-

bone. The network is supervised in multiple levels for learning

coarse and fine prediction. Xiao et al. (2018) added several de-

convolutional layers over the last convolution layer of ResNet

to generate heatmaps from deep and low-resolution features.

Chen et al. (2018) proposed a cascade pyramid network (CPN)

by employing multi-scale feature maps from different layers to

obtain more inference from local and global features with an

online hard keypoint mining loss for difficulty joints. Based

on similar pose error distributions of different HPE approaches,

Moon et al. (2019) designed PoseFix net to refine estimated

poses from any methods.

Top-down HPE methods can be easily implemented by com-

bining existing detection networks and single HPE networks.

Meanwhile, the performance of this kind of methods is affected

by person detection results and the operation speed is usually

not real-time.

3.2.2. Bottom-up methods
The main components of bottom-up HPE methods include

body joint detection and joint candidate grouping. Most al-

gorithms handle these two components separately. Deep-

Cut (Pishchulin et al., 2016) employed a Fast R-CNN based

body part detector to first detect all the body part candidates,

then labeled each part to its corresponding part category, and

assembled these parts with integer linear programming to a

complete skeleton. DeeperCut (Insafutdinov et al., 2016) im-

proved the DeepCut by using a stronger part detector based on

ResNet and a better incremental optimization strategy exploring

geometric and appearance constraints among joint candidates.

OpenPose (Cao et al., 2016) used CPM to predict candidates of

all body joints with Part Affinity Fields (PAFs). The proposed

PAFs can encode locations and orientations of limbs to assem-

ble the estimated joints into different poses of persons. Nie

et al. (2018) proposed a Pose Partition Network (PPN) to con-

duct both joint detection and dense regression for joint partition.

Then PPN performs local inference for joint configurations with

joint partition. Similar to OpenPose, Kreiss et al. (2019) de-

signed a PifPaf net to predict a Part Intensity Field (PIF) and a

Part Association Field (PAF) to represent body joint locations

and body joint association. It works well on low-resolution im-

ages due to the fine-grained PAF and the utilization of Laplace

loss.

The above methods are all following a separation of joint

detection and joint grouping. Recently, some methods can do

the prediction in one stage. Newell et al. (2017) introduced a

single-stage deep network architecture to simultaneously per-

form both detection and grouping. This network can produce

detection heatmaps for each joint, and associative embedding

maps that contain the grouping tags of each joint.

Some methods employed multi-task structures. Papandreou

et al. (2018) proposed a box-free multi-task network for pose

estimation and instance segmentation. The ResNet-based net-

work can synchronously predict joint heatmaps of all keypoints

for every person and their relative displacements. Then the

grouping starts from the most confident detection with a greedy

decoding process based on a tree-structured kinematic graph.

The network proposed by Kocabas et al. (2018) combines a
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Table 4. Comparison of 2D multi-person pose estimation methods. Note that the last column shows the Average Precision (AP) scores on the COCO test-dev
set. The results with * were obtained with COCO16 training set, while others with COCO17 training set.

Methods Network type Highlights AP Score (%)

Top-down
(Iqbal and Gall, 2016) Faster R-CNN

+ CPM

After person detection and single HPE, refines detected local joint candidates with Integer

Linear Programming (ILP).

-

(Fang et al., 2017) Faster R-CNN

+ Hourglass

Combines symmetric spatial transformer network (SSTN) and Hourglass model to do SPPE

on detected results; proposes a parametric pose NMS for refining pose proposals; designs a

pose-guided proposals generator to augment the existing training samples

63.3∗

(Papandreou et al., 2017) Faster R-CNN

+ ResNet-101

Produces heatmap and offset map of each joint for SPPE and combines them with an

aggregation procedure; uses keypoint-based NMS to avoid duplicate poses

64.9∗

(Huang et al., 2017) Faster R-CNN

+ Inception-v2

Produces coarse and fine poses for SPPE with multi-level supervisions; multi-scale features

fusion

72.2∗

(He et al., 2017) Mask R-CNN

+ ResNet-FPN

An extension of Mask R-CNN framework; predicts keypoints and human mask

synchronously

63.1∗

(Xiao et al., 2018) Faster R-CNN

+ ResNet

Simply adds a few deconvolutional layers after ResNet to generate heatmaps from deep and

low resolution features

73.7

(Chen et al., 2018) FPN + CPN Proposes CPN with feature pyramid; two-stage network; online hard keypoints mining 73.0

(Moon et al., 2019) ResNet + up-

sampling

proposes PoseFix net to refine estimated pose from any HPE methods based on pose error

distributions

-

(Sun et al., 2019) Faster R-CNN

+ HRNet

high-resolution representations of features across the whole network, multi-scale fusion 75.5

Bottom-up
(Pishchulin et al., 2016) Fast R-CNN Formulate the distinguishing different persons as an ILP problem; cluster detected part

candidates; combine person clusters and labeled parts to obtain final poses

-

(Insafutdinov et al., 2016) ResNet Employs image-conditioned pairwise terms to assemble the part proposals -

(Cao et al., 2016) VGG-19 +

CPM

OpenPose; real-time; Simultaneous joints detection and association in a two-branch

architecture; propose Part Affinity Fields (PAFs) to encode the location and orientation of

limbs

61.8∗

(Newell et al., 2017) Hourglass Simultaneous joints detection and association in one branch; propose dense associative

embedding tags for detected joints grouping

65.5

(Nie et al., 2018) Hourglass Simultaneous joints detection and association in a two-branch architecture; generate

partitions in the embedding space parameterized by person centroids over joint candidates;

estimate pose instances by a local greedy inference approach

-

(Papandreou et al., 2018) ResNet Multi-task (pose estimation and instance segmentation) network; simultaneous joints

detection and association in a multi-branch architecture; multi-range joint offsets following

tree-structured kinematic graph to guide joints grouping

68.7

(Kocabas et al., 2018) ResNet-FPN +

RetinaNet

Multi-task (pose estimation, person detection and person segmentation) network;

simultaneous keypoint detection and person detection in a two-branch architecture; proposes

a Pose Residual Network (PRN) to assign keypoint detection to person instances

69.6

(Kreiss et al., 2019) ResNet-50 predicts Part Intensity Fields (PIF) and Part Association Fields (PAF) to represent body joints

location and body joints association; works well under low-resolution

66.7

multi-task model with a novel assignment method to handle

human keypoint estimation, detection, and semantic segmen-

tation tasks altogether. Its backbone network is a combination

of ResNet and FPN with shared features for keypoints and per-

son detection subnets. The human detection results are used as

constraints of the spatial position of people.

Currently, the processing speed of bottom-up methods is very

fast, and some (Cao et al., 2016; Nie et al., 2018) can run in

real-time. However, the performance can be very influenced by

the complex background and human occlusions. The top-down

approaches achieved state-of-the-art performance in almost all

benchmark datasets while the processing speed is limited by the

number of detected people.

4. 3D Human Pose Estimation

3D human pose estimation is to predict locations of body

joints in 3D space from images or other input sources. Al-

though commercial products such as Kinect (Kinect, accessed

on 2019) with depth sensor, VICON (Vicon, accessed on 2019)

with optical sensor and TheCaptury (TheCaptury, accessed on

2019) with multiple cameras have been employed for 3D body

pose estimation, all these systems work in very constrained en-

vironments or need special markers on human body. Monocu-

lar camera, as the most widely used sensor, is very important

for 3D human pose estimation. Deep neural networks have

the capability to estimate the dense depth (Li et al., 2015a,

2018a, 2019) and sparse depth points (joints) as well from

monocular images. Moreover, the progress of 3D human pose

estimation from monocular inputs can further improve multi-

view 3D human pose estimation in constrained environments.

Thus, this section focuses on the deep learning-based meth-

ods that estimate 3D human pose from monocular RGB images

and videos including 3D single person pose estimation and 3D

multi-person pose estimation.

4.1. 3D single person pose estimation

Compared to 2D HPE, 3D HPE is more challenging since it

needs to predict the depth information of body joints. In ad-

dition, the training data for 3D HPE are not easy to obtain as

2D HPE. Most existing datasets are obtained under constrained

environments with limited generalizability. For single person
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pose estimation, the bounding box of the person in the image

is normally provided, and hence it is not necessary to combine

the process of person detection. In this section, we divide the

methods of 3D single person pose estimation into model-free

and model-based categories and summarize the recent work in

Table 5. The last column of Table 5 is the comparisons of Mean

Per Joint Position Error (MPJPE) in millimeter on Human3.6M

dataset under protocol #1. More details of datasets and evalua-

tion metrics are described in Section 5.

4.1.1. Model-free methods
The model-free methods do not employ human body mod-

els as the predicted target or intermediate cues. They can be

roughly categorized into two types: 1) directly map an image

to 3D pose, and 2) estimate depth following intermediately pre-

dicted 2D pose from 2D pose estimation methods.

Approaches that directly estimate the 3D pose from image

features usually contain very few constraints. Li and Chan

(2014) employed a shallow network to regress 3D joint coordi-

nates directly with synchronous task of body part detection with

sliding windows. Pavlakos et al. (2017) proposed a volumetric

representation for 3D human pose and employed a coarse-to-

fine prediction scheme to refine predictions with a multi-stage

structure. Some researchers attempted to add body structure

information or the dependencies between human joints to the

deep learning networks. Li et al. (2015b) designed an em-

bedding sub-network learning latent pose structure information

to guide the 3D joint coordinates mapping. The sub-network

can assign matching scores for input image-pose pairs with a

maximum-margin cost function. Tekin et al. (2016) pre-trained

an unsupervised auto-encoder to learn a high-dimensional la-

tent pose representation of 3D pose for adding implicit con-

straints about the human body and then used a shallow network

to learn the high-dimensional pose representation. Sun et al.

(2017) proposed a structure-aware regression approach. They

designed a bone-based representation involving body structure

information which is more stable than only using joint posi-

tions. Pavlakos et al. (2018a) trained the network with addi-

tional ordinal depths of human joints as constraints, by which

the 2D human datasets can also be feed in with ordinal depths

annotations.

The 3D HPE methods which intermediately estimate 2D

poses gain the advantages of 2D HPE, and can easily utilize

images from 2D human datasets. Some of them adopt off-the-

shelf 2D HPE modules to first estimate 2D poses, then extend

to 3D poses. (Martinez et al., 2017) designed a 2D-to-3D pose

predictor with only two linear layers. (Zhou et al., 2017) pre-

sented a depth regression module to predict 3D pose from 2D

heatmaps with a proposed geometric constraint loss for 2D data.

Tekin et al. (2017) proposed a two-branch framework to pre-

dict 2D heatmaps and extract features from images. The ex-

tracted features are fused with 2D heatmaps by a trainable fu-

sion scheme instead of being hand-crafted to obtain the final 3D

joint coordinates. Li and Lee (2019) considered 3D HPE as an

inverse problem with multiple feasible solutions. Multiple fea-

sible hypotheses of 3D poses are generated from 2D poses and

the best one is chosen by 2D reprojections. Qammaz and Ar-

gyros (2019) proposed MocapNET directly encoding 2D poses

into the 3D BVH (Meredith et al., 2001) format for subsequent

rendering. By consolidating OpenPose (Cao et al., 2016) the ar-

chitecture estimated and rendered 3D human pose in real-time

using only CPU processing.

When mapping 2D pose to 3D pose, different strategies may

be applied. Chen and Ramanan (2017) used a matching strat-

egy for an estimated 2D pose and 3D pose from a library.

Moreno-Noguer (2017) encoded pairwise distances of 2D and

3D body joints into two Euclidean Distance Matrices (EDMs)

and trained a regression network to learn the mapping of the

two matrices. Wang et al. (2018a) predicted depth rankings of

human joints as a cue to infer 3D joint positions from a 2D pose.

Yang et al. (2018) adopted a generator from (Zhou et al., 2017)

and designed a multi-source discriminator with image, pairwise

geometric structure, and joint location information.

4.1.2. Model-based methods
Model-based methods generally employ a parametric body

model or template to estimate human pose and shape from im-

ages. Early geometric-based models are not included in this

paper. More recent models are estimated from multiple scans

of diverse people (Hasler et al., 2009; Loper et al., 2015; Pons-

Moll et al., 2015; Zuffi and Black, 2015) or combination of dif-

ferent body models (Joo et al., 2018). These models are typ-

ically parameterized by separate body pose and shape compo-

nents.

Some work employed the body model of SMPL (Loper et al.,

2015) and attempted to estimate the 3D parameters from im-

ages. For example, Bogo et al. (2016) fit SMPL model to es-

timated 2D joints and proposed an optimization-based method

to recover SMPL parameters from 2D joints. Tan et al. (2017)

inferred SMPL parameters by first training a decoder to pre-

dict silhouettes from SMPL parameters with synthetic data, and

then learning an image encoder with the trained decoder. The

trained encoder can predict SMPL parameters from input im-

ages. Directly learning parameters of SMPL is hard, some

work predicted intermediate cues as constrains. For example,

intermediate 2D pose and human body segmentation (Pavlakos

et al., 2018b), body parts segmentation (Omran et al., 2018),

2D pose and body parts segmentation (Varol et al., 2018). In

order to overcome the problem of lacking training data for the

human body model, (Kanazawa et al., 2018) employed adver-

sarial learning by using a generator to predict parameters of

SMPL, and a discriminator to distinguish the real SMPL model

and the predicted ones. (Arnab et al., 2019) reconstructed per-

son from video sequences which explored the multiple views

information.

Kinematic model is widely used for 3D HPE. (Mehta et al.,

2017a) predicted relative joint locations from 2D heatmaps fol-

lowing the kinematic tree body model. (Nie et al., 2017) em-

ployed LSTM to exploit global 2D joint locations and local

body part images following kinematic tree body model which

are two cues for joint depth estimation. Zhou et al. (2016) em-

bedded a kinematic object model into a network for general ar-

ticulated object pose estimation which provides orientation and

rotational constrains. Mehta et al. (2017c) proposed a pipeline

for 3D single HPE running in real-time. The temporal infor-

mation and kinematic body model are used as a smooth filter
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Table 5. Comparison of 3D single person pose estimation methods. Here E. stands for Extra data and T. indicates Temporal info. The last column is the
Mean Per Joint Position Error (MPJPE) in millimeter on Human3.6M dataset under protocol #1. The results with ∗ were reported from 6 actions in testing
set, while others from all 17 actions. The results with † were reported with 2D joint ground truth. The methods with # report joint rotation as well.

Methods Backbone E. T. Highlights MPJPE

(mm)

Model-free
(Li and Chan, 2014) shallow CNNs � � A multi-task network to predict of body part detection with sliding windows and 3D

pose estimation jointly

132.2∗

(Li et al., 2015b) shallow CNNs � � Compute matching score of image-pose pairs 120.2∗
(Tekin et al., 2016) auto-encoder+

shallow CNNs

� � Employ an auto-encoder to learn a high-dimensional representation of 3D pose; use

a shallow CNNs network to learn the high-dimensional pose representation

116.8∗

(Tekin et al., 2017) Hourglass � � Predict 2D heatmaps for joints first; then use a trainable fusion architecture to

combine 2D heatmaps and extracted features; 2D module is pre-trained with MPII

69.7

(Chen and Ramanan, 2017) CPM � � Estimate 2D poses from images first; then estimate depth of them by matching to a

library of 3D poses; 2D module is pre-trained with MPII

82.7
/57.5†

(Moreno-Noguer, 2017) CPM � � Use Euclidean Distance Matrices (EDMs) to encoding pairwise distances of 2D and

3D body joints; train a network to learn 2D-to-3D EDM regression; jointly trained

with other 3D (Humaneva-I) dataset

87.3

(Pavlakos et al., 2017) Hourglass � � Volumetric representation for 3D human pose; a coarse-to-fine prediction scheme;

2D module is pre-trained with MPII

71.9

(Zhou et al., 2017) Hourglass � � A proposed loss induced from a geometric constraint for 2D data; bone-length

constraints; jointly trained with 2D (MPII) dataset

64.9

(Martinez et al., 2017) Hourglass � � Directly map predicted 2D poses to 3D poses with two linear layers; 2D module is

pre-trained with MPII; process in real-time

62.9
/45.5†

(Sun et al., 2017)# ResNet � � A bone-based representation involving body structure information to enhance

robustness; bone-length constraints; jointly trained with 2D (MPII) dataset

48.3

(Yang et al., 2018) Hourglass � � Adversarial learning for domain adaptation of 2D/3D datasets; adopted generator

from (Zhou et al., 2017); multi-source discriminator with image, pairwise geometric

structure and joint location; jointly trained with 2D (MPII) dataset

58.6

Pavlakos et al. (2018a) Hourglass � � Volumetric representation for 3D human pose; additional ordinal depths annotations

for human joints; jointly trained with 2D (MPII) and 3D (Humaneva-I) datasets

56.2

(Sun et al., 2018) Mask R-CNN � � Volumetric representation for 3D human pose; integral operation unifies the heat

map representation and joint regression; jointly trained with 2D (MPII) dataset

40.6

(Li and Lee, 2019) Hourglass � � Multiple hypotheses of 3D poses are generated from 2D poses; the best one is

chosen by 2D reprojections; 2D module is pre-trained with MPII

52.7

Model-based
(Bogo et al., 2016)# DeepCut � � SMPL model; fit SMPL model to 2D joints by minimizing the distance between 2D

joints and projected 3D model joints

82.3

(Zhou et al., 2016)# ResNet � � kinematic model; embedded a kinematic object model into network for general

articulated object pose estimation; orientation and rotational constrains

107.3

(Mehta et al., 2017c)# ResNet � � A real-time pipeline with temporal smooth filter and model-based kinematic

skeleton fitting; 2D module is pre-trained with MPII and LSP; process in real-time;

provide body height

80.5

(Tan et al., 2017) shallow CNNs � � SMPL model; first train a decoder to predict a 2D body silhouette from parameters

of SMPL; then train a encoder-decoder network with images and corresponding

silhouettes; the trained encoder can predict parameters of SMPL from images

-

(Mehta et al., 2017a) Resnet � � Kinematic model; transfer learning from features learned for 2D pose estimation;

2D pose prediction as auxiliary task; predict relative joint locations following the

kinematic tree body model; jointly trained with 2D (MPII and LSP) datasets

74.1

(Nie et al., 2017) RMPE +

LSTM

� � Kinematic model; joint depth estimation from global 2D pose with skeleton-LSTM

and local body parts with patch-LSTM; 2D module is pre-trained with MPII

79.5

(Kanazawa et al., 2018)# ResNet � � SMPL model; adversarial learning for domain adaptation of 2D images and 3D

human body model; propose a framework to learn parameters of SMPL; jointly

trained with 2D (LSP, MPII and COCO) datasets; process in real-time

88.0

(Pavlakos et al., 2018b)# Hourglass � � SMPL model; first predict 2D heatmaps of joint and human silhouette; second

generate parameters of SMPL; 2D module is trained with MPII and LSP

75.9

(Omran et al., 2018)# RefineNet � � SMPL model; first predict 2D body parts segmentation from the RGB image;

second take this segmentation to predict the parameters of SMPL

59.9

(Varol et al., 2018) Hourglass � � SMPL model; first predict 2D pose and 2D body parts segmentation; second predict

3D pose; finally predict volumetric shape to fit SMPL model; 2D modules are

trained with MPII and SURREAL

49.0

(Arnab et al., 2019)# ResNet � � SMPL model; 2D keypoints, SMPL and camera parameters estimation; off-line

bundle adjustment with temporal constraints; 2D module is trained with COCO

77.8
/63.3†

(Tome et al., 2017) CPM � � Pre-trained probabilistic 3D pose model; 3D lifting and projection by probabilistic

model within the CPM-like network; 2D module is pre-trained with MPII; process

in real-time

88.4

(Rhodin et al., 2018a) Hourglass � � A latent variable body model learned from multi-view images; an encoder-decoder

to predict a novel view image from a given one; the pre-trained encoder with

additional shallow layers to predict 3D poses from images

-
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and skeleton fitting respectively. Rhodin et al. (2018a) used an

encoder-decoder network to learn a latent variable body model

without 2D or 3D annotations under self-supervision, then em-

ployed the pre-trained encoder to predict 3D poses.

Additional to those typical body models, latent 3D pose

model learned from data is also used for 3D HPE. Tome et al.

(2017) proposed a multi-stage CPM-like network including a

pre-trained probabilistic 3D pose model layer which can gener-

ate 3D pose from 2D heatmaps.

4.2. 3D multi-person pose estimation

The achievements of monocular 3D multi-person pose esti-

mation are based on 3D single person pose estimation and other

deep learning methods. This research field is pretty new and

only a few methods are proposed. Table 6 summarizes these

methods.

Mehta et al. (2017b) proposed a bottom-up method by us-

ing 2D pose and part affinity fields to infer person instances.

An occlusion-robust pose-maps (ORPM) is proposed to pro-

vide multi-style occlusion information regardless of the num-

ber of people. Rogez et al. (2017) proposed a Localization-

Classification-Regression Network (LCR-Net) following three-

stage processing. First, Faster R-CNN is employed to detect

people locations. Second, each pose proposal is assigned with

the closest anchor-pose scored by a classifier. The final poses

are refined with a regressor respectively. Zanfir et al. (2018)

proposed a framework with feed forward and feed backward

stages for 3D multi-person pose and shape estimation. The feed

forward process includes semantic segmentation of body parts

and 3D pose estimates based on DMHS (Popa et al., 2017).

Then the feed backward process refines the pose and shape pa-

rameters of SMPL (Loper et al., 2015). Mehta et al. (2019)

estimated multiple poses in real-time with three stages. First,

SelecSLS Net infers 2D pose and intermediate 3D pose encod-

ing for visible body joints. Then based on each detected person,

it reconstructs the complete 3D pose, including occluded joints.

Finally, refinement is provided for temporal stability and kine-

matic skeleton fitting.

5. Datasets and evaluation protocols

Datasets play an important role in deep learning-baed human

pose estimation. Datasets not only are essential for fair compar-

ison of different algorithms but also bring more challenges and

complexity through their expansion and improvement. With the

maturity of the commercial motion capture systems and crowd-

sourcing services, recent datasets are no longer limited by the

data quantity or lab environments.

This section discusses the popular publicly available human

pose datasets for 2D and 3D human pose estimation, introduces

the characteristics and the evaluation methods, as well as the

performance of recent state-of-the-art work on several popular

datasets. In addition to these basic datasets, some researchers

have extended the existing datasets in their own way (Pavlakos

et al., 2018a; Lassner et al., 2017). In addition, some relevant

human datasets are also within the scope of this section (Güler

et al., 2018). A brief description of how researchers collected

all the annotated images of each dataset is also provided to bring

inspiration to readers who want to generate their own datasets.

5.1. Datasets for 2D human pose estimation
Before deep learning brings significant progress for 2D HPE,

there are many 2D human pose datasets for specific scenar-

ios and tasks. Upper body pose datasets include Buffy Stick-

men (Ferrari et al., 2008) (frontal-facing view, from indoor

TV show), ETHZ PASCAL Stickmen (Eichner et al., 2009)

(frontal-facing view, from PASCAL VOC (Everingham et al.,

2010)), We Are Family (Eichner and Ferrari, 2010) (Group

photo scenario), Video Pose 2 (Sapp et al., 2011) (from in-

door TV show), Sync. Activities (Eichner and Ferrari, 2012b)

(sports, full-body image, upper body annotation). full-body

pose datasets include PASCAL Person Layout (Everingham

et al., 2010) (daily scene, from PASCAL VOC (Everingham

et al., 2010)), Sport (Wang et al., 2011) (sport scenes) and

UIUC people (Li and Fei-fei, 2007) (sport scenes). For de-

tailed description of these datasets, we refer interested readers

to several well-summarized papers (Andriluka et al., 2014) and

(Gong et al., 2016).

Above earlier datasets for 2D human pose estimation have

many shortcomings such as few scenes, monotonous view an-

gle, lack of diverse activities, and limited number of images.

The scale is the most important aspect of a dataset for deep

learning-based methods. Small training sets are insufficient for

learning robust features, unsuitable for networks with deep lay-

ers and complex design, and may easily cause overfitting. Thus

in this section, we only introduce 2D human pose datasets with

the number of images for training over 1,000. The features of

these selected 2D HPE datasets are summarized in Table 7 and

some sample images with annotations are illustrated in Fig. 5.

Frames Labeled In Cinema (FLIC) Dataset (Sapp and

Taskar, 2013) contains 5, 003 images collected from popular

Hollywood movies. For every tenth frame of 30 movies, a per-

son detector (Bourdev and Malik, 2009) was run to obtain about

20K person candidates. Then all candidates are sent to Amazon

Mechanical Turk to obtain ground truth labeling for 10 upper

body joints. Finally, images with person occluded or severely

non-frontal views are manually deleted. The undeleted original

set called FLIC-full consisting of occluded, non-frontal, or just

plain mislabeled examples (20, 928 examples) is also available.

Moreover, in (Tompson et al., 2014), the FLIC-full dataset is

further cleaned to FLIC-plus to make sure that the training sub-

set does not include any images from the same scene as the test

subset.

Leeds Sports Pose (LSP) Dataset (Johnson and Evering-

ham, 2010) contains 2, 000 images of full-body poses collected

from Flickr by downloading with 8 sports tags (athletics, bad-

minton, baseball, gymnastics, parkour, soccer, tennis, and vol-

leyball). Each image is annotated with up to 14 visible joint

locations. Further, the extension version Leeds Sports Pose Ex-

tended (LSP-extended) training dataset (Johnson and Evering-

ham, 2011) is gathered to extend the LSP dataset only for train-

ing. It contains 10, 000 images collected from Flickr searches

with 3 most challenging tags (parkour, gymnastics, and athlet-

ics). The annotations were conducted through Amazon Me-

chanical Turk and the accuracy cannot be guaranteed.
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Table 6. Summary of 3D multi-person pose estimation methods.
Methods Network type Highlights

(Mehta et al., 2017b) ResNet Propose an occlusion-robust pose-maps (ORPM) for full-body pose inference even under

(self-)occlusions; combine 2D pose and part affinity fields to infer person instances

(Rogez et al., 2017)
Faster R-CNN

+ VGG-16
Localize human bounding boxes with Faster R-CNN; classify the closest anchor-pose for each

proposal; regress anchor-pose to get final pose

(Zanfir et al., 2018) DMHS Feed forward process of body parts semantic segmentation and 3d pose estimates; feed backward

process of refining pose and shape parameters of a body model SMPL

Mehta et al. (2019) SelecSLS Net Real-time; a new CNN architecture that uses selective long and short range skip connections; 2D and

3D pose features prediction along with identity assignments for all visible joints of all individuals;

complete 3D pose reconstruction including occluded joints; temporal stability refinement and

kinematic skeleton fitting.

Table 7. Popular 2D databases for human pose estimation. Selected example images with annotations are shown in Fig. 5. Here Jnt. indicates the number
of joints

Dataset Single/
Jnt.

Number of images/videos Evaluation
Highlights

name Multiple Train Val Test protocol

Image-based

FLIC

single 10

≈5k 0 ≈1k

PCP&PCK

Upper body poses; Sampled from movies; FLIC-full is complete

version (Sapp and Taskar, 2013); FLIC-plus is cleaned version

(Tompson et al., 2014); FLIC is a simple version with no difficult

poses.FLIC-full ≈20k 0 0

FLIC-plus ≈17k 0 0

LSP

single 14

≈1k 0 ≈1k

PCP

full-body poses; From Flickr with 8 sports tags (Johnson and

Everingham, 2010); Extended by adding most challenging poses

lie in 3 tags (Johnson and Everingham, 2011).
LSP-

extended
≈10k 0 0

MPII

single

16

≈29k 0 ≈12k PCPm/PCKh
Various body poses; Downloaded videos from YouTube; Multiple

annotations (bounding boxes, 3D viewpoint of the head and torso,

position of the eyes and nose, joint locations); (Andriluka et al.,

2014).multiple ≈3.8k 0 ≈1.7k mAP

COCO16

multiple 17

≈45k ≈22k ≈80k

AP

Various body poses; From Google, Bing and Flickr; Multiple

annotations (bounding boxes, human body masks, joint locations);

With about 120K unlabeled images for semi-supervised learning;

(Lin et al., 2014)COCO17 ≈64k ≈2.7k ≈40k

AIC-

HKD
multiple 14 ≈210k ≈30k ≈60k AP Various body poses; From Internet search engines; Multiple

annotations (bounding boxes, joint locations); (Wu et al., 2017)

Video-based
Penn

Action
single 13 ≈1k 0 ≈1k -

full-body poses; From YouTube; 15 actions; Multiple annotations

(joint locations, bounding boxes, action classes) (Zhang et al., 2013).

J-HMDB single 15 ≈0.6k 0 ≈0.3k -

full-body poses; Generated from action recognition dataset; 21

actions; Multiple annotations (joint positions and relations, optical

flows, segmentation masks) (Jhuang et al., 2013).

PoseTrack multiple 15 292 50 208 mAP
Various body poses; Extended from MPII; Dense annotations

(joint locations, head bounding boxes) (Andriluka et al., 2018).

Max Planck Institute for Informatics (MPII) Human
Pose Dataset (Andriluka et al., 2014) is one of current the state-

of-the-art benchmarks for evaluation of articulated human pose

estimation with rich annotations. First, with guidance from a

two-level hierarchy of human activities from (Ainsworth et al.,

2011), 3, 913 videos spanning 491 different activities are down-

loaded from YouTube. Then frames that either contains differ-

ent people in the video or the same person in a very different

pose were manually selected which results in 24, 920 frames.

Rich annotations including 16 body joints, the 3D viewpoint

of the head and torso and position of the eyes and nose are la-

beled by in-house workers and on Amazon Mechanical Turk.

For corresponding joints, visibility and left/right labels are also

annotated in a person-centric way. Images in MPII have var-

ious body poses and are suitable for many tasks such as 2D

single/multiple human pose estimation, action recognition, etc.

Microsoft Common Objects in Context (COCO) Dataset
(Lin et al., 2014) is a large-scale dataset that was originally pro-

posed for daily object detection and segmentation in natural en-

vironments. With improvements and extensions, the usage of

COCO covers image captioning and keypoint detection. Im-

ages are collected from Google, Bing, and Flickr image search

with isolated or pairwise object categories. Annotations were

conducted on Amazon Mechanical Turk. The whole set con-

tains more than 200, 000 images and 250, 000 labeled person

instances. Suitable examples are selected for human pose esti-

mation, thus forming two datasets: COCO keypoints 2016 and

COCO keypoints 2017, corresponding to two public keypoint

detection challenges respectively. The only difference between

these two versions is the train/val/test splitting strategy based
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Fig. 5. Some selected example images with annotations from typical 2D human pose estimation datasets.

on community feedback (shown in Table 7), and cross-year re-

sults can be compared directly since the images in the test set

are same. The COCO Keypoint Detection Challenge aims to

localize keypoints of people in uncontrolled images. The anno-

tations for each person include 17 body joints with visibility and

left/right labels, and instance human body segmentation. Note

that COCO dataset contains about 120K unlabeled images fol-

lowing the same class distribution as the labeled images which

can be used for unsupervised or semi-supervised learning.

AI Challenger Human Keypoint Detection (AIC-HKD)
Dataset (Wu et al., 2017) has the largest number of training

examples. It contains 210, 000, 30, 000, 30, 000, and 30, 000

images for training, validation, test A, and test B respectively.

The images, focusing on the daily life of people, were collected

from Internet search engines. Then, after removing inappro-

priate examples (e.g. with the political, constabulary, violent

and sexual contents; too small or too crowded human figures),

each person in the images were annotated with a bounding box
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and 14 keypoints. Each keypoint has the visibility and left/right

labels.

In addition to the datasets described above which are in static

image style, datasets with densely annotated video frames are

collected in closer to real-life application scenarios which offer

the possibility to utilize temporal information and can be used

for action recognition. Some of them focus on single individu-

als (Zhang et al., 2013; Jhuang et al., 2013; Charles et al., 2016)

and others have pose annotations for multiple people (Insafut-

dinov et al., 2017; Iqbal et al., 2016; Andriluka et al., 2018).

Penn Action Dataset (Zhang et al., 2013) consists of 2, 326

videos downloaded from YouTube covering 15 actions: base-

ball pitch, baseball swing, bench press, bowling, clean and jerk,

golf swing, jump rope, jumping jacks, pull up, push up, sit up,

squat, strum guitar, tennis forehand, and tennis serve. Annota-

tions for each frame were labeled by VATIC (Vondrick et al.,

2013) (an annotation tool) on Amazon Mechanical Turk. Each

video involves an action class label and each video frame con-

tains a bounding box of human and 13 joint locations with the

visibility and left/right labels.

Joint-annotated Human Motion Database (J-HMDB)
(Jhuang et al., 2013) is based on the HMDB51 (Jhuang et al.,

2011) which is originally collected for action recognition. First,

21 action categories with relatively large body movements were

selected from original 51 actions in HMDB51, including: brush

hair, catch, clap, climb stairs, golf, jump, kick ball, pick, pour,

pull-up, push, run, shoot ball, shoot bow, shoot gun, sit, stand,

swing baseball, throw, walk, and wave. Then, after a selection-

and-cleaning process, 928 clips comprising 31, 838 annotated

frames are selected. Finally, a 2D articulated human puppet

model (Zuffi et al., 2012) is employed to generate all the needed

annotations using Amazon Mechanical Turk. The 2D puppet

model is an articulated human body model that provides scale,

pose, segmentation, coarse viewpoint, and dense optical flow

for the humans in actions. The annotations include 15 joint po-

sitions and relations, 2D optical flow corresponding to the hu-

man motion, human body segmentation mask. The 70% images

are used for training and the 30% images for testing. J-HMDB

can also be used for action recognition and human detection

tasks.

There are several video datasets annotated with human up-

per body pose. BBC Pose (Charles et al., 2014) contains 20

videos (10/5/5 for train/val/test, 1.5 million frames in total) with

9 sign language signers. 2, 000 frames for validation and test

are manually annotated and the rest of the frames are annotated

with a semi-automatic method. Extended BBC Pose dataset

(Pfister et al., 2014) adds 72 additional training videos for BBC
Pose which has about 7 million frames in total. MPII Cooking
(Rohrbach et al., 2012) dataset contains 1, 071 frames for train-

ing and 1, 277 frames for testing with manually annotated joint

locations for cooking activities. YouTube Pose dataset (Charles

et al., 2016) contains 50 YouTube videos with single person in.

The activities cover dancing, stand-up comedy, how-to, sports,

disk jockeys, performing arts and dancing, and sign language

signers. 100 frames of each video are manually annotated with

joint locations of the upper body. The scenes of these datasets

are relatively simple, with static views and the characters are

normally in a small motion range.

From unlabeled MPII Human Pose (Andriluka et al., 2014)

video data, there are several extended versions result in dense

annotations of video frames. The general approach is to ex-

tend the original labeled frame with the connected frames both

forward and backward and annotate unlabeled frames in the

same way as the labeled frame. MPII Video Pose dataset

(Insafutdinov et al., 2017) provides 28 videos containing 21

frames each by selecting the challenging labeled images and

unlabeled neighboring +/-10 frames from the MPII dataset. In

Multi-Person PoseTrack dataset (Iqbal et al., 2016), each se-

lected labeled frame is extended with unlabeled clips ranging

+/-20 frames, and each person has a unique ID. Also, addi-

tional videos of more than 41 frames are provided for longer

and variable-length sequences. In total, it contains 60 videos

with additional videos with more than 41 frames for longer and

variable-length sequences. PoseTrack dataset (Andriluka et al.,

2018) is the integrated expansion of the above two datasets and

is the current largest multi-person pose estimation and tracking

dataset. Each person in the video has a unique track ID with

annotations of a head bounding box and 15 body joint loca-

tions. All pose annotations are labeled with VATIC (Vondrick

et al., 2013). PoseTrack contains 550 video sequences with the

frames mainly ranging between 41 and 151 frames in a wide va-

riety of everyday human activities and is divided into 292, 50,

and 208 videos for training, validation, and testing, following

original MPII split strategy.

5.2. Evaluation Metrics of 2D human pose estimation

Different datasets have different features (e.g. various range

of human body sizes, upper/full human body) and different

task requirements (single/multiple pose estimation), so there are

several evaluation metrics for 2D human pose estimation. The

summary of different evaluation metrics which are commonly

used are listed in Table 8.

Percentage of Correct Parts (PCP) (Ferrari et al., 2008) is

widely used in early research. It reports the localization accu-

racy for limbs. A limb is correctly localized if its two endpoints

are within a threshold from the corresponding ground truth end-

points. The threshold can be 50% of the limb length. Besides a

mean PCP, some limbs PCP (torso, upper legs, lower legs, up-

per arms, forearms, head) normally are also reported (Johnson

and Everingham, 2010). And percentage curves for each limb

can be obtained with the variation of threshold in the metric

(Gkioxari et al., 2013). The similar metrics PCPm from (An-

driluka et al., 2014) use 50% of the mean ground-truth segment

length over the entire test set as a matching threshold.

Percentage of Correct Keypoints (PCK) (Yang and Ra-

manan, 2013) measures the accuracy of the localization of the

body joints. A candidate body joint is considered as correct

if it falls within the threshold pixels of the ground-truth joint.

The threshold can be a fraction of the person bounding box

size (Yang and Ramanan, 2013), pixel radius that normalized

by the torso height of each test sample (Sapp and Taskar, 2013)

(denoted as Percent of Detected Joints (PDJ) in (Toshev and

Szegedy, 2014)), 50% of the head segment length of each test

image (denoted as PCKh@0.5 in (Andriluka et al., 2014)).
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Table 8. Summary of commonly used evaluation metrics for 2D HPE.
Metric Meaning Typical datasets and Description

Single person

PCP

Percentage

of Correct

Parts
LSP Percentage of correct predicted Parts which their end points fall within a threshold

PCK

Percentage

of Correct

Keypoints

LSP

MPII
Percentage of correct predicted joints which fall within a threshold

Multiple person

AP
Average

Precision

MPII

PoseTrack

mean AP (mAP) is reported by AP for each body part after assigning predicted

pose to the ground truth pose by PCKh score.

COCO

• APcoco: at OKS=.50:.05:.95 (primary metric)

• APOKS=.50
coco : at OKS=.50 (loose metric)

• APOKS=.75
coco : at OKS=.75 (strict metric)

• APmedium
coco : for medium objects: 322 < area < 962

• APlarge
coco : for large objects: area > 962

AR
Average

Recall
COCO

• ARcoco: at OKS=.50:.05:.95

• AROKS=.50
coco : at OKS=.50

• AROKS=.75
coco : at OKS=.75

• ARmedium
coco : for medium objects: 322 < area < 962

• ARlarge
coco : for large objects: area > 962

OKS

Object

Keypoint

Similarity
COCO A similar role as the Intersection over Union (IoU) for AP/AR.

Also, with the variation of a threshold, Area Under the Curve

(AUC) can be generated for further analysis.

The Average Precision (AP). For systems in which there are

only joint locations but no annotated bounding boxes for hu-

man bodies/heads or number of people in the image as ground

truth at testing, the detection problem must be addressed as

well. Similar to object detection, an Average Precision (AP)

evaluation method is proposed, which is first called Average

Precision of Keypoints (APK) in (Yang and Ramanan, 2013).

In AP measure, if a predicted joint falls within a threshold of

the ground-truth joint location, it is counted as a true positive.

Note that correspondence between candidates and ground-truth

poses are established separately for each keypoint. For multi-

person pose evaluation, all predicted poses are assigned to the

ground truth poses one by one based on the PCKh score or-

der, while unassigned predictions are counted as false positives

(Pishchulin et al., 2016). The mean average precision (mAP) is

reported from the AP of each body joint.

Average Precision (AP), Average Recall (AR) and their
variants. In (Lin et al., 2014), evaluating multi-person pose

estimation results as an object detection problem is further de-

signed. AP, AR, and their variants are reported based on an

analogous similarity measure: object keypoint similarity (OKS)

which plays the same role as the Intersection over Union (IoU).

Additional, AP/AR with different human body scales are also

reported in COCO dataset. Table 8 summarizes all above eval-

uation metrics.

Frame Rate, Number of Weights and Giga Floating-point
Operations Per Second (GFLOPs). The computational per-

formance metrics are also very important for HPE. Frame Rate

indicates the processing speed of input data, generally ex-

pressed by Frames Per Second (FPS) or seconds per image

(s/image) (Cao et al., 2016). Number of Weights and GFLOPs

show the efficiency of the network, mainly related to the net-

work design and the specific used GPUs/CPUs (Sun et al.,

2019). These computational performance metrics are suitable

for 3D HPE as well.

5.3. Datasets for 3D human pose estimation
For a better understanding of the human body in 3D space,

there are many kinds of body representations with different

modern equipment. 3D human body shape scans, such as

SCAPE (Anguelov et al., 2005), INRIA4D (INRIA4D, ac-

cessed on 2019) and FAUST (Bogo et al., 2014, 2017), 3D hu-

man body surface cloud points with time of flight (TOF) depth

sensors (Shahroudy et al., 2016), 3D human body reflective

markers capture with motion capture systems (MoCap) (Sigal

et al., 2010; Ionescu et al., 2014), orientation and acceleration

of 3D human body data with Inertial Measurement Unit (IMU)

(von Marcard et al., 2016, 2018). It is difficult to summarize

them all, this paper summarizes the datasets that involve RGB

images and 3D joint coordinates. The details of the selected 3D

datasets are summarized in Table 9 and some example images

with annotations are shown in Fig. 6.

HumanEva-I&II Datasets (Sigal et al., 2010). The ground

truth annotations of both datasets were captured with a commer-

cial MoCap system from ViconPeak. The HumanEva-I dataset

contains 7-view video sequences (4 grayscales and 3 colors)

which are synchronized with 3D body poses. There are 4 sub-

jects with markers on their bodies performing 6 common ac-

tions (e.g. walking, jogging, gesturing, throwing and catching a

ball, boxing, combo) in an 3m x 2m capture area. HumanEva-II

is an extension of HumanEva-I dataset for testing, which con-

tains 2 subjects performing the action combo.

Human3.6M Dataset (Ionescu et al., 2014) was collected

using accurate marker-based MoCap systems (Vicon, accessed

on 2019) in an indoor laboratory setup with 11 professional ac-

tors (5 females and 6 males) dressing moderately realistic cloth-

ing. It contains 3.6 million 3D human poses and correspond-

ing images from 4 different views. The performed 17 daily ac-
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Table 9. Popular databases for 3D human pose estimation. Selected example images with annotations are shown in Fig. 6 (Cams. indicates the number of
cameras; Jnt. indicates the number of joints)

Dataset
Cams. Jnt.

Number of frames/videos Evaluation
Highlights

name Train Val Test protocol

Single person

HumanEva-I 7
15

≈6.8k ≈6.8k ≈24k
MPJPE

4/2 (I/II) subjects, 6/1 (I/II) actions, Vicon data, indoor

environment. (Sigal et al., 2010)

HumanEva-II 4 0 0 ≈2.5k

Human3.6M 4 17 ≈1.5M ≈0.6M ≈1.5M MPJPE 11 subjects, 17 actions, Vicon data, multi-annotation (3D

joints, person bounding boxes, depth data, 3D body scans),

indoor environment. (Ionescu et al., 2014)

TNT15 8 15 ≈13k HumanEva 4 subjects, 5 actions, IMU data, 3D body scans, indoor

environment. (von Marcard et al., 2016)

MPI-INF-3DHP 14 15 ≈1.3M 3DPCK 8 subjects, 8 actions, commercial markerless system,

indoor and outdoor scenes. (Mehta et al., 2017a)

TotalCapture 8 26 ≈1.9M MPJPE 5 subjects, 5 actions, IMU and Vicon data, indoors

environment. (Trumble et al., 2017)

Multiple person
Panoptic 521 15 65 videos (5.5 hours) 3DPCK up to 8 subjects in each video, social interactions,

markerless studio, multi-annotation (3D joints, cloud

points, optical flow), indoors environment. (Joo et al.,

2017)

3DPW 1 18 60 videos (≈51k frames) MPJPE

MPJAE

7 subjects(up to 2), daily actions, estimated 3D poses from

videos and attached IMUs, 3D body scans, SMPL model

fitting, in the wild. (von Marcard et al., 2018)

tivities include discussion, smoking, taking photos, talking on

the phone, etc. Main capturing devices include 4 digital video

cameras, 1 time-of-flight sensor, 10 motion cameras working

synchronously. The capture area is about 4m x 3m. The pro-

vided annotations include 3D joint positions, joint angles, per-

son bounding boxes, and 3D laser scans of each actor. For eval-

uation, there are three protocols with different training and test-

ing data splits (protocol #1, protocol #2 and protocol #3.)

TNT15 Dataset (von Marcard et al., 2016) consists of syn-

chronized data streams from 8 RGB-cameras and 10 IMUs. It

has been recorded in an office environment. The dataset records

4 actors performing five activities (e.g. walking, running on

the spot, rotating arms, jumping and skiing exercises, dynamic

punching.) and contains about 13k frames including binary seg-

mented images obtained by background subtraction, 3D laser

scans and registered meshes of each actor.

MPI-INF-3DHP (Mehta et al., 2017a) was collected with a

markerless multi-camera MoCap system (TheCaptury, accessed

on 2019) in both indoor and outdoor scenes. It contains over

1.3M frames from 14 different views. Eight subjects (4 females

and 4 males) are recorded performing 8 activities (e.g. walk-

ing/standing, exercise, sitting, crouch/reach, on the floor, sports,

miscellaneous.)

TotalCapture Dataset (Trumble et al., 2017) was captured

in indoors with space measuring roughly 8m x 4m with 8 cali-

brated HD video cameras at a frame rate of 60Hz. There are 4

male and 1 female subjects each performing four diverse perfor-

mances, repeated 3 times: Range Of Motion (ROM), Walking,

Acting, and Freestyle. There is a total of 1, 892, 176 frames

of synchronized video, IMU and Vicon data. The variation

and body motions contained in particular within the acting and

freestyle sequences are very challenging with actions such as

yoga, giving directions, bending over and crawling performed

in both the train and test data.

MARCOnI Dataset (Elhayek et al., 2017) is a test dataset

containing sequences in a variety of uncontrolled indoor and

outdoor scenarios. The sequences vary according to different

data modalities captured (multiple videos, video + marker po-

sitions), in the numbers and identities of actors to track, the

complexity of the motions, the number of cameras used, the ex-

istence and number of moving objects in the background, and

the lighting conditions (i.e. some body parts lit and some in

shadow). Cameras differ in the types (from cell phones to vi-

sion cameras), the frame resolutions, and the frame rates.

Panoptic Dataset (Joo et al., 2017) was captured with

a markerless motion capturing using multiple view systems

which contains 480 VGA camera views, 31 HD views, 10 RGB-

D sensors and hardware-based synchronized system. It contains

65 sequences (5.5 hours) of social interaction with 1.5 millions

of 3D skeletons. The annotations include 3D keypoints, cloud

points, optical flow, etc.

3DPW Dataset (von Marcard et al., 2018) was captured with

a single hand-held camera in natural environments. 3D anno-

tations are estimated from IMUs attached to subjects’ limbs

with proposed method Video Inertial Poser. All subjects are

provided with 3D scans. The dataset consists of 60 video se-

quences (more than 51, 000 frames) with daily actions includ-

ing walking in the city, going up-stairs, having coffee or taking

the bus.

In addition to the datasets collected with MoCap systems,

there are other approaches to create a dataset for 3D human

pose estimation. JTA (Joint Track Auto) (Fabbri et al., 2018)



18

H
um
an
3.
6M

H
um
an
E
va
-I
&
II

M
PI
-I
N
F-
3D
H
P

To
ta
lC
ap
tu
re

T
N
T
15

M
A
R
C
O
nI

Pa
no
pt
ic

SU
R
R
E
A
L

U
P-
3D

L
SP
-M
PI
I-
O
rd
in
al

Fig. 6. Some selected example images with annotations from typical 3D human pose estimation datasets.

is a fully synthetic dataset generated from highly photorealistic

video game Grand Theft Auto V. It contains almost 10M anno-

tated body poses and over 460, 800 densely annotated frames.

In Human3D+ (Chen et al., 2016), the training images are

obtained by integrating real background images and 3D tex-

tured models which generated from SCAPE model (Anguelov

et al., 2005) with different texture deformation. The parame-

ters for generating basic SCAPE models are captured from a

MoCap system, or inferred from human-annotated 2D poses.

SURREAL (Synthetic hUmans foR REAL) (Varol et al., 2017)

contains videos of single synthetic people with real unchanged

background. It contains annotations of body parts segmenta-

tion, depth, optical flow, and surface normals. The dataset em-

ploys the SMPL body model for generating body poses and

shapes. LSP-MPII-Ordinal (Pavlakos et al., 2018a) is an ex-

tension of two 2D human pose datasets (LSP (Johnson and Ev-

eringham, 2010) and MPII (Andriluka et al., 2014)) by adding

the ordinal depth relation for each pair of joints. UP-3D (Lass-

ner et al., 2017) is a combination of color images from 2D

human pose benchmarks like LSP (Johnson and Everingham,

2010) and MPII (Andriluka et al., 2014) and human body model

SMPL Bogo et al. (2016). The 3D human shape candidates are

fit to color images by human annotators. DensePose (Güler

et al., 2018) is an extension on 50K COCO images with people.

All RGB images are manually annotated with surface-based

representations of the human body. AMASS Dataset (Mah-

mood et al., 2019) unifies 15 different optical marker-based hu-

man motion capture datasets with SMPL Loper et al. (2015)

body model as a standard fitting representation for human skele-

ton and surface mesh. Each body joint in this rich dataset has

3 rotational Degrees of Freedom (DoF) which are parametrized

with exponential coordinates.
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5.4. Evaluation Metrics of 3D human pose estimation

There are several evaluation metrics for 3D human pose es-

timation with different limitation factors. Note that we only list

widely used evaluation metrics as below.

Mean Per Joint Position Error (MPJPE) is the most

widely used measures to evaluate the performance of 3D pose

estimation. It calculates the Euclidean distance from the esti-

mated 3D joints to the ground truth in millimeters, averaged

over all joints in one image. In the case of a set of frames, the

mean error is averaged over all frames. For different datasets

and different protocols, there are different data post-processing

of estimated joints before computing the MPJPE. For example,

in the protocol #1 of Human3.6M, the MPJPE is calculated af-

ter aligning the depths of the root joints (generally pelvis joint)

(Tome et al., 2017; Yang et al., 2018), which is also called N-

MPJPE (Rhodin et al., 2018a). The MPJPE in HumanEva-I

and the protocol #2 & #3 of Human3.6M is calculated after the

alignment of predictions and ground truth with a rigid transfor-

mation using Procrustes Analysis (Gower, 1975), which is also

called reconstruction error (Kanazawa et al., 2018; Pavlakos

et al., 2018b), P-MPJPE (Rhodin et al., 2018a) or PA-MPJPE

(Sun et al., 2018).

Percentage of Correct Keypoints (PCK) and Area Under
the Curve (AUC) are suggested by (Mehta et al., 2017a) for

3D pose evaluation similar to PCK and AUC in MPII for 2D

pose evaluation. PCK counts the percentage of points that fall

in a threshold also called 3DPCK, and AUC is computed by a

range of PCK thresholds. The general threshold in 3D space is

150mm, corresponding to roughly half of the head size.

In addition to the evaluation metrics for 3D joint coordinates,

there is another evaluation measurement Mean Per-vertex Er-
ror to report the results of 3D body shape which report the error

between predicted and ground truth meshes (Varol et al., 2018;

Pavlakos et al., 2018b).

6. Conclusion and Future Research Directions

Human pose estimation is a hot research area in computer

vision that evolved recently along with the blooming of deep

learning. Due to limitations in hardware device capability and

the quantity and quality of training data, early networks are rel-

atively shallow, used in a very straightforward way and can only

handle small images or patches (Toshev and Szegedy, 2014;

Tompson et al., 2015; Li and Chan, 2014). More recent net-

works are more powerful, deeper and efficient (Newell et al.,

2016; Cao et al., 2016; He et al., 2017; Sun et al., 2019). In

this paper, we have reviewed the recent deep learning-based

research addressing the 2D/3D human pose estimation prob-

lem from monocular images or video footage and organize ap-

proaches into four categories based on specific tasks: (1) 2D

single person pose estimation, (2) 2D multi-person pose esti-

mation, (3) 3D single person pose estimation, and (4) 3D multi-

person pose estimation. Further, we have summarized the pop-

ular human pose datasets and evaluation protocols.

Despite the great development of monocular human pose es-

timation with deep learning, there still remain some unresolved

challenges and gap between research and practical applications,

such as the influence of body part occlusion and crowded peo-

ple. Efficient networks and adequate training data are the most

important requirements for deep learning-based approaches.

Future networks should explore both global and local con-

texts for more discriminative features of the human body while

exploiting human body structures into the network for prior

constraints. Current networks have validated some effective

network design tricks such as multi-stage structure, intermedi-

ate supervision, multi-scale feature fusion, multi-task learning,

body structure constrains. Network efficiency is also a very im-

portant factor to apply algorithms in real-life applications.

Diversity data can improve the robustness of networks to

handle complex scenes with irregular poses, occluded body

limbs and crowded people. Data collection for specific complex

scenarios is an option and there are other ways to extend exist-

ing datasets. Synthetic technology can theoretically generate

unlimited data while there is a domain gap between synthetic

data and real data. Cross-dataset supplementation, especially

to supplement 3D datasets with 2D datasets can mitigate the

problem of insufficient diversity of training data.
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