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Abstract

Depth resolution enhancement aims to recover a high
quality depth map from one or multiple low-resolution
depth input(s) with missing pixels. While a registered high-
resolution intensity image is often utilized to assist, little
attention has been paid to the circumstances when there is
only one pair of low-resolution depth map and aligned in-
tensity image available.

In this paper, we propose a novel resolution enhance-
ment approach that targets at improving the quality of both
the input depth map and the low-resolution RGB image.
By exploiting the statistical dependency between the in-
put pairs, a label matrix is generated utilizing the sup-
port vector machine classifier. Guided by the construct-
ed label matrix and the aligned intensity image, the miss-
ing values in the depth map are well predicted in a man-
ner consistent with the embedded structure. After that, the
completed depth map and the intensity image are super-
resolved through a set of regression models trained via ex-
ternal exemplars. Extensive experiments demonstrate that
our framework is effective with satisfying performance.

1. Introduction
Depth maps are convenient in representing and storing

the distance information of the objects’ surfaces given a
viewpoint. They can be easily obtained through 3D imaging
hardware such as time-of-flight (TOF) cameras and cost-
effective consumer RGB-D cameras (e.g., Microsoft Kinect
camera). Quality of the captured depth maps are crucial in
their relevant applications, e.g., reliable 3D reconstruction,
accurate human pose recognition, proper semantic scene
analysis, and other geometry-related computer vision sys-
tems. However, due to the limitations of the depth sen-
sors, depth maps suffer from low spatial resolution espe-
cially when the objects are far from the camera. Moreover,
missing depth values exist due to the short distance between
the object and the depth camera, disparity between the pro-
jector and the sensor, or poor reflection of the light patterns

Figure 1. Enhancement results of ‘cone’ (partial) (×4). Left col-
umn present the low-resolution depth map and the intensity image
while the right column are the corresponding high-resolution re-
sults generated by the proposed enhancement framework. The LR
instances are upsampled by nearest-neighbor interpolation for a
better illustration. The figure is better viewed on screen with HR
display.

[28]. Under these circumstances, we reply on computer vi-
sion algorithms to enhance the quality of the depth maps.

Image super-resolution (SR) aims at estimating a fine-
resolution image from one or multiple coarse-resolution im-
ages. Depending on the number of input images, image
SR can be broadly divided into multi-image SR and sin-
gle image SR. Single image SR methods can be further
classified as interpolation-based, reconstruction-based, and
learning-based. Commonly used interpolation-based ap-
proaches, e.g., nearest-neighbor, bilinear, and bicubic, are
simple and efficient. But visual artifacts such as jaggies
and blurring exist in the generated high-resolution (HR) re-
sults. To suppress the visual artifacts and generate results
with sharper edges, more sophisticated interpolation-based
methods [30, 40, 39] were proposed. Reconstruction-based
image upscaling methods [8, 27, 31] aim to enforce certain
statistical priors during the estimation of the target image.



This group of SR approaches emphasize on restoring sharp
edges but tend to be less effective in hallucinating rich tex-
ture regions. Recently popularized learning-based SR ex-
plores the relationship between HR and their corresponding
low-resolution (LR) exemplars either via an external dataset
[36, 32, 35, 6] or within the input image [10, 9, 13].

Depth maps can be viewed as gray scale images where
each pixel stores the depth information. Different from re-
search in intensity image SR, single depth SR is not that
commonly seen. From the aspect of input, research in depth
image resolution enhancement mainly falls into two classes:
multi-frame SR and depth image SR with the assistance of
an aligned HR RGB image. Multi-frame SR methods make
use of the presence of aliasing in multiple depth inputs of
the same scene to produce one fine-resolution depth map.
Schuon et al. [25] verified that multi-frame SR designed
for intensity images also function in the 3D domain. They
applied image SR scheme proposed in [7] to depth images
taken by a 3DVTM TOF Camera. Campbell et al. [3] adopt-
ed a discrete label Markov Random Fields (MRF) optimiza-
tion to pose a spatial consistency constraint in extracting the
fine depth map based on stored depth hypotheses. In [26],
Schuon et al. incorporated a data fidelity term and a geom-
etry prior term into an optimization framework. The former
constraint ensures the fidelity between the HR depth map
and the LR measurements and the later term guides the en-
ergy minimization to a plausible solution. Later, Cui et al.
[5] proposed a probabilistic scan alignment approach to fuse
noisy scans into high quality 3D shapes. Real-time GPU-
based algorithm was designed in [14] to merge LR images
captured by Kinect and accomplish 3D reconstruction.

With the presence of an aligned HR RGB image, the sec-
ond category of depth image SR tends to jointly use both
depth and color information of the same scene. Statisti-
cal dependency exists between the registered intensity and
depth images based on the observation that depth disconti-
nuities often co-occur with intensity changes. In [37], Yang
et al. utilized the HR intensity image to build the cost vol-
ume and iteratively refined the input LR range image. Park
et al. [21] introduced nonlocal means filtering to regularize
depth maps during the reconstruction and the HR intensi-
ty input provides additional features to better preserve the
structure. Li et al. [20] utilized piece-wise planar assump-
tion to regulate global geometry of the scene and proposed a
Bayesian approach by taking the uncertainty of depth mea-
surements into consideration. Kiechle et al. [16] presented
a bimodal co-sparse analysis model to capture the interde-
pendency of registered intensity and depth information. In
[19], a unified framework is proposed to combine multiple
constrains where the aligned HR intensity image could be
incorporated as an additional term if available.

To obtain high-quality HR depth maps, missing values
in the input depth map need to be filled using image in-

painting techniques. Image inpainting aims at predicting
the missing pixel values with the known regions and to suc-
cessfully replicate visually plausible background textures.
In the depth domain, other than generating visually plausi-
ble results, the predicted depth values should be accurate in
a manner consistent with the registered intensity images if
available. Shen et al. [28] proposed a probabilistic model to
capture various types of uncertainties in the depth measure-
ment. Depth layers are utilized to achieve a depth correction
and completion process where the layer labels are obtained
through solving a maximum-a-posteriori estimation prob-
lem. In [16], with the assistance of an aligned HR RGB im-
age, an algorithm for simultaneous performing depth map
SR and inpainting is presented.

Among numerous work in depth image quality enhance-
ment, little attention has been paid to the situation where
only one pair of registered LR RGB image and depth map
is available. Lee and Lee [18] employed a convex opti-
mization framework for simultaneous estimation of super-
resolved depth map and intensity image but required LR
depth map sequences as inputs. In this paper, we propose a
novel sequential resolution enhancement framework which
takes only one pair of aligned LR depth and intensity im-
ages as input to obtain both HR intensity image and depth
map. By exploiting the statistical dependency between the
input pair, a label matrix is learnt through a support vec-
tor machine (SVM) classifier to differentiate the foreground
objects and the background scene. Guided by the aligned
LR RGB image and the constructed label matrix, the miss-
ing values in the LR depth map are accurately predicted.
Afterwards, the HR depth map and intensity image are re-
covered through a set of pre-built regression models learnt
from external exemplars. Fig. 1 shows the HR depth map
and intensity image generated by the proposed resolution
enhancement framework over ‘cone’ in dataset [23] under
the magnification factor of 4. Due to the space limit, in or-
der to illustrate details more clearly, only part of the image
is presented. As observed, missing pixels in the input depth
map are correctly predicted consistent with the structure re-
vealed by the registered intensity image. After resolution
enhancement, the HR depth map and intensity image have
finer details including sharper edges and richer textures.

Contributions of the proposed framework are fourfold:
• A novel image quality enhancement system is pro-

posed to handle circumstances where only one pair of
registered LR intensity and depth images are available.
Moreover, the proposed framework can be flexibly dis-
assembled to solve different tasks, i.e., depth comple-
tion, single depth/intensity SR.
• We present a novel depth inpainting scheme by ex-

ploiting the statistical dependency between the aligned
intensity image and the depth map.
• An external example-based learning pipeline is adopt-



Figure 2. Schematic flowchart of the proposed depth completion process. Pixel-level features are extracted based on the intensity image.
The extracted features serve as the inputs to a SVM classifier which is learnt via the training data labeled by the available depth values in
the input depth map. A guided inpainting is then performed over the input depth map with the assistance of the label map generated by the
SVM model and the aligned RGB image.

ed to train a set of regression models that could be ap-
plied to super-resolve LR instances.

• The proposed framework generates visually-pleasing
results and outperforms the representative peer meth-
ods both quantitatively and qualitatively.

The rest of this paper is organized as follows. Section
2 provides a detailed description of the proposed resolution
enhancement system. Section 3 presents the experimental
results and discussions. The conclusions including the fu-
ture work are listed in Section 4.

2. Resolution Enhancement

Provided with a pair of registered LR depth map and RG-
B image, we aim at recovering their fine-resolution corre-
spondences with missing depth values predicted. The depth
completion and SR processes are performed in a sequential
manner. A completed LR depth map is first recovered where
all missing depth pixels are predicted guided by the aligned
intensity image. Traditional inpainting algorithms focus on
reconstructing visually-plausible images and in depth do-
main, a precise structure consistent with the intensity image
also matters. Therefore, a label map which differentiates the
foreground objects from the background scene is construct-
ed through a SVM classifier. The input of the SVM model
is pixel-level feature which encodes the local color and tex-
ture characteristics extracted from the intensity image. The
training samples of the classifier are labeled by the avail-
able depth information. Afterwards, with the assistance of
the generated label map, a targeted inpainting is performed
to predict the missing depth values.

The HR depth map and RGB image are then recovered
by feeding the completed depth map and LR intensity im-
age into a group of pre-built regression models. To ensure
an effective regression learning, the Gaussian Mixture Mod-
els (GMM) are adopted to model the feature space and the
training is performed in a divide-and-conquer way. Details
are presented in the two subsections below.

2.1. Depth Completion

Given an input depth map Dl and its aligned LR RGB
image Il, we first recover a completed depth mapDlc where
the missing pixel values in Dl are predicted with the guid-
ance of Il. Fig. 2 presents the flowchart of the depth com-
pletion process. In order to preserve the correct structure
during inpainting, a label map is first generated utilizing a
SVM classifier.

The pixel-level features are extracted through Gabor fil-
ters and local homogeneity model to encode both color
and texture information. Gabor filters have been success-
ful in a variety of image processing related applications in-
cluding image segmentation [15, 33] and texture classifica-
tion [11, 2]. In the spatial domain, a 2D Gabor filter is a
2D Fourier basis function multiplied by an origin-centered
Gaussian function, defined as:

G(x, y) = exp(−x
2 + y2

σ2
) exp(2πθi(x cosφ+ y sinφ))

(1)
where θ represents the spatial frequency, φ stands for the
corresponding orientation, σ indicates the standard devia-
tion of the Gaussian kernel.

Gabor features are constructed from responses of Gabor
filters by utilizing multiple filters on different frequencies
and orientations. In our implementation, we apply the Ga-
bor filters to the luminance channel of the color image. Fil-
ters of 5 scales at 8 orientations are adopted and the com-
plex responses are expanded into real and imaginary parts
respectively.

The second portion of the pixel-wise feature is extracted
according to the local homogeneity model. The color im-
age is first transformed from RGB to CIE Lab color space.
For each component, we extract pixel-level feature which
encodes the local intensity information. Based on compo-
nent i(i ∈ L, a, b), matrices gi and di are computed where
gi stands for the gradient magnitude and di represents the
standard deviation for each pixel within a a × a neighbor-
hood centered at it. gi and di are then normalized to range



Figure 3. Schematic pipeline of the proposed SR framework. To ensure a targeted learning, the input feature space extracted from an
external dataset is modeled with Gaussian Mixture Models. Within each Gaussian component, a regression model is generated. Given a
LR instance, the corresponding HR instance is constructed through the regression models.

between 0 and 1 respectively. The normalized matrices are
denoted as gi and di. For pixel j under component i, the
extracted feature f ij = 1 − dij · gij in which · represents the
dot product of two matrices. The final feature is represented
as the concatenation of the features extracted from the three
components along with the Gabor responses.

The extracted features are employed as inputs of a SVM
classifier. To train the SVM model, we first label a portion
of the pixels in the intensity image utilizing the available
depth information. Generally speaking, the foreground ob-
jects are closer to the camera and the background scene has
larger absolute depth values. Therefore, after eliminating
the pixels whose depth values are unavailable, we annotate
the N1 pixels with the largest depth values with label l1 and
the N2 pixels with the smallest depth values with label l2.
The annotated data serves as the training samples for the
SVM model. We then apply the trained SVM classifier to
predict the labels of all the remaining pixels including those
whose depth values are missing. The labeling results in-
cluding the previous training labels are saved as a label map
Ld utilized to assist the depth completion process.

We denote the unknown region(s) inDl as maskM . The
completion order of the masked depth pixels is calculated
similar to [34] illustrated as follows:

Pri(i) = C(i)·T (i) =
∑

j⊆{P (i)∩M} C(j)

b2
·

√
∇D⊥li · ui

A
,

(2)
where P (i) represents the instant patch centered at pixel i in
Dl, M is the unmasked region in which all the depth values
are available,A is a normalization factor, ui stands for a unit
vector orthogonal to the front at pixel i. The initialization
for C(j) is set to C(j) = 1 if pixel value j is known and
C(j) = 0 otherwise. Dli represents the depth value at pixel
i in Dl. As shown in Eq. (2), priority at a given pixel is
measured as the product of two terms: the confidence term
C(·) and the data term T (·). Both terms are normalized to
range between 0 and 1.

After computing the priority for every pixel along the
boundary of the masked region, the depth value of pixel p
with the highest priority is predicted first. We calculate the
similarity between pixel p with the qualified pixel(s) within
a neighborhood of b × b centered at p. Only pixels with
valid depth values and share the same label as p measured
in the label map are considered qualified. The similarity
between two pixels is measured in the mean square error
(MSE) of the corresponding pixel-level features extracted in
the intensity image introduced above. Then the depth value
for pixel p is filled with the corresponding depth value of
the most similar one. After updating the confidence term
and the data term, the above process is repeated until all the
depth values within mask M are filled.

2.2. Super Resolution

Single image SR is a numerically ill-posed problem and
therefore relies on additional assumptions or priors to final-
ize the output. External example learning-based SR hinges
on learning statistical priors or models from a large image
dataset and leads to a stable SR performance. Compared
with internal example learning-based SR, learning external-
ly allows introducing new information other than employ-
ing only the input image and thus is more robust when the
upscaling factor is relatively large. Moreover, the learning
process is normally performed off-line and is therefore com-
putationally tractable during the testing phase.

In the proposed SR framework, the completed depth
map and the input intensity image are fed into a group of
externally-trained regression models to recover the final HR
outputs. The regression models are trained separately for
depth maps and intensity images utilizing the same learn-
ing pipeline over different datasets consisted of correspond-
ing exemplars. Fig. 3 illustrates the schematic pipeline of
the proposed SR process. A large set of HR/LR exemplar
patch pairs with magnification factor s are collected from a
dataset consisted of training images. Original images in the
dataset are considered HR images and the corresponding L-



Table 1. Comparison of the proposed approach with other depth SR schemes over 14 depth maps in dataset [23] measured in terms of FSIM
[38] under the magnification factor of 4. The best performance in FSIM for each image is marked in bold.

.

Middlebury2001 [23] barn1-disp2 barn1-disp6 barn2-disp2 barn2-disp6 bull-disp2 bull-disp6 map-disp0
nearest-neighbor 0.9527 0.9530 0.9532 0.9560 0.9598 0.9614 0.9325
Aodha et al. [1] 0.9626 0.9570 0.9479 0.9464 0.9481 0.9467 0.9669
Ours 0.9777 0.9782 0.9815 0.9824 0.9902 0.9911 0.9566
Middlebury2001 [23] map-disp1 poster-disp2 poster-disp6 sawtooth-disp2 sawtooth-disp6 venus-disp2 venus-disp6
nearest-neighbor 0.9322 0.9582 0.9624 0.9505 0.9459 0.9573 0.9578
Aodha et al. [1] 0.9373 0.9701 0.9655 0.9553 0.9529 0.9633 0.9629
Ours 0.9561 0.9842 0.9843 0.9742 0.9752 0.9818 0.9819

R images are generated through a blur and downsampling
process. For an instance patch pair, both patches are nor-
malized by extracting the mean value of the LR patch. After
the normalization and vectorization, the LR and HR features
are represented as L ∈ Rl×S and H ∈ Rh×S where l and
h denote the feature dimensions and S indicates the number
of samples.

Due to the diversity of patch patterns, before the regres-
sion model training, we first model the input LR feature
space with GMM to ensure a more targeted learning. G-
MM is a generative model with the capacity to model any
given probability distribution function when the number of
Gaussian components is large enough. The probability of a
feature xi given a GMM with K components is

p(xi|θ) =
K∑

k=1

wkN (xi;µk,σk) , (3)

wherewk represents the prior mode probability that satisfies
the constraint

∑K
k=1 wk = 1, and N (xi;µk,σk) indicates

the kth normal distribution with mean µk and variance σk:

N (xi;µk,σk) =
exp

(
− (xi−µk)

T (σk)
−1(xi−µk)

2

)
(2π)m/2 |σk|1/2

, (4)

where xi ∈ Rl, µk ∈ Rl, and σk ∈ Rl×l. The GMM
parameters θ = {wk,µk,σk, k = 1, . . . ,K} are estimated
using the Expectation-Maximization (EM) algorithm to op-
timize the Maximum Likelihood (ML) from a large number
of features.

We then assign each LR feature xi ∈ L to corresponding
Gaussian component according to the posterior. Assume
there are Nk patches associated with the kth Gaussian com-
ponent andLk ∈ Rl×Nk ,Hk ∈ Rh×Nk stand for the corre-
sponding LR/HR features, a linear regression model is then
trained with the coefficient Ck learnt through:

C∗k = argmin
Ck

{|Hk − CkL̂k|2}, (5)

where L̂k
T
= [Lk

T 1]. After performing the training pro-
cess over a dataset of natural images, K regression models

are learnt for upscaling the intensity images. Another set
of K regression models is obtained through learning over a
depth-map dataset in a similar manner. Given a testing L-
R instance, patch-based features are extracted by perform-
ing normalization and vectorization for every patch. After
that, according to the posterior, each feature is assigned to
a Gaussian component where the corresponding regression
model is applied to obtain the HR patch. Weighted average
is adopted to blend overlapping pixels to generate the final
HR image. Back-projection is utilized as a post processing.

3. Experimental Results

In this section, the proposed resolution enhancemen-
t system is evaluated on the Middlebury Stereo Datasets
[23, 24, 22, 12] and RGBD Scenes dataset v2 [17]. We
present multiple generated HR depth maps and intensity im-
ages compared with the recent state-of-the-art methods both
quantitatively and qualitatively.

3.1. Implementation Details

During the depth completion, the pixel-level feature vec-
tor has a dimension of 83 where 80 of them come from the
Gabor responses of multiple filters at 5 scales and 8 orien-
tations. The rest are extracted according to the local homo-
geneity model. The neighborhood size a defined to calcu-
late the standard deviation is set to 5. The number of train-
ing samples N1 and N2 are the same and equal to 10% of
the total number of pixels in the LR RGB image. We em-
ploy SVM with RBF kernel utilizing LIBSVM [4]. In Eq.
(2), b is set to 7 and the normalization factor A is 255.

In the SR phase, the training dataset used for intensi-
ty regression model learning is the same as in [35] with
6, 152 natural images. 1, 449 completed depth maps in
NYU Depth Dataset V2 [29] are employed to train the depth
regression models. The original examples in the datasets are
treated as the HR instances and the corresponding LR exem-
plars are generated through a blurring and downsampling
process. We extract all patches with size 7× 7 from the LR
instances. Only the central 3s×3s pixels in the correspond-
ing HR patch are captured to formulate the HR features
where s is the scaling factor. Total of 200, 000 LR/HR fea-



Table 2. Comparison of the proposed approach with peer meth-
ods for intensity images in datasets [23, 24, 22, 12] measured in
terms of average FSIM [38] under the scaling factor of 4. The best
performance in FSIM for each dataset is marked in bold.

Datasets nearest bicubic ScSR [36] ANR [32] Yang [35] Ours
M2001 [23] 0.7034 0.7705 0.7716 0.8052 0.8169 0.8129
M2003 [24] 0.7128 0.7894 0.7932 0.8200 0.8213 0.8215
M2005 [22] 0.9826 0.9863 0.9702 0.9930 0.9902 0.9940
M2006 [12] 0.9855 0.9892 0.9728 0.9944 0.9918 0.9949

tures are randomly selected to train the GMM model with
512 components. After that, the remaining features are as-
signed to corresponding Gaussian component with the high-
est probability. Finally, a linear regression model is learnt
for each Gaussian component. Same as many existing im-
age SR methods, for color images, the proposed SR algo-
rithm is performed on the luminance channel in YUV color
space while the other two color channels are upscaled by
bicubic interpolation. The number of iterations for back-
projection is set to 10. The time cost of the proposed system
varies depending on the size of the input image, the scaling
factor, and the number of missing pixels in the depth map.
Generally speaking, under a scaling factor of 4, for an input
depth map (120 × 100) with missing pixels less than 10%
of the overall number of pixels, it takes couple of seconds
to finish the depth completion and the SR.

3.2. Quantitative Comparison

We evaluate the proposed enhancement framework on
a variety of depth maps and RGB images in Middlebury
Stereo Datasets [23, 24, 22, 12] under the scaling factor of
4. Middlebury DB 2001 [23] consists of depth maps without
missing values and depth maps provided in the rest datasets
listed, i.e., Middlebury DBs 2003, 2005, 2006, all contain
unknown regions. In our experiments, the LR inputs are
generated from the depth maps and intensity images in the
datasets by performing the nearest-neighbor downsampling.
Since the completed ground-truth depth maps for Middle-
bury DBs 2003, 2005, 2006 are unavailable, it is infeasible
to provide numerical statistics to measure the depth com-
pletion performance. Visual results are presented instead in
Section 3.3.

Quantitative evaluations for SR performance are provid-
ed over depth maps in Middlebury DB 2001 and intensity
images for all listed datasets. The recent proposed image
quality assessment criterion Feature Similarity (FSIM) [38]
is adopted for measurement since the human visual sys-
tem (HVS) understands an image mainly according to its
low-level features and therefore FSIM achieves higher con-
sistency with the subjective evaluation compared with oth-
er metrics. In the proposed depth SR, statistics from the
aligned RGB image is not utilized. Therefore, we compare
our results with the state-of-the-art single depth SR method

[1]. As illustrated in Table 1, our approach outperforms [1]
in 13 out of 14 depth maps measured in terms of FSIM.
[36, 32, 35] are the state-of-the-art external example-based
single image SR approaches. Table 2 presents the compar-
ison of the proposed approach with these methods listed
for intensity images in 4 different datasets. Our framework
adopts GMM to model the input feature space and therefore
a more targeted learning is ensured for the regression mod-
el training. Statistics from Table 2 reveals that the proposed
SR framework is the most effective in 3 out of 4 evaluated
datasets for intensity outputs measured in average FSIM.

3.3. Qualitative Comparison

The enhancement performance is further evaluated qual-
itatively in this subsection. Fig. 4 presents our enhance-
ment results under the scaling factor 4 of ‘Baby3’, ‘Midd1’,
‘Moebius’, and ‘Cone’ from the Middlebury datasets. In
‘Baby3’, it is challenging to correctly predict the missing
depth values due to the cluttered background (i.e., map with
irregular contours and patterns) and the color similarity be-
tween certain foreground objects and the background scene.
As observed, after the proposed enhancement framework,
missing depth values are well filled in a manner consisten-
t with the embedded structure. Effectiveness of the pro-
posed depth completion algorithm can be further demon-
strated in ‘Cone’ where complex texture patterns exist along
with large missing depth areas. Rich details and clear edges
are preserved with minimal artifacts as illustrated from both
the HR depth maps and the HR intensity outputs.

Fig. 5 presents more enhancement results in RGBD
Scenes dataset v2 [17] under the magnification factor of 4.
Different from the Middlebury datasets, depth maps in [17]
suffer from large missing areas and the registered intensity
images are of low quality with blurry visual artifacts. The
proposed enhancement framework manages to reconstruct
structurally correct completed depth maps. Clear contours
are recovered in the HR results.

We further compare our results with representative state-
of-the-art peer algorithms [1, 36, 32] in depth and intensity
SR. In Fig. 6, a set of SR results is provided on depth maps
‘bull’ and ‘sawtooth’ compared with nearest-neighbor in-
terpolation and the outputs generated by [1]. For a better
illustration, only part of each depth map is presented. The
nearest-neighbor interpolated results suffer from blurry vi-
sual artifacts. Irregular zigzag patterns occur in results con-
structed by [1]. Compared with the ground-truths, our re-
sults best recover the contours with minimal visual artifacts.
Corresponding HR intensity outputs are presented in Fig. 7
compared with nearest-neighbor interpolation, bicubic in-
terpolation, ScSR [36], and GR [32]. While interpolation-
based methods produce over-smoothed results, ringing ar-
tifact exists in results generated by [32]. [36] reconstructs
results with gridded patterns that do not exist in the orig-



Figure 4. Resolution enhancement results of ‘Baby3’, ‘Midd1’, ‘Moebius’, and ‘Cone’ (×4). From left to right, the columns represent LR
input depth maps, generated HR depth maps, LR intensity images, and HR intensity outputs. For a better presentation, the input instances
are upsampled through nearest-neighbor interpolation. This figure is better viewed on screen with HR display.

Figure 5. Resolution enhancement results in RGBD Scenes dataset v2 [17] (×4). From left to right, the columns represent LR input
depth maps, generated HR depth maps, LR intensity images, and HR intensity outputs. For a better presentation, the input instances are
upsampled through nearest-neighbor interpolation. This figure is better viewed on screen with HR display.

inal image. As observed from the edges and textures, our
recovered HR images reveal more natural patterns and finer
details.

4. Conclusions and Future Work

In this paper, we have proposed a resolution enhance-
ment system to improve the quality of a registered pair of
low-resolution depth map and intensity image. Missing
values in the input depth map are predicted utilizing the



Figure 6. SR results of depth maps ‘bull’ and ‘sawtooth’ (×4). From left to right, the columns represent the ground-truth, results generated
utilizing nearest-neighbor interpolation, patch-based [1], and the proposed framework. Only partial of the original depth maps are shown
for a clearer presentation. The figure is better viewed on screen with HR display.

Figure 7. SR results of RGB images ‘bull’ and ‘sawtooth’ (×4). From left to right, the columns represent the results generated through
nearest-neighbor interpolation, bicubic interpolation, ScSR [36], GR [32], and the proposed system. Only partial of the images are shown
for a clearer presentation. The figure is better viewed on screen with HR display.

statistical structure dependency between the aligned low-
resolution RGB image and the depth map. Fine details
are further recovered by feeding the completed depth map
and the low-resolution intensity image to a set of regression
models. The regression models for upscaling depth maps
and RGB images are trained separately utilizing a unifor-
m learning pipeline in a divide-and-conquer manner. As
demonstrated by the extensive experimental results, the pro-
posed enhancement framework is effective with satisfying
performance measured quantitatively in FSIM. Compared
with representative peer approaches, the generated high-
resolution depth maps and images have clearer contours and
more natural textures close to the ground-truths.

Currently, structural dependency between the aligned
low-resolution RGB image and the depth map is well ex-
ploited to accomplish depth completion. In the future, we
will investigate more in the statistical relations between the
input pairs in the joint simultaneous super-resolution phase.
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