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Abstract. We propose a local orientation and navigation framework based on 
visual features that provide location recognition, context augmentation, and 
viewer localization information to a human user. Mosaics are used to map local 
areas to ease user navigation through streets and hallways, by providing a wider 
field of view (FOV) and the inclusion of more decisive features. Within the  
mosaics, we extract "visual noun" features. We consider 3 types of visual noun 
features: signage, visual-text, and visual-icons that we propose as a low-cost 
method for augmenting environments.  

1 Introduction: Idea and Impact 

Local indoor and outdoor navigation and localization remains a challenging problem. 
Various solutions have been proposed with varying degrees of success. GPS and GPS 
combined with image registration works well outdoors and for large area localization, 
but can be problematic in dense urban environments and indoors since devices require 
a direct view of the sky. Augmented indoor positioning systems have been proposed 
[8] using RFID or sonar sensors. Such systems require extensive and expensive envi-
ronment augmentation, and can suffer from interference in noisy (from both radio-
frequencies and acoustic) environments and power restrictions. A vast amount of 
research has focused on robot navigation and SLAM (Simultaneous Localization And 
Mapping). A smaller subset of work has focused on adapting the research to human 
users, in particular users that are blind or low-vision. 

Here we propose a local orientation and navigation framework based on visual fea-
tures that provide location recognition, context augmentation, and viewer localization 
information to a human user. Although it seems counter-intuitive to use visual fea-
tures for blind and low-vision user navigation, we note that signs, icons, and text in 
images are among the most common ways of providing humans context information. 
The key is being able to perform object-recognition and text recognition from video 
reliably so that it can be communicated to a blind or low-vision user with text-to-
speech software. Furthermore, these features in the scene could also provide the user 
accurate location information in the 3D world. If we consider the image features  
traditionally used in robotics for localization: image edges, corners, SIFT/SURF  
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descriptors and so on, we realize that while they work well in algorithms it would 
have almost zero benefit to communicate such information to a human user.  

In Section 2 we review related work. In Section 3 we fully describe what visual 
nouns are. Section 4 presents our visual noun based algorithms. Section 5 shows ex-
periments and results. Conclusions and a discussion of further work are in Section 6. 

2 Related Work 

A lot of work has been done in object detection and recognition. For object detection 
a useful method has been the MSER blob detector [14]; it has been extended to handle 
color [12], and text [3]. Saliency maps are another method employed in detecting 
objects and areas of interest [1]. Both MSER and Saliency map methods provide re-
gions of interest that are consistent with characteristics we expect in visual features, 
such as signs and text, mainly because they highly contrast with their backgrounds. 
Object matching has been well studied, with simple methods such as template match-
ing, to machine learning based methods. Object detections can often be distinguished 
from one another readily, but to be truly informative to human users we must recog-
nize the sign from a labeled database to communicate its meaning to the user. 

We use the visual features to perform localization of the user in their environment. 
Methods such as 3D reconstruction [16] can be employed, or methods with a sparse 
set of features can also be used, such as the PnP algorithm [15]. The PnP algorithm 
requires some knowledge or mapping of the signs in 3D space.  

The typical camera view is not wide enough to cover enough visual features for a 
user to perform localization. A sighted user usually looks around to find recognizable 
features around them. Similarly the blind and low-vision do the same to get an under-
standing of sounds around them. Using a panorama of a user’s surroundings provides 
more visual features that can help localize the user. Visual navigation using panoram-
ic images have been studied by us [6] and others [5], and here we leverage our past 
experience and integrate visual nouns as local features for user localization using 
panoramic images. 

The system presented here differs from the typical SLAM approaches in that we 
are not interested in automatically mapping entire scenes, but rather providing salient 
local orientation and localization information to a human user, who is using their own 
cognitive abilities to make decisions. 

3 Visual Nouns in Context: Our Approach 

A primary goal in this work is to use and detect features that naturally provide human 
users context information, not only what they see, but also as to where they are in the 
3D world. Below we describe the 3 types of features we call Visual Nouns: 

Text appearance is a rarely used feature in video and image matching and retrieval 
applications. Traditionally, OCR algorithms reduce and map text in imagery to ASCII 
character codes, occasionally with some minimal formatting/layout information. Vi-
sually, text provides richer features such as: font styling, color/texture, its geometric 
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alignment, and size relative to other text. In addition, each text sign may contain 
unique markers due to age, weathering, damage, and vandalism. In outdoor and in-
door navigation scenarios, users encounter such text on storefronts, signs, postings, 
and doors. Since, typically these are static and on planar surfaces, we may wish to use 
visual text as fiducial features for localization. Recent work [2, 3] has presented me-
thods for extracting visual text for better performance in information retrieval and 
matching. The results in these works provide motivation to further extend the work in 
particular for 3D localization, when building visual navigation systems for the blind. 

In addition to aiding navigation, combining Text with other signage provides users 
(the blind especially) location context information. When combined with a text-to-
speech component, blind users can be alerted as they approach and arrive at known 
locations, such as health facilities, restaurants or friends and family homes. 

Visual-icons denote universal symbols that are in use throughout the world that 
convey a particular meaning. The Department of Transportation in the US has a set of 
vehicle and pedestrian symbols that are similar to those used in other countries to 
depict where a user can find a train, taxi, elevators, escalators, etc. Figure 1 shows 5 
sample icons. Such symbols are not universally standardized, but there are efforts to 
create databases of such symbols [9,10]. 

 

   

Fig. 1. Five Aiga & US DOT symbols from [9] 

Augmenting an environment with electronic positioning devices (RFID, NFC) is 
always a costly endeavor. Using symbols is more cost effective since they can be 
printed and only requires cameras for detection, which are already widely available. 
Additionally, these signs can be further augmented as the price of electronic tags and 
receivers fall. 

Signage as used in our paper refers to those signs that are not already covered by 
Text or Visual Icons. In general signs are natural for matching as they are found both 
indoors and outdoors. Signs contain logos, text, and symbols that in addition to serv-
ing as localization markers also provide contextual information. These especially 
become useful in recognition and verbal translation for the blind and visually im-
paired. Here we differentiate visual-icons as those we are matching against a known 
database of universal symbols, and we restrict it to binary image symbols. With sig-
nage we refer more generally to all signs (grayscale and colored), including previous-
ly unseen signage (not in a DB of symbols) and logos and brand marks, such as a 
pizza image outside of a pizzeria or car brand mark at a car dealership. 

4 Visual Noun Based Localization: Algorithms 

We propose the use of Visual Noun features to aide blind and low-vision users in 
orientation and navigation tasks. Our system considers a user with a wearable camera 
(either on the frame of glasses or on a cap). They arrive at a place that is new to them, 
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4.2 Visual Nouns Extraction 

Visual-noun features are extracted from images by locating areas where high contrast 
changes occur. The intuition being that signage, text, and icons used to alert users 
should have enough contrast so that they catch the viewer’s attention. In this work we 
have used the MSER blob detector [13] which performs well at segmenting regions 
with high contrast from their backgrounds, as proposed by Chen et. al. [3]. It was 
found that MSER does not deal well with blurry regions and so the Edge Enhanced 
Maximally Stable Extremal Regions (EE-MSER) algorithm was proposed in [3] to 
detect text in natural images. We found a sharpening procedure corrected some of the 
issues that occur due to motion blur in video. 

4.3 Localization 

By combining multiple visual nouns with known 3D locations, the viewer’s pose can 
be determined, using a typical pose estimation algorithm such as the PnP algorithm 
[4] we have used in multi-robots navigation tasks.  

A panorama view allows us to match both reliable visual-nouns and traditional fea-
tures that are common among multiple views. It may be the case that the visible visu-
al-nouns are not enough to perform localization using the PnP algorithm. In these 
cases we augment the visual-nouns with traditional features that are consistent with 
the panoramic view and with the projections of the visual-nouns. We use RANSAC to 
check that all features provide consistent projections onto the panorama. 

With the panoramic view we can take 3 algorithmic approaches to assist blind users. 

1. Through visual noun detection we can provide the user contextual information 
about their surroundings. (User can be told what resources/facilities are around 
them.) 

2. The panoramic view provides the user orientation information, which can be used 
to tell a user in which direction they should turn. (User can be told which sign they 
are facing.) 

3. When the visual noun locations are known and panoramas constructed we can lo-
calize the user in 3D space using the PnP algorithm. (User can be told how far 
from a sign they are.) 

5 Experiments and Results 

In our experiment we augmented an indoor hallway with 4 visual-icon printouts and 
we captured a 5 second video recording of the surroundings. Figure 3 shows 3 origi-
nal video frames. Few visual nouns are often seen in any single view. Figure 4 shows 
the result from registering the video frames and generating a wide field-of-view pano-
rama of the scene. The panorama contains many more visual-noun features which 
provide both context and allow us to localize a user. 
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Fig. 3. Three original frames from the 5 seconds of video 

 

Fig. 4. Wide field-of-view panorama generated from video 

Using the panorama we are able to identify signs and text markings across the en-
tire scene. We then use MSER to detect regions of high contrast. Figure 5 shows the 
resulting detections on various signs. Some false positives are also detected by the 
MSER algorithm, but can be reduced by matching against a database of visual-icons, 
and applying geometric text filters as described in [3]. 

 

Fig. 5. MSER results on signs 

Figure 6 shows a single view and a panorama with markings to the right of the fea-
tures used in the localization experiment. The red circle markings denote visual 
nouns, and the green square markings denote additional selected points. 

Table 1 shows the results from our localization experiment. The test video was 
captured with a hand held camera by a viewer at head height. For the single frame, the 
Estimated Pose row gives our manually measured camera pose. The Single View row 
shows the results of using the 4 marked features, showing that we were up to 3 feet 
off in any one axis, and a few degrees off from the estimate. Using the panorama 
(with the same reference frame as the single view) we located 8 features which gave 
us a better overall pose estimate. Using the 8 features from the panorama, our transla-
tion result was only 6 inches off from the estimated pose (along the Y axis, the dis-
tance to the wall). 
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