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Abstract—Little progress has been achieved in hand-crafted
feature based human action recognition (HAR) for RGB videos
in recent years. The emergence of low price depth camera
presents more information for action recognition. Compared
to RGB videos, depth video sequences are more insensitive to
light changes and more discriminative in many vision tasks
such as segmentation and activity recognition. In this paper,
we propose an effective and straightforward HAR method by
using skeleton joints information of the depth sequence. First,
we calculate three feature vectors which capture angle and
position information between joints. Then, the obtained vectors
are used as the inputs of three separate support vector machine
(SVM) classifiers. Finally, the action recognition is conducted
by fusing the SVM classification results. Our features are view-
invariant because the extracted vectors contain only angle and
normalized position information based on joint coordinates. By
normalizing action videos with different temporal lengths to a
fixed size using interpolation, the extracted features have the same
dimension for different videos and can still keep the principal
movement patterns which make the proposed method time-
invariant. Experimental results demonstrate that our method
performs comparable results on the UTKinect-Action3D dataset,
and is more efficient and simpler than state-of-the-art methods.

I. INTRODUCTION

HAR plays an important role in many applications such
as video surveillance, human-computer interaction, video re-
trieval, etc. In past several years, the progress on various
visual recognition tasks has been based mostly on hand-
crafted features including scale-invariant feature transform
(SIFT) [1], histograms of oriented gradient (HOG) [2], motion
history image (MHI) [3] etc. However, most of the canonical
visual recognition algorithms just build ensemble systems and
employee minor variants of successful methods, it is generally
acknowledged that progress has been slow in recent years [4].
Fortunately, the low-cost depth camera promotes researchers
reconsider problems of image processing and computer vision
[5]. Different from RGB camera which captures color and

texture information, depth camera records depth information
with the geometric and skeleton joints information. In addition,
depth camera is insensitive to light changes and more discrim-
inative than color and texture features in many problems such
as segmentation and activity recognition. In this paper, we
propose an effective and straightforward HAR method by only
utilizing skeleton joints information. The proposed method
extracts angle and normalized position information to form
feature vectors from skeleton joint coordinates, which make
it view-invariant. By normalizing action videos with differ-
ent lengths to a fixed size using interpolation, the extracted
features have the same dimension for different video and
keep principal movement patterns which make the proposed
method time-invariant. Experimental results demonstrate that
our method performs comparable results on the UTKinect-
Action3D dataset but is more efficient and simpler than the
state-of-the-art methods The key contributions of this work
are summarized as follows:

1) We propose an effective and simple method for action
recognition just using skeleton joints information for
depth video sequences. Experimental results demon-
strate that our proposed method is time and view-
invariant.

2) Two different hand-crafted joint feature vectors which
are Hip center based vector (HCBV) and angle vector
(AV) are proposed. Pairwise relative position [6] vector
(PRPV) is improved.

3) By fusing classification results from three hand-crafted
features, the recognition accuracy of the proposed
method is comparable to and more efficient and simpler
than the state-of-the-art methods.

The remainder of this paper is organized as follows: Section
II reviews the related work. Section III presents the details
of three hand-crafted features. The experimental results and
discussions are presented in Section IV. Finally, Section V
concludes the paper.



II. RELATED WORK

Over the last decade, low-level hand-crafted features, such
as SIFT [7], [1], HOG [8], [2], MHI [3], space-time inter-
est points (STIP) [9], [10], and speeded up robust features
(SURF) [11] have been successfully applied in traditional RGB
video-based activity recognition. However, in recent years,
many of RGB video-based action recognition tasks just build
ensemble systems and employ minor variants of successful
methods. The step of research on action recognition based
on RGB video seems hesitating to take a move. Luckily,
the recent emergence of the cost-effective depth sensors such
as Kinect [5], evokes more attentions from researchers to
make further improvement on visual tasks such as human
attribute recognition and activity recognition. Ye et al. [12]
provided a detailed survey on HAR from depth camera.
Among depth-based HAR methods, HOG [13], [14], STIP [9],
[15], [10] and bag-of-3D points [16], [17] are mostly common
features. However, experiments from paper [9] revealed that
skeleton joint information can greatly improve performance by
fusing spatio-temporal features and skeleton joints for depth-
based action recognition. After that, more and more action
recognition tasks focus on discovering the correlation between
action categories and skeleton joints [18], [19], [20]. Shotton
et al. [5], [21] proposed to model the body joint estimation
problem from a single depth frame. They calculated modes
from census of per-pixel classification by utilizing Random
Forest and Conditional Regression Forests. In paper [22], the
authors combined action information including static posture,
motion property, and overall dynamics based on differences of
skeleton joints to form a new action feature descriptor named
EigenJoints and proposed an effective method to recognize
human actions. Zanfir et al. proposed moving pose descriptor
[18] by using the configuration, speed, and acceleration of
joints. To reduce joint estimation errors, the authors selected
the best-k joint configurations by segmentation and temporal
constraints [23] and used the relative positions of pairwise
joints [6] as a complementary feature to characterize the
motion information. Vemulapalli et al. [19] used skeleton joint
information to model the 3D geometric relationships between
various body parts. In this way, human actions can be modeled
as curves in a Lie group [24]. Different from [19], Xia et al.
[20] constructed histograms of 3D joint locations (HOJ3D)
as a compact representation of postures. In this paper, our
work proceeds along this direction. We propose an effective
and simpler action recognition method only based on skele-
ton joints of depth videos. Experimental results demonstrate
that our method achieves comparable results but much faster
than the state-of-the-art methods on the UTKinect-Action3D
dataset.

III. HAND-CRAFTED FEATURES AND CLASSIFICATION
FUSION

Each frame from a depth sequence provides the skeleton
information of 20 joints, each of which contains x, y and z
coordinate information. The 20 joints are Hip center, Spine,
Center between shoulders, Head, Left shoulder, Left elbow,

Left wrist, Left hand, Right shoulder, Right elbow, Right
wrist, Right hand, Left hip, Left knee, Left ankle, Left foot,
Right hip, Right knee, Right ankle, and Right foot. Different
from traditional hand-crafted features which employ all pixel
values of the video, our method just uses skeleton joints to
extract features from depth sequences, which is simpler and
achieves real-time characteristic. For each depth sequence,
three different hand-designed feature vectors which are Hip
center based vector (HCBV), angle vector (AV), and pairwise
relative position vector (PRPV) between joints of each frame
are calculated separately. Then LIBLINEAR [25] is used as
classifier which is applied on the three feature vectors re-
spectively. Finally, the classification results from these feature
vectors are fused for action recognition. The fusion process
just simply sums the probability of the corresponding action
from input classifiers with different fusing weights. In this
paper, the weights of HCBV, AV and PRPV classifiers are set
to 4, 3 and 3 according to our experiment.

A. Hip Center Based Vector (HCBV)

Here we propose a straightforward method to calculate
HCBV for each sequence. HCBV captures not only the angle
but also the position information of each joint relative to Hip
center joint. Fig.1 presents the calculation of HCBV. Our
HCBV calculation takes the Hip center joint as the original
point of the 3D coordinate because it is the steadiest joint
compared to other joints. Thus for each joint in addition to
the Hip center joint, we can calculate the following three
parameters: distance to origin (d), angle of elevation (φ) and
Azimuthal angle (θ). In order to reduce the influence of
subjects with different height, we normalize distance d to D
by multiplying a height factor λ which equals multiplicative
inverse of distance between Hip center joint and spine joint
(Eq. 1). As we know, each frame has 19 joints except the Hip
center joint. So for a depth sequence with tNum frames, we
obtain a 3 × 19 × tNum HCBV by concatenating the three
parameters of all joints of every frame in the depth sequence.

D = λ× d (1)

B. Angle Vector (AV)

Angle Vector aims to capture the global bending degree
information by concatenate local angles between any two
connected body parts. Fig.2 presents the sketch map of cal-
culating all angles for a frame. So for a depth sequence, AV
is obtained by stacking all angles of each frame. There are a
total of 19 angles in the skeleton of each frame. So for a depth
sequence with tNum frames, we can obtain an Angle Vector
of 19× tNum dimension.

C. Pairwise Relative Position Vector (PRPV)

PRPV captures pairwise position information of each joint
relative to all other joints. Here, we just make a slight
improvement on the pairwise relative position features in
paper [6] by normalizing the obtained distance between two
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Fig. 1. Calculation HCBV for a frame. Hip center of each frame is set as the
origin of the 3D coordinates. Then distance to origin (d), angle of elevation
(φ) and Azimuthal angle (θ) are calculated for each joint in every frame.

Fig. 2. Calculating AV for a frame. We calculate all angles between any
two connected body parts for every frame. There are a total of 19 angles in
the skeleton of each frame.

joints according to Eq. 1. Let pit = {xit, yit, zit} be the three-
dimensional coordinatesof joint i from frame t. So, for a frame
t, We extract the pairwise relative position features by taking
the difference between the position of joint i and that of each
other joint j for each joint i (Eq. 2).

pijt = pit − p
j
t (2)

The 3D joint feature for joint i in frame t is defined as Eq. 3:

pit = {p
ij
t |i 6= j} (3)

So, for a video, PRPV is obtained by concatenating 3D joint
features of each joint in every frame of the video. Suppose a
depth sequence has tNum frames and the skeleton has 20 joints
for each frame, we can obtain the PRPV of 19× 20× tNum
dimension (Eq. 4).

PRPV = {pit|i = 1, .., 20; t = 1, .., tNum} (4)

TABLE I
THE PERFORMANCE OF EACH ACTION ON THE UTKINECT-ACTION3D

DATASET(AVERAGE:95%).

Action walk sit down stand up pick up carry
Accuracy 100 100 100 100 80
Action throw push pull wave hand clap hand
Accuracy 80 90 100 100 100

IV. EXPERIMENTAL RESULTS

A. Dataset and Data Preprocessing

In this section, we evaluate the performance of our proposed
method on the UTKinect-Action3D dataset [20]. The dataset
was captured by a stationary Kinect sensor and consists of
10 actions (Table I) performed by 10 different subjects. Each
subject performed every action twice. Altogether, there are
199 effective action sequences, each of which provides the
3D locations of 20 joints. For convenience, we use 200
action sequences in our experiments by filling the missing
action carry of the second performance of the 10th subject
using frames from No.1242 to 1300. The UTKinect-Action3D
are challenging because there exist much variations in the
view point and high intra-class variations. For the dataset,
we do simple preprocessing for each video sequence. One
preprocessing is using interpolation method to normalize the
frame numbers of every sequence to a fixed size which is the
median of all videos’ length sequence in the dataset. Another
is x, y and z coordinates are normalized to the range of [0,1]
using min-max method respectively.

B. Performance Evaluation

For the evaluation on the UTKinect-Action3D dataset, we
adopt cross-subject experimental setting in which subjects
{1,3,5,7,9} are used for training and subjects {2,4,6,8,10}
are used for testing. Table I presents the accuracy of every
action. From the table, we observe that most of the actions
are classified correctly and the average accuracy is 95%. Since
the challenges in the UTKinect-Action3D are variations in
the viewpoints [20] and every action video have different
frame numbers, high recognition rate shows that the proposed
method is view-invariant and time-invariant. The action carry,
throw and push obtains low accuracies. Two wrong classifica-
tion items of action carry are recognized as action throw and
push respectively. It is possibly because both these two actions
(subject 9 and 10) only last few frames and the provided
information is insufficient to classify. The confusion of the
actions throw and clap hand is likely because these two actions
(subject 7 and 8) are frontal and their hand movements are
very similar to clap hand. Table II shows the performance
of our method compared to previous and the state-of-the-art
approaches. The proposed method obtains accuracy of 95%
which is comparable to the state-of-the-art result from [19].
Please note that[19] prepared 10 train sets and test sets which
are used in their cross-subject experiments. If our cross-subject
setting is used in their code, the accuracy will be 95.96%.
Another difference of experimental setting between proposed



TABLE II
THE PERFORMANCE OF OUR METHOD ON THE UTKINECT-ACTION3D

DATASET, COMPARED TO PREVIOUS APPROACHES.

Method Accuracy
Xia et al. (2012)[20] 90.92%
Devanne et al. (2013)[26] 91.5%
Chrungoo et al. (2014)[27] 91.96%
Vemulapalli et al. (2014)[19] 97.08%
Proposed 95%

method and [19] is that we use 200 action sequences by filling
the missing action carry whose skeleton joints are thought be
less confident while [19] use 199 action sequences. However,
compared to [19], our method is simpler and more efficient.
The average time consumption of extracting the features of
a sequence is 0.18 seconds for proposed method, while [19]
needs about 6.53 seconds on the same computer configuration
who has 4 processors of Intel(R) Core(TM) i5-4200M CPU
@ 2.50GHz and total memory of 4G.

V. CONCLUSIONS

In this paper,we have proposed an effective and straight-
forward human action recognition method by extracting three
different types of features which capture both angle infor-
mation and pairwise relative position information between
joints of a depth video. By combining the classification results
of HCBV, AV, PRPV, our method has achieved good action
recognition performance which is comparable to state-of-the-
art results [19] on the UTKinect-Action3D dataset. Compared
to [19], the proposed method is simpler and faster. At the
same time, the extracted features in our proposed method are
view-invariant and time-invariant, which makes it more robust
when applied in other datasets. However, the proposed method
just stacks the features of each frame while losing trajectory
information of each joint. Our future work will proceed along
this direction which focuses on skeleton joints based action
recognition using depth sequences by tracking and combining
each joint.
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