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METHOD AND APPARATUS FOR OBJECT
NORMALIZATION USING OBJECT
CLASSIFICATION

FIELD OF THE INVENTION

The present invention relates to the detection of objects in
video sequences using computer vision techniques and, more
particularly, to methods and apparatus for the normalization
of objects in images.

BACKGROUND OF THE INVENTION

Computer vision techniques are increasingly used to detect
or classity objects in images. For example, in many surveil-
lance applications, computer vision techniques are employed
to identify certain objects, such as people and vehicles. In
addition, many surveillance applications require that an iden-
tified object be tracked across an image sequence. While
current computer vision techniques can effectively track one
or more objects across a sequence of images from the same
camera, existing technologies have been unable to reliably
track an object of interest across image sequences from dif-
ferent cameras and viewpoints.

The recognition and measurement of properties of objects
seen in images from different cameras and viewpoints is a
challenging problem. Generally, different viewpoints can
cause an object to appear to have different properties, such as
size and speed, depending on their position in the image and
the viewpoint characteristics. Existing solutions rely on
known geometry and manual calibration procedures. A need
exists for an automated procedure for normalizing image
object data for measuring properties and performing classifi-
cation.

SUMMARY OF THE INVENTION

Generally, methods and apparatus are provided for normal-
izing objects across a plurality of image viewpoints. A set of
classification results are obtained, for example, from a base
classifier or a manual input, for a given object class across a
sequence of images (such as object tracks) for each of a
plurality of viewpoints. The classification results are each
comprised of a position of one of the objects in the image, and
at least one projected property of the object at that position.
Normalization parameters are then determined for each of the
viewpoints by fitting a high order model to the classification
results to model a change in the projected property. The
projected property may be, for example, a linear size, such as
a height, or an orientation of the object.

The high order model may implement, for example, a least
squares fit of a second order polynomial to the classification
results. In one implementation, the normalization parameters
are determined by using image position and object property
values to fit a function that relates image position for a given
viewpoint to at least one projected property. The normaliza-
tion parameters may be used, for example, to compute nor-
malized features and normalized training data for object clas-
sification.

A more complete understanding of the present invention,
as well as further features and advantages of the present
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2

invention, will be obtained by reference to the following
detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary view independent object
normalization and classification system incorporating fea-
tures of the present invention;

FIG. 2 illustrates the training phase of the object normal-
ization and classification system of FIG. 1 in further detail;

FIG. 3 is a flow chart describing an exemplary implemen-
tation of the normalization process of FIG. 2 in further detail;

FIG. 4 is a flow chart describing an exemplary implemen-
tation of the normalized classification process of FIG. 1 in
further detail; and

FIG. 5 is a schematic block diagram of an exemplary
implementation of the object normalization and classification
system of FIG. 1.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The present invention provides methods and apparatus for
view independent object normalization. Methods and appa-
ratus are disclosed that provide an automated procedure for
normalizing image object data for measuring properties and
performing classification. The disclosed view independent
object normalization techniques may be applied in a number
of applications, as would be apparent to a person of ordinary
skill in the art. In one illustrative embodiment, the view inde-
pendent object normalization techniques of the present inven-
tion are applied in an exemplary object classification system.

FIG. 1 is a schematic block diagram of an exemplary view
independent object normalization and classification system
100 incorporating features of the present invention. In one
exemplary implementation of the invention, the view inde-
pendent object normalization techniques are applied in an
object classification system for digital video surveillance that
can be used for an arbitrary camera viewpoint.

As shown in FIG. 1, the object normalization and classifi-
cation system 100 employs a two phase approach to classify
moving objects independent of camera viewpoint. During a
training phase 150, discussed further below in conjunction
with FIG. 2, recognition is initially performed using a base
classifier 120 that employs feature-based classification to
classify objects, for example, as human or vehicles. The base
classifier 120 returns a confidence measure that provides an
indication of the likelihood that a classification is correct. The
results of the base classification 120 is thereafter used by a
normalization process 300, discussed further below in con-
junction with FIG. 3, to compute an estimate of the normal-
ization parameters and a normalized training data set. Gen-
erally, the normalization process 300 uses image position and
object property values to fit a function relating image position
(for a given viewpoint) to object size and vertical orientation
(in the real world, as opposed to the image space). The func-
tion performs image object property normalization which can
be used to measure normalized property values and improve
object classification.

During a classification phase 180, the normalization
parameters and normalized training data set are used by a
normalized classification process 400, discussed further
below in conjunction with FIG. 4, to classify moving objects
with improved accuracy. The normalization parameters allow
the second classification phase to perform improved classifi-
cation based on normalized features.



US 7,480,414 B2

3

Thus, a base object classifier is first used to coarsely iden-
tify objects in one or more images and then this information is
used to learn normalization parameters. Once the normaliza-
tion parameters are known, a more sophisticated classifier can
optionally more accurately recognize object types, such as a
person or vehicle.

Classification and Normalization Background

Classification

A number of systems have been developed to classify
objects for digital video surveillance. These systems typically
either perform object detection without prior segmentation or
object classification after moving object detection. Systems
of'the former type are most often used when full surveillance
systems are not used and a specific object type such as a
pedestrian or face needs to be detected. Systems of the latter
type are part of larger systems which first perform object
detection and tracking. The present invention is an example of
the latter type.

After moving objects are detected, features are extracted
for each frame, for each object, based on image measure-
ments combined with a history of previous feature measure-
ments. Standard statistical classifiers for supervised learning,
such as nearest neighbor, neural networks or support vector
machines, are then used to classify objects based on training
data. For robust and portable object classification, extensive
training data is required to cover the wide range of camera/
object viewpoints and different scenarios.

An important step in all object classification methods is to
extract suitable features from the image data. Features may be
based on raw appearance, color, texture, shape or motion. At
the lowest level, classification methods filter image data but
still maintain per pixel values. Mohan et al., “Example-Based
Object Detection in Images by Components,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 23, no. 4,
349-361 (April 2001), describes a set of Haar wavelets to
detect people in frontal imagery. In order to speed up their
detection process, a subset of wavelets are used which encode
the outline of the body.

The symmetry inherent in human beings was exploited as
auseful low-level feature for people detection in images (i.e.,
without prior segmentation) as described in Utsumi et al.,
“Human Detection Using Geometrical Pixel Value Sruc-
tures,” Proc. of Fifth Int’] Conf. on Automatic Face and Ges-
ture Recognition, 39-44 (May, 2002). In their work, a distance
map is computed based on the statistics of interblock dis-
tances of image intensities. Since people typically exhibit
systematic symmetries, they can be coarsely detected in this
manner.

A number of proposed techniques have used features based
on color and texture. Uchida et al., “Probabilistic Method of
Real-Time Person Detection Using Color Image Sequences,”
Int’] Conf. on Intelligent Robots and Systems, 1983-1988
(October, 2001), describes a system that detects people based
on a Bayesian pixel classification using skin color, shadow
and background models. Skin color detection requires fairly
high-resolution imagery. Typically, the most important role
for color is in tracking rather than object classification.

Several techniques use shape information to classity
objects. Segmented objects are often fitted to an ellipse and
the major and minor axes, their ratio and their angle with
respect to the image axes are computed. These simple mea-
surements have been used effectively by several systems to
distinguish vehicles from people. Another commonly used
feature is compactness or dispersedness. Compactness refers
to the ratio of the area to the square of the perimeter. This is a
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useful feature to discriminate vehicles from pedestrians since
people typically have complex extremities. The difficulty is
removing “extremity” artifacts due to noise. Rivlin et al., “A
Real-Time System for Classification of Moving Objects,”
Proc. 16th Int’1 Conf. on Pattern Recognition, Vol. 3, 688-91
(Aug. 11, 2002), found that a more useful feature was to use
measurements based on the ‘star skeleton.” This is based on
determining the local maxima in the contour computed from
the distance between contour and the center of mass.

Another important feature is based on object motion. A
salient feature to detect people is the periodic motion exhib-
ited as they walk or run. Javed et al., “Tracking and Object
Classification for Automated Surveillance,” Proc. 7% Buro-
pean Conf. on Computer Vision, Vol. Part IV, 343-357 (May
28-31, 2002), defined a simple measurement based on recur-
rent motion based on gray level pixel changes. For these types
of measurements to be effective, tracked objects must be
accurately translated and scaled to align them to each other
over time. Zhou et al., “Tracking and Classifying Moving
Objects from Video,” Proc. 2nd IEEE Int’l Workshop on
Performance Evaluation of Tracking in Surveillance (Dec. 9,
2001), use the variation of motion direction since the direc-
tion of motion of vehicles changes slowly and smoothly.
Rivlin et al., use the temporal characteristics of feature points
based on the largest two DC components of the Fourier Trans-
form of the feature time series. In this way, they are also able
to distinguish whether a person is walking or running. Zhao et
al., “Segmentation and Tracking of Multiple Humans in
Complex Situations,” IEEE Conf. on Computer Vision and
Pattern Recognition, Vol. II, 194-201 (Jun. 13-15, 2000), use
motion templates based on three dimensional motion capture
data combined with calibration information, which can be
used to determine the viewpoint direction, to perform walk-
ing motion recognition and verify whether a moving object is
a walking person.

Several systems have been developed which are not view
independent. Collins et al., “A System for Video Surveillance
and Monitoring,” CMU-RI-TR-00-12, VSAM Final Report,
Carnegie Mellon University (2000), developed a vehicle/hu-
man classification system that is frame-based and uses com-
pactness, area, bounding box aspect ratio, and camera zoom.
This system is trained on data from the same view and uses the
view dependent features, namely the area of the object. The
system uses a neural network classification.

More recently, a number of techniques have been sug-
gested to address the issue of view independence. Stauffer et
al., “Robust Automated Planar Normalization of Tracking
Data,” Proc. Joint IEEE Int’l Workshop on VS-PETS, 1-8
(Oct. 11, 2003), describe a method to normalize properties of
tracked objects. This method will be described in more detail
in the following section entitled “Normalization.” Bose et al.,
“Learning to Use Scene Context for Object Classification in
Surveillance,” Proc. Joint IEEE Int’l Workshop on VS-PETS,
94-101 (Oct. 11, 2003), describe a two phase system which is
used to bootstrap the learning of scene context information
for a new viewpoint. Scene context information includes
location, direction of motion, aspectratio, and orientation, for
this viewpoint. The disclosed two phase system established
that re-training based on more relevant information is useful.

The present invention recognizes that it is useful to apply
normalization, directly improving feature measurements, and
scene context information, learning the view-dependent sta-
tistics of object tracks in this view.

A number of object classification systems exist to distin-
guish vehicles, individuals and groups of people. For
example, one system is based on shape features (compactness
and ellipse parameters), recurrent motion measurements,
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speed and direction of motion. From a small set of training
examples obtained from a different camera configuration,
objects can be classified using a Fisher linear discriminant
followed by temporal consistency.

Normalization

Normalization of image data is an important process in
order to infer physical properties of objects in the scene with
respect to absolute terms, such as meters or miles per hour. In
order to classify objects accurately as seen from different
cameras and different viewpoints, measured properties of
objects should be invariant to camera viewpoint and location
in the image. Normalization is necessary to estimate scale and
determine the angle in which the camera is viewing the object.
Measurements from image data must take into account the
perspective distortion due to the projection of the world onto
the image plane and other distortions such as lens distortion.
In particular, for typical surveillance video with a far field
view (i.e., the camera has its viewing direction nearly parallel
to the ground plane), the farther an object lies, the smaller its
projected image size will be. On the other hand, for an over-
head camera looking down at a scene, a person standing more
directly underneath the camera will appear shorter. The
present invention recognizes that size and orientation value
pairs can be predicted for a given position based on prior data
and can be used to normalize live data at each position and
across camera views.

Investigators in digital video surveillance have recently
begun to address this issue. Traditionally this has been done
by semi-automatic calibration (relying on an expert) or rich
geometric primitives in the image (such as parallel or
orthogonal lines in the image). But realistic digital surveil-
lance, which can be generally deployed, requires an auto-
mated solution.

Lv et al., “Self-Calibration of a Camera from Video of a
Walking Human,” Proc. 16th Int’1 Conf. on Pattern Recogni-
tion, Vol. 1, 562-67 (August, 2002), pioneered an effort to
perform self-calibration of a camera from the tracking data
obtained of a walking human. With sufficiently high quality
data, this method can be used to perform a full intrinsic and
extrinsic calibration but in practice is somewhat unstable with
realistic tracking data. More recently, Bose et al., “Ground
Plane Rectification by Tracking Moving Objects,” VS-PETS
2003, proposed a method to perform ground plane rectifica-
tion based on tracked objects moving at a constant velocity.
This method assumes the ground is planar and it is possible to
acquire tracks of objects moving at a constant velocity. In
practice, these assumptions cannot always be satisfied.

Stauffer et al., “Robust Automated Planar Normalization of
Tracking Data,” Proc. Joint IEEE Int’l Workshop on VS-
PETS, 1-8 (Oct. 11, 2003), present a method in which pro-
jected properties P, of a particular track j, are modeled by a
simple planar system such that the value of the property varies
linearly with the distance from the horizon line. For each track
J» an individual scale factor parameter s, and three global
parameters of the planar model (a,b,c) are found as the best fit
to the observations (x,, y,, P,) for all j. This method is applied
to all tracks regardless of the object type (such as vehicle,
pedestrian, and animal). The limitation of this approach is that
object properties, such as height and width, depend heavily on
the viewpoint direction, particularly for vehicles whose
length and width vary greatly. Although in theory, the change
in the projected property should vary nearly linearly with
distance; this also assumes a planar ground surface, no occlu-
sion, and only perspective distortion.

The normalization method of the present invention does
not rely on a planar ground surface, is not limited to certain
camera viewpoint directions (far field), is not linear/planar,
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nor does it require objects moving at a constant velocity. The
disclosed system relies either on pedestrian data obtained
from a classifier or input into the system. In the former case,
the classifier is run over an extended period, to obtain several
sequences in which pedestrians traverse the space. The clas-
sifier determines if the track is a person, or a vehicle. In each
case, a confidence measure is assigned to the classification
result. Sequences classified as humans, whose confidence
measures are relatively high are selected as input data to the
normalization system. This typically finds sequences of
pedestrian data without shadows, from decent imaging con-
ditions (no precipitation or wind) and simple pedestrian shape
and motions (not carrying objects, wearing hats, holding
umbrellas, or performing odd behaviors.)

Two Phase Normalization

FIG. 2 illustrates the training phase 150 of the object nor-
malization and classification system of FIG. 1 in further
detail. FIG. 2 illustrates the training phase 150 for one exem-
plary camera N, but the same training process is performed to
generate normalization parameters for each camera and view-
point. As shown in FIG. 2, the object normalization and
classification system 100 processes an image sequence 210
received from each of a plurality, N, of cameras (not shown).

Initially, the features of interest are extrated from the
images during step 220. As discussed below, an exemplary
7-dimensional feature space is extracted from the image
sequences for processing by a base classifier 230. In addition,
an exemplary 5-dimensional feature space is employed for
the normalized features 240, discussed below.

The base classifier 230 applies a supervised object classi-
fication system to the image data 210. For example, in one
exemplary implementation, the base classifier may employ an
object classification system that detects moving objects by
combining evidence from differences in color, texture and
motion. This background subtraction approach, by exploiting
multiple modalities, is useful for detecting objects in cluttered
environments. For a detailed discussion of a suitable back-
ground subtraction approach, see, for example, J. Connel et
al., “Detection and Tracking in the IBM People Vision Sys-
tem,” ICME 2003. The resulting saliency map can be
smoothed and holes removed using morphological operators.
In addition, several mechanisms are optionally built-in to
handle changing ambient conditions and scene composition.
Detected objects are then tracked using both appearance
models and movement characteristics for each detected
object. See, A. Senior et al., “Appearance Models for Occlu-
sion Handling,” in Proc. 2nd IEEE Int’1 Workshop on Perfor-
mance Evaluation of Tracking in Surveillance (Dec. 9, 2001).
Only objects whose tracks are stable, i.e., they are not under-
going merge/split, occlusion, or do not lie on the image bor-
der, are used for training or testing the object classification
system.

In an alternate implementation, the base classifier 230 may
be embodied using any known techniques, such as back-
ground subtraction, tracking, detection or a combination
thereof, to segment and measure objects of interest in a plu-
rality of images and to classify the objects of interest based on
feature vectors.

The base classifier generates classification results that
comprise, for each object, e.g., the assigned class, confidence,
position, height and direction. It is noted that the classifica-
tion results can also be manually generated. In one implemen-
tation, an adaptive threshold is applied to the classification
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results, such that only objects with a confidence level that
exceeds the current adaptive threshold are considered for
further processing.

As shown in FIG. 2, the classification results from the base
classifier are applied to a normalization stage 300, as dis-
cussed further below in conjunction with FIG. 3. Generally,
the normalization process 300 determines normalization
parameters for each viewpoint that allow the second phase to
perform improved classification based on normalized fea-
tures.

Object classification systems based on the background
subtraction approach can employ a number of features based
on shape, motion, and periodicity. For example, some or all of
the following features can be employed by the base classifier
during step 230:

1 compactness or dispersedness (perimeter 2/area);

2 variation in compactness (for a time window, such as 20

frames);

3 fitted ellipse major/minor axis ratio;

4 fitted ellipse near horizontal/near vertical axis ratio;

5 major axis angle;

6 magnitude of velocity;

7 direction of motion;

8 variation in direction of motion (for a time window, such

as 20 frames);

9 direction of motion with respect to major axis direction

(angle difference)—circular statistic;

10 simplified concavity metric: percent object filling

bounding box;

11 average from recurrent motion image—bottom third;

12 average from recurrent motion image—middle third;

and

13 average from recurrent motion image—bottom two

thirds

Circular statistics have been proposed for directional fea-
tures 5, 7 and 9. See, N. Cox, “Analysing Circular Data in
Stata,” NASUG, (March 2001). Generally, circular statistics
provide a simple representation of an angle (or periodic mea-
surement) which enables accurate measurement of the circu-
lar distance between two measurements. This addresses the
problem that the beginning and end of the scale are the same
(i.e., 0 degrees equals 360 degrees).

Average recurrent motion image measurements for fea-
tures 11 through 13 can be based on techniques described in
O. Javed and M. Shah, “Tracking and Object Classification
for Automated Surveillance,” in Proc. 7% European Confer-
ence on Computer Vision, Vol. Part IV, 343-357 (May, 2002).

An exemplary implementation of the base classifier 230
employs features 1, 2, 3, 4, 6, 7 and 13 and nearest neighbor
classification with 10 neighbors. The inverse to the closest
distance can be used as a confidence for the result.

As shown in FIG. 2 normalized features are computed for
the current camera viewpoint during step 240. In an exem-
plary implementation, the normalized features are:

1. Normalized major axis;

2. Normalized minor axis;

3. Normalized area;

3. Normalized velocity;

4. Normalized direction of motion; and

5. Normalized angle of ellipse.

The normalized features for the current camera N from step
240, as well as normalized features for the other cameras from
step 250 are processed during step 260 to compute the nor-
malized training data. Generally, the normalized features for
the current camera are compared to the classification training
data from a number of viewpoints.
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The final phase II system used all the phase I features plus
features 1, 2, & 3. Normalization based on size only (not
orientation) was used. Classification was performed using
nearest neighbor classification with 10 neighbors. Track iden-
tification was based on majority vote.

FIG. 3 is a flow chart describing an exemplary implemen-
tation of the normalization process 300 of FIG. 2 in further
detail. As previously indicated, the normalization process 300
determines normalization parameters that allow the second
phase to perform improved classification based on normal-
ized features. The normalization process 300 does not rely on
a planar ground surface, is not limited to certain camera
viewpoint directions (far field), is not a linear/planar model,
nor does it require objects moving at a constant velocity. The
normalization process 300 processes either pedestrian data
obtained from the base classifier 230 or input into the system
100. In the former case, the base classifier 230 is run over an
extended period, to obtain several sequences in which pedes-
trians traverse the space.

The base classifier 230 determines if the track is a person
based on the average confidence of the track. As indicated
above, the confidence level can be based on the inverse of the
normalized closest distance to the nearest neighbor in the
exemplary 7-dimensional feature space. Sequences classified
as humans, whose confidence measures are relatively high
(for example, scores in the highest 50 percent) are selected as
input data to the normalization process 300. This typically
finds sequences of pedestrian data without shadows, from
decent imaging conditions (no precipitation or wind) and
simple pedestrian shape and motions (not carrying objects,
wearing hats, holding umbrellas, or performing odd behav-
iors.)

As shown in FIG. 3, the normalization process 300 initially
obtains track data for several pedestrians moving around dif-
ferent locations in a scene during step 310. Generally, the
track data provides the height and orientation of a person at
various locations of an image. For example, for each image
frame, j, the track data may identify the position (x,,y;) of the
bottom of the pedestrian (based on the location of the bottom
of'the major axis of an ellipse which is fit to the data), as well
as the length (H) and orientation (8) of the major axis of the
object.

Normalization is performed during step 320 by a least
squares fitting of a second order polynomial to this data. For
each parameter, pE(H, 0), the sum of squares is minimized as
follows:

minoverz ;- (pxj yjiar ... ag)?

aj ... ag
J

wherea, . ..aqare the coefficients of the polynomial. For each
position in the image, the height and orientation of the pro-
jected image of a person can be predicted. The normalization
process 300 uses image position and object property values to
fit the function that relates image position (for a given view-
point) to object size (H) and vertical orientation (8). The
function performs image object property normalization
which can be used to measure normalized property values and
improve object classification.

For example, for a given viewpoint, the normalization pro-
cess 300 can predict the height, H, of a pedestrian at different
locations in an image. Thereafter, given the height and loca-
tion in an image, as well as the normalization parameters, the
height can be computed at any desired location based on a
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scale factor for that location In general, the normalization
process 300 can project any property of an object at a given
location in the image. Normalized metrics include area,
length, major/minor axis length, major axis angle, and veloc-
ity magnitude. For subsystems that rely on frame to frame
alignment of the detected object, such as appearance-based
tracking or recurrent motion estimation for the classifier,
normalized metrics alleviate the need to scale to an initial
segmentation and to estimate a re-scaling on a frame-to-
frame basis. The present invention can distinguish if a pro-
jected view is getting larger for other reasons, such as a
change in the three dimensional position.

Thus, the normalization parameters are based on training
data from several different camera viewpoints.

The normalization enables absolute identification of size
and speed which can be used in various ways including iden-
tifying vehicles of a certain size and searching for objects of
specific sizes or traveling at specific speeds across different
locations in the image and across different viewpoints and
cameras.

FIG. 4 is a flow chart describing an exemplary implemen-
tation of the normalized classification process 400 of FIG. 1
in further detail. The normalized classification process 400
uses the normalization parameters and normalized features
computed during the training phase to more accurately clas-
sify objects of interest. The normalized classification process
400 processes normalized features to improve the classifica-
tion for the current view.

As shown in FIG. 4, the normalized classification process
400 initially computes the normalized feature vector for the
current camera during step 410. Thereafter, the normalized
classification process 400 employs supervised classification
to classify the normalized feature vector based on the normal-
ized training data during step 420.

FIG. 5 is a diagram illustrating an exemplary object nor-
malization and classification system 100. As shown in FIG. 5,
the object normalization and classification system 100 is a
computer system that optionally interacts with media 550.
The object normalization and classification system 100 com-
prises a processor 520 and memory 530, and, optionally, a
network interface 525, media interface 535 and display 540.
Network interface 525 allows the object normalization and
classification system 100 to connect to a network, while
media interface 535 allows the object normalization and clas-
sification system 100 to interact with media 550, such as a
Digital Versatile Disk (DVD) or a hard drive. Optional video
display 540 is any type of video display suitable for interact-
ing with a human user of the object normalization and clas-
sification system 100. Generally, video display 540 is a com-
puter monitor or other similar video display.

System and Article of Manufacture Details

Atis known in the art, the methods and apparatus discussed
herein may be distributed as an article of manufacture that
itself comprises a computer readable medium having com-
puter readable code means embodied thereon. The computer
readable program code means is operable, in conjunction
with a computer system, to carry out all or some of the steps
to perform the methods or create the apparatuses discussed
herein. The computer readable medium may be a recordable
medium (e.g., floppy disks, hard drives, compact disks, or
memory cards) or may be a transmission medium (e.g., a
network comprising fiber-optics, the world-wide web, cables,
or a wireless channel using time-division multiple access,
code-division multiple access, or other radio-frequency chan-
nel). Any medium known or developed that can store infor-
mation suitable for use with a computer system may be used.
The computer-readable code means is any mechanism for
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allowing a computer to read instructions and data, such as
magnetic variations on a magnetic media or height variations
on the surface of a compact disk.

The computer systems and servers described herein each
contain a memory that will configure associated processors to
implement the methods, steps, and functions disclosed
herein. The memories could be distributed or local and the
processors could be distributed or singular. The memories
could be implemented as an electrical, magnetic or optical
memory, or any combination of these or other types of storage
devices. Moreover, the term “memory” should be construed
broadly enough to encompass any information able to be read
from or written to an address in the addressable space
accessed by an associated processor. With this definition,
information on a network is still within a memory because the
associated processor can retrieve the information from the
network.

It is to be understood that the embodiments and variations
shown and described herein are merely illustrative of the
principles of this invention and that various modifications
may be implemented by those skilled in the art without
departing from the scope and spirit of the invention.

What is claimed is:

1. A method for normalizing objects across a plurality of
image viewpoints, comprising:

obtaining a set of classification results for a given object

class across a plurality of sequential images for each of
said plurality of viewpoints, each of said classification
results comprised of a position of one of said objects in
said sequential image, and at least one projected prop-
erty of said object at said position; and

determining normalization parameters for each of'said plu-

rality of viewpoints by fitting a high order model to said
classification results to model a change in said at least
one projected property.

2. The method of claim 1, wherein said at least one pro-
jected property of said object includes one or more of a linear
size and orientation of said object.

3. The method of claim 1, wherein said set of classification
results across a plurality of sequential images are based on
object tracks.

4. The method of claim 1, wherein said determining step
performs a least squares fit of a second order polynomial to
said classification results.

5. The method of claim 4, wherein said determining step
further comprises the step of minimizing, for a given param-
eter, p, the following:

minoverz lp; - (p(xj, yji a1 ... ag)?
aras &

where (x;, y,) identify a position in an image and o, -0 are the
coefficients of the polynomial.

6. The method of claim 1, wherein said determining step
uses image position and object property values to fit a func-
tion that relates image position for a given viewpoint to at
least one projected property.

7. The method of claim 1, wherein said normalization
parameters can be used to measure normalized property val-
ues.

8. The method of claim 1, wherein said classification
results are obtained from a base classifier.

9. The method of claim 8, wherein said base classifier
implements a background subtraction approach.
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10. The method of claim 1, further comprising the step of
applying an adaptive threshold to said classification results.

11. The method of claim 1, wherein said classification
results are associated with objects from object tracks having
a sufficient confidence score.

12. The method of claim 1, further comprising the step of
using said normalization parameters to compute normalized
features and normalized training data for object classifica-
tion.

13. A method for classifying an object, comprising:

obtaining a set of classification results for a given object

class across a plurality of sequential images for a plural-
ity of viewpoints, each of said classification results com-
prised of a position of one of said objects in said sequen-
tial image, and at least one projected property of said
object at said position;

determining normalization parameters for each of said plu-

rality of viewpoints by fitting a high order model to said
classification results;

computing normalized training data during a training

mode; and

classifying said object using a set of normalized features

and said normalized training data.

14. The method of claim 13, wherein said set of classifica-
tion results across a plurality of sequential images are based
on object tracks.

15. The method of claim 13, wherein said determining step
uses image position and object property values to fit a func-
tion that relates image position for a given viewpoint to at
least one projected property.

16. An apparatus for normalizing objects across a plurality
of image viewpoints, the apparatus comprising:

a memory; and

at least one processor, coupled to the memory, operative to:

obtain a set of classification results for a given object class

across a plurality of sequential images for each of said
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plurality of viewpoints, each of said classification results
comprised of a position of one of said objects in said
sequential image, and at least one projected property of
said object at said position; and

determine normalization parameters for each of said plu-

rality of viewpoints by fitting a high order model to said
classification results to model a change in said at least
one projected property.

17. The apparatus of claim 16, wherein said set of classi-
fication results across a plurality of sequential images are
based on object tracks.

18. The apparatus of claim 16, wherein said processor is
further configured to determine said normalization param-
eters using image position and object property values to fit a
function that relates image position for a given viewpoint to at
least one projected property.

19. An article of manufacture for normalizing objects
across a plurality of image viewpoints, comprising a com-
puter readable medium encoded with one or more computer
programs for performing the steps of:

obtaining a set of classification results for a given object

class across a plurality of sequential images for each of
said plurality of viewpoints, each of said said classifica-
tion results comprised of a position of one of said objects
in said sequential image, and at least one projected prop-
erty of said object at said position; and

determining normalization parameters for each of'said plu-

rality of viewpoints by filling a high order model to said
classification results to model a change in said at least
one projected property.

20. The article of manufacture of claim 19, wherein said
one or more programs implement the step of determining said
normalization parameters using image position and object
property values to fit a function that relates image position for
a given viewpoint to at least one projected property.

#* #* #* #* #*



