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Abstract

Door detection by using wearable cameras helps people
with severe vision impairment to independently access un-
known environments. The goal of this paper is to robustly
detect different doors and classify them as office doors, el-
evators, exits, etc. These tasks are challenging due to the
factors: 1) small inter-class variations of different objects
such as office doors and elevators, 2) only part of an object
is captured due to occlusions or continuous camera mov-
ing of a mobile system. To overcome the above challenges,
we propose a Hierarchical Compositional Model (HCM)
approach which incorporates context information into the
model decomposition process of a part-based HCM to han-
dle partially captured objects as well as large intra-class
variations in different environments. Our preliminary ex-
perimental results demonstrate promising performance on
doors detection over a wide range of scales, view points,
and occlusions.

1. Introduction
Independent travel is well known to present significant

challenges for individuals with severe vision impairment,
thereby reducing quality of life and compromising safety.
Computer vision technology has the potential to assist blind
individuals in independently accessing unfamiliar environ-
ments. There have been many efforts to study blind navi-
gation and wayfinding with the ultimate goal of developing
useful travel aids for blind people, but very few have met
with more than limited success. The most useful and ac-
cepted independent travel aids remain the Hoover cane and
the guide dog. While GPS-guided electronic wayfinding
aids show much promise in outdoor environments, there is
still a lack of orientation and navigation aids to help peo-
ple with severe vision impairment to independently find
doors, rooms, elevators, stairs, bathrooms, and other build-
ing amenities in unfamiliar indoor environments.

These important tasks are very challenging due to the
factors: 1) small inter-class variations of different objects

Figure 1. Indoor objects (top row) and the associated contextual
information (bottom row)

such as office doors and elevators, 2) only part of an object
is captured due to occlusions or continuous camera moving
of a mobile system.

Considering the high appearance similarity of different
doors such as office doors and elevator doors, it is very chal-
lenging to design object models which are flexible enough
to cover large intra-class variation, while still retain good
discriminative power between the object classes. Moreover,
for mobile systems, it is unrealistic to expect all input im-
ages with intact object boundary. Therefore, reliable occlu-
sion handling is also one of the key issues for a successful
object detection/localization algorithm running on mobile
systems.

In order to reliably detect doors, such as an elevator, an
office, a bathroom and an exit (as shown in the first row of
Figure 1), we propose a new part-based hierarchical com-
positional Model (HCM) approach by incorporating context
information (the second row of Figure 1).

In this work, we use a dichotomy of useful information
for object detection: appearance information and context
information. Appearance information will be represented
by an object model (e.g. part-based hierarchical composi-
tional Model in this work). Context information includes
distance between camera and objects, directional and loca-
tional signage as shown in the Figure 2. Distance between
camera and objects is an important context cue for the possi-
ble partial-capture. The directional signage (the first row of



Figure 2. Examples of directional (top) and locational (bottom)
signage for elevators.

Figure 2) includes the texts with arrows. The locational sig-
nage may include text, a sign, or a combination of text and
sign (the second row of Figure 2). For people with normal
vision, all of this visual information plays a very important
role in finding indoor objects. Other valuable contextual vi-
sual information includes buttons and floor numbers etc for
finding elevators. The contextual information will guide the
model decomposition process for diffident partial-capture
situations or diffident object detections. The text on signage
is detected and extracted from different video frames. Af-
ter binarization, the text is recognized by off-the-shelf OCR
software.

2. Related works

Supported by psychophysical evidence of the valuable
roles that contextual information plays in object detection,
how to use context to improve object detection performance
is an attractive topic in the computer vision community [8].
Extensive study on context for computer vision has been
done by Torralba [10]. However, up to now, there is very
little agreement in the literature about the definition of ”con-
text.” Various visual, no-visual cues are taken as ”context”
and many methods are reported for combining context into
detection.

Zhao and Thorpe [11] proposed a recursive context rea-
soning (RCR) approach to encode the context information
into human object detection. Paletta and Greindl [9] ex-
ploited the role of context for system performance in a
multi-stage object detection process. They extracted con-
text from simple features to determine regions of interest.
Luo et al. [7] developed a spatial context-aware object-
detection system to improve the accuracy of natural ob-
ject detection, where the learned spatial context constraints
are represented in the form of probability density functions.
Very recently, Divvala et al. [3] presented an empirical
study of the different types of contextual information on a
standard, highly regarded test set by incorporating contex-
tual information into a post-process which re-scores detec-
tion hypotheses based on their coincidence with the various
context cues.

Different from many of the reported context sources,
we develop a context-driven decomposition process for our
part-based hierarchical compositional model to handle the
occlusion problem caused by partial-captured images of
the objects. The design of our hierarchical compositional
model is inspired by a discriminatively trained and multi-
scale deformable part model introduced by Felzenszwalb et
al. [5]. Unlike the work in [5] using the classic belief prop-
agation and dynamic programming, we adopt the divide and
conquer strategy to do inference in a tree-structured graph-
ical model. A compositional hierarchy is defined by break-
ing down the graphical model into substructures which have
their own probability models. The similar idea was reported
by Zhu et al. [12], however we use a context-driven decom-
position process to break down the tree-structured graphical
model.

3. Context Information Extraction

3.1. Text Extraction

In order to extract reliable contextual information, we
detect the signage and further extract the text on it from
different video frames. After binarization, the text is recog-
nized by off-the-shelf optical character recognition (OCR)
software.

OCR is considered to be a solved domain for the problem
of detecting and reading printed text. However, the success
is limited to high quality scanned text images with clean
background. Video-based signage detection and text extrac-
tion are challenging due to complex color of text and clutter
background. Recently, Kasar et al. [6] developed a novel
technique for binarization of text from digital camera im-
ages. It has a good adaptability without the need for manual
parameter tuning and can be applied to a broad domain of
target document types and environment.

Following the method introduced in [6], edge map E
is first obtained by combining the three edge images from
three color channels: E = ER ∨ EG ∨ EB . Here, ER,
EG and EB are canny edge images from three color chan-
nels and ∨ denotes the logical OR operation. Then an 8-
connected component detection process is employed to as-
sign an edge-box (EB) to each connected region. After fil-
tering out obvious non-text regions by using structure infor-
mation of text characters, the foreground and background
intensities can be estimated by the intensities of edge pixels
and their neighbors. Assuming each character has uniform
color, we binarize each text character on a clean background
by using the estimated foreground intensity as a threshold.
Using the binarized text as inputs, a standard OCR software
is then able to recognize the text.



3.2. Distance Estimation

The distance between camera and object plane provides
hints for possible partial capture and image quality. From
low-cost stereo vision systems, laser sensor based systems,
to expensive radar systems, there are different methods
which can be used for distance estimation. In this work,
we focus on detection of doors which have a standard size
range. We estimate the distance between the camera and the
object by a simple calibration of the pixels of the object (can
be partial of the object) in image with real size of doors.

4. Hierarchical Compositional Object Model

4.1. Model Structure

As shown in Figure 3, an object (e.g. an elevator) is rep-
resented by a hierarchical tree-structured graphical model,
where the root of the tree S0 corresponds to the full ob-
ject which can be decomposed into four parts: Up-part S1,
Bottom-part S2, Left-part S3, and Right-part S4. As shown
in Figure 3, parts S1, S2 S3, and S4 can be further decom-
posed into child notes: up-left corner p1, up-right corner p2,
bottom-left corner p3, and bottom-right corner p4.
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Figure 3. Part-based Hierarchical Compositional Model for door
detection. Each part is illustrated by a rectangle region.

Similar to a classical tree-structure graphical model [4],
each node of this graphical model associates with an appear-
ance model or called filter (see detailed appearance model
learning and representation in next subsection.) Each edge
between two nodes defines a prior spatial relation which can
be assumed to be a Gaussian distribution. Let l

′

i = li− lr to
be the relative location of a child node si to its parent node
sr. Let µi and Σi be the mean and covariance of the distri-
bution of l

′

i. These statistical parameters can be obtained by
a maximum-likelihood estimator (MLE) from labeled train-
ing data. Then, for each child vi, the conditional distribution

of its position is defined below,

p(li|lr) = N (li − lr|µi,Σi). (1)

An object class is therefore represented by a set of ap-
pearance model and geometric distributions. In order to de-
tect objects in different scales, the object detection process
is performed by searching over an image pyramid. The fea-
tures for the part filters {fpi}, (i = 1, 2, 3, 4) are computed
at twice the spatial resolution of their next higher-level fil-
ters S1, S2, S3, and S4. The root filter S0 will operate in the
images with the coarsest resolution.

Since there is information redundancy in the model, we
employ a context-driven decomposition process to break
up the model into more simple subtrees for more effective
inference. This is different from a classical tree-structure
graphical model [4] which uses the entire graphical model
for inference. The detailed context-driven decomposition
process is described in the Section 5.

4.2. Appearance Model (filter) Representation

As mentioned before, each graphical model node asso-
ciates with a part of object within a rectangle image region.
For each of these object parts, a linear SVM-based classifier
(filter) is trained by using the histogram of oriented gradient
(HOG) features.

In training processing, we manually annotated each part
with a bounding box. Figure 3(a) shows some samples of
image regions within bounding boxes. Following the struc-
ture in [2], we define a dense representation of image within
each bounding box at a particular resolution. These ex-
tracted features from both the positive and negative exam-
ples are used to train a linear SVM classifier fk(vli) , where
(k={1,2,...,K}), K is the number of the nodes in the graphi-
cal model, vli is the HOG feature vector extracted at a slide
window position li = (xi, yi). For a binary classification,

fk(vli) =

{
1, Wk.vli − bk >= 1;
−1, Wk.vli − bk <= −1,

(2)

where Wk and bk are learned SVM parameters for node k.
Here we define the value of fk(vli) as the distance of a HOG
vector vli to the SVM hyperplane:

Wk.v − bk = 1

fk(vli) = Wk.vli − bk − 1, (3)

fk(vli) can be simply written as fk(li) in the following for-
mulation. When we conduct this SVM-based classification
process in a slide window framework, the function of fk(li)
performs as a filter. Given an image I , a map image after
filtering is created as: gk(I, li). At each position of li in the
image I , we have

gk(I, li) = fk(li). (4)



5. Context-driven Model Decomposition
As shown in Figure 3(b), the tree-structured graphical

model has obvious redundancy information. For example,
the Up-part S1 overlaps with S3 and S4; and the Bottom-
part S2 also overlaps with S3 and S4. So we never use the
full tree-structure graphical model for inference. Instead,
we break down this full tree-structured model into one of
these star-structured models as shown in the Figure 4 and
Figure 5 through a context-driven decomposition process.
This decomposition process helps to handle partial captured
objects.

5.1. First­layer Decomposition

When the object is far away from the camera, it is less
likely to extract text-based information, but more likely to
capture images with intact object boundaries. Let dis be the
estimated distance between object and camera, when

dis > γ,

where γ is a threshed for dis, no text-based contextual infor-
mation extraction processing is triggered. At the same time,
the full tree-structured graphical model will be decomposed
into a subtree as shown in the Figure 4. Object will be rep-
resented by a full appearance model S0 at coarse scale and
two part models: Up-part S1 and Bottom-part S2 at a finer
scale. Considering the information redundancies, part mod-
els S3 and S4 are pruned.
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Figure 4. First layer decomposition of the part-based hierarchical
compositional model.

5.2. Second­layer Decomposition

When a camera moves closer to the object, it is more
difficult to capture images with intact object boundaries.
However, higher quality text-based information from sig-
nage on/around the object can be extracted. When

dis <= γ,

the process of text-based contextual information extraction
is triggered. At the same time, the full tree-structured graph-
ical model will be decomposed into one of the four subtrees
as shown in the Figure 5.

In Figure 5, each subtree represents one partial-capture
situations, for example, Figure 5(a) represents the Up-part
partial-captured case, Figure 5(b) represents the Bottom-
part partial-captured case, Figure 5(c) represents the Left-
part partial-captured case, and Figure 5(d) represents the
Right-part partial-captured case.
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Figure 5. Second layer decomposition of the part-based hierar-
chical compositional model according to different partial-capture
type. (a) Up-part partial-capture. (b) Bottom-part partial-capture.
(c) Left-part partial-capture. (d) Right-part partial-capture.

Subtrees in Figure 5(a) and (b) can be used to detect the
horizontal object center. Subtrees in (c) and (d) can used
to detect the vertical object center. Our investigation shows
that, when dis <= γ, Left-part and Right-part partial cap-
tured case seldom happen. Moreover, in order to detect an
elevator or a bathroom, the horizontal center of the object
provides guidance to navigate the user to move left or right.
Therefore, in our algorithm implementation, we omit the
case as shown in Figure 5(c) and (d).

In order to understand which subtree and associated fil-
tering processes is used for detection, one approach is to try
them all and find the one which has the best fitness to the
given image. In our system, given the detected contextual
signage, such as floor number or warning signs for eleva-
tors, room number or a bathroom sign, let Hindex denotes
the relative position of these contextual signage in an given
image,

Hindex =
H − hy

H
,

where H is the height of the given image, hy is the coor-
dinate of the detected contextual signage in height direc-
tion. When a detected contextual signage locates at a high
position (with high Hindex value), it implies that only the
Bottom-part of object is captured. Vice versa, a low Hindex

value implies that only the Up-part of object is captured.
Let sk, k = {1, 2} be the selected subtree:

k =

{
1 (Up-part model), Hindex < ζ;
2 (Bottom-part model), Hindex >= ζ,

(5)

where ζ is a threshed for Hindex .

6. Combination of Detection and Localization
From Figure 4 and Figure 5 we can see that all these

obtained subtrees have the same graphical model structure.
Let G = (V,E) be the star-structured graphical model with
central node vr. Given all d node appearance models de-
fined in Equation (3): A = {fk(li)|i = 1, ..., n}, the intra-
class object variation is captured by the spatial relationships
between these parts (nodes.) The location of the whole ob-
ject in an image can be represented by a configuration of
its parts L = (l1, ..., li, ..., ln), where li = (xi, yi) is the



coordinate of ith node in a given image. Following an es-
tablished line of research [1], the joint prior distribution of
one configuration L can be written into the following fac-
torization form,

pA(L) = pA(l1, ..., ln) = pA(lr)
∏
i ̸=r

pA(li|lr). (6)

In order to take advantage of the fast inference algorithm
presented in [1], we assume that pA(L) is a Gaussian dis-
tribution. Therefore the conditional distribution pA(li|lr) is
still a Gaussian distribution as defined in Equation (4).

Given an image I and learned model parameters A, using
Bayes’ law, the posterior distribution of an object configu-
ration L can be written as,

pA(L|I) ∝ pA(I|L)pA(L) (7)

Here pA(L) is the joint prior probability as defined in Func-
tion (6); pA(I|L) is the likelihood of seeing image I given
a particular configuration L, which can be calculated based
on these filtering results of each part gk(I, li) as defined in
Function (3):

pA(I|L) =
k=n∏
k=1

gk(I, li). (8)

Assuming an object is present in an image, its configura-
tion should be the one with maximum posterior probability,

L∗ = argmax
L

pA(L|I) = argmax
L

pA(I|L)pA(L). (9)

By manipulating the terms in (6) and (8) we have:

pA(L|I) ∝ pA(lR)gR(I, lR)
∏
k ̸=r

pA(li|lr)gi(I, li). (10)

Then object detection and localization can be jointly ob-
tained by the optimization of Function (10). However, the
direct evaluation of it has heavy computational load. We
use the efficient inference engine proposed in [1] to obtain
L∗. Let write the right side of Function (10) as:

pA(I|L∗)pA(L
∗) = M(L∗). (11)

A positive detection happens when

M(L∗) > δ,

where δ is a threshold chosen by experimental test.

7. Experiments
In this section we present experimental results for ele-

vator detection. The main purpose of our experiment is to
validate the performance improvement of the proposed Part-
based HCM approach over a single layer graphical model
approach (the case of using the first layer HCM only).

7.1. Experimental Setup

We follow the structure in [2] to define a dense repre-
sentation of an image within each object bounding box at a
particular resolution. For training processing, we manually
annotated each object with a bounding box for total 319 ob-
jects. For the full object model S0, 64× 128 detection win-
dow is represented by 7× 15 blocks, giving a total of 3780
features per detection window. For each of parts S1, S2, S3,
and S4, the size of detection window is 128× 64. For each
part p1, ..., p4, the size of detection window is 64× 64 total
of 1764 features per detection window. Also note that the
algorithm can handle a limited range of scales. In order to
detect text-based contextual information, the algorithm runs
at different scale ranges.

7.2. Experimental Results

The effectiveness of the proposed approach is evaluated
on a database including 300 test images of elevators which
are captured from different buildings with variations of
views, scales, and occlusions. An object is deemed success-
fully detected if the overlap between the detected bound-
ing box and the ground truth bounding box is greater than
50%. The proposed Hierarchical Compositional Model ap-
proach can achieve 87.5% recall rate. Without Hierarchi-
cal Compositional Model, the single graphical model of the
first layer can only get 30.8% recall rate due to occlusion
(partial-captured input images.) This recall rate depends on
an optimal threshold δ (defined in the Section 6) which is
chosen by experimental test.

The first row of Figure 6 shows some examples of the
successful detections according to our first layer decompo-
sition models. Since no text-based contextual information
is employed at this stage, the algorithm is not able to dis-
tinguish an elevator from an office door. From images in
the second row of Figure 6, we can see that by using only
the first layer decomposition model, it is difficult to han-
dle partial-captured (can be also taken as occluded) objects.
The third row of Figure 6 shows the elevator detection re-
sults according to our second layer decomposition models.
Using the second layer decomposition models, objects can
be correctly detected and the horizontal center of objects
can be localized. Aided by the extracted locational sig-
nage of the elevator and text-based contextual information
as shown in the last row of Figure 6, our algorithm is able
to detect and distinguish elevators from office doors, bath-
rooms, and exits.

8. Conclusions and Future Work
In this paper, we have presented a part-based HCM ap-

proach for door detection by incorporating context informa-
tion from signage. We have studied the influence of contex-
tual information for object representation and detection in



Figure 6. Examples of detection results. The first row shows examples of successful detection results according to the first layer decom-
position models. The second row shows failed cases by only using the first layer model but which can be correctly detected by using the
second layer models. The fourth row shows the extracted contextual information which help model decomposition

indoor environments. The preliminary results demonstrated
that our part-based HCM approach works under variant
light conditions and different views, appearance, and scales.
The incorporation of contextual information brings signifi-
cant improvements for partial-captured door detection. We
will extend our method to detect more types of indoor ob-
jects and improve efficiency of the algorithm in the future.
Reliable context information extraction for signage without
text information also deserves further investigation.
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