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Abstract

This paper presents reliable techniques for detecting,
tracking, and storing keyframes of people in surveillance
video. The first component of our system is a novel face
detector algorithm, which is based on first learning local
adaptive features for each training image, and then us-
ing Adaboost learning to select the most general features
for detection. This method provides a powerful mecha-
nism for combining multiple features, allowing faster train-
ing time and better detection rates. The second compo-
nent is a face tracking algorithm that interleaves multi-
ple view-based classifiers along the temporal domain in a
video sequence. This interleaving technique, combined with
a correlation-based tracker, enables fast and robust face
tracking over time. Finally, the third component of our sys-
tem is a keyframe selection method that combines a person
classifier with a face classifier. The basic idea is to generate
a person keyframe in case the face is not visible, in order to
reduce the number of false negatives. We performed quan-
titatively evaluation of our techniques on standard datasets
and on surveillance videos captured by a camera over sev-
eral days.

1. Introduction

Visual processing of people, including detection, track-
ing, recognition, and behaviour interpretation, is a key com-
ponent of smart surveillance systems. Computer vision al-
gorithms with the capability of “looking at people” can be
applied in different surveillance scenarios, such as the de-
tection of people entering restricted areas, or even the de-
tection of suspicious or aggressive behaviour.

Our work is particularly focused on the analysis of hu-
man faces. For each person entering and leaving the field
of view of a surveillance camera, our goal is to store in a
database a keyframe containing the face image of the per-
son, associated with a corresponding video. This allows
the user to query the system like “Show me all people who
entered the facility yesterday from 1pm to 5pm”. The re-

trieved face keyframes can then be used for recognition ei-
ther by a person or by an automatic face recognition system.

To achieve this goal, reliable modules for face detection,
tracking, and keyframe storage are required. Although sig-
nificant progress has been made in this area [11, 1, 12], cur-
rent systems still suffer from slow training time and limited
accuracy in challenging conditions like face pose and light-
ing changes.

Our first contribution is a novel face detector algorithm
that uses local feature adaptation prior to Adaboost learning.
Local features have been widely used in learning-based ob-
ject detection systems. As noted by Munder and Gavrila [6],
they offer advantages over global features such as Principal
Component Analysis [14] or Fisher Discriminant Analysis
[12], which tend to smooth out important details.

The novelty of our technique is to use local feature adap-
tation before applying the traditional Adaboost learning for
feature selection. Local feature adaptation is carried out
by a non-linear optimization method that determines fea-
ture parameters (such as position, orientation and scale) that
match the geometric structure of each face image. In a
second stage, Adaboost learning is applied to the pool of
adaptive features in order to obtain general features, which
encode common characteristics of all training face images
and thus are suitable for detection. Compared to other tech-
niques, our method offers faster learning time and improved
detection rates.

The second contribution of our paper is a face tracking
algorithm that interleaves multiple view-based face detec-
tors along the temporal domain in a video sequence. This
poses a considerable advantage over methods that run view-
based detectors (e.g., frontal and profile detectors) in each
frame. By interleaving the classifiers along the video se-
quence, a much faster frame rate is obtained, leading to
less inter-frame variation and more robust tracking. We also
combine this technique with a correlation-based tracker in
order to follow the face when face detection fails.

Finally, we propose a keyframe selection technique that
combines a face detector with a person detector. In general,
due to face occlusion or false negatives in face detection,



[Viola & Jones, 2004]

Figure 1. Selected features from Adaboost in the context of face
detection (top) and face recognition (bottom). Note that the fea-
tures tend to adapt to the local face structure.

important events of people entering and leaving the scene
might be missed. Our technique basically outputs a face
keyframe in case the face is detected and a person keyframe
otherwise.

In the following sections, we will give more details about
the three main components of our system: face detection,
face tracking, and keyframe selection.

2. Face Detection

Despite the progress made on face detection techniques
over the last years [7, 11, 9, 2], existing systems still have
limitations. First, they require thousands of samples to learn
a robust classifier. Levi and Weiss [4] recently showed that
the choice of features plays a major role in learning object
detection from a small number of examples.

Another problem is the slow training time due to a large
feature pool and brute-force feature selection. Most meth-
ods have hundreds of thousands of features in the pool and
take order of weeks for training in conventional machines.
Also, they can not be easily applied for other types of ob-
jects. For example, Haar wavelet features have shown ex-
cellent results for frontal face detection, but have limited
discrimination power in other domains, even in profile view
face detection [12].

Finally, existing methods do not offer support for inte-
gration of multiple features. In fact, integrating different
types of features such as Haar, Gabor, and other wavelet fil-
ters, with multiple frequencies and orientations, would im-
ply an extremely large set of possible feature configurations
in the pool, which is not practical.

We propose a novel framework to overcome the above
limitations by combining and selecting multiple types of vi-
sual features in object detection. Our approach relies on the
observation that selected local features tend to match the lo-
cal structure of the object. Figure 1 shows the first selected
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Figure 2. Our approach has two stages: first we compute adaptive
features for each training sample and then use a feature selection
mechanism to obtain general features.

features by Adaboost in the context of face detection [11]
and recognition [13]. Note how the features encode that the
eye region is darker than the nose region, for example. In
fact, Liu and Shum [5], in their KullBack-Leibler boosting
framework, argue that features should resemble the face se-
mantics, matching the local or global face structure.

Based on this observation, we propose a two-stage tech-
nique that learns adaptive and general features for face de-
tection. In the first stage, we learn adaptive features that
adapt to each particular sample in the training set. This
is carried out by a non-linear optimization method that de-
termines feature parameters (such as position, orientation
and scale) that match the geometric structure of each object
sample. In the second stage, Adaboost feature selection is
applied to the pool of adaptive features in order to obtain
general features, which encode common characteristics of
all object samples and thus are suitable for detection (see
Figure 2).

2.1. Learning Adaptive Features

Given a particular object image, our goal is to learn the
parameters of wavelet features (position, scale, and orienta-
tion) so that they match the local object structure. This is
similar in spirit to the idea of wavelet networks proposed by
Zhang [15] and introduced in computer vision by Krueger
[3].

We start by taking a family of N two-dimensional
wavelet functions ¥ = {¢,,...,¥n,}, where =
¥, (x,y) is a particular mother wavelet (e.g., Haar, Gabor,
etc.) with parameters n; = (cy,cy,0,5,,5,)7. Here, c,,
cy denote the translation of the wavelet, s;, s, denote the
dilation, and @ denotes the orientation. The choice of N is
arbitrary and related to the degree of desired representation
precision.

Let I be an input object image. First, we initialize the set
of wavelets ¥ along the image in a grid, as shown in Fig-
ure 3a, with the wavelets having random orientations, and
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Figure 3. Learning adaptive features for a particular training image. (a) Input training image with wavelets initialized as a grid along the
face region, with random orientations and scales. (b)-(e) Wavelet features being optimized one by one, with parameters (position, scale,
and orientation) selected to match the local structure of the input face image.

scales initialized to a constant value that is related to the
density with which the wavelets are distributed. Then, as-
suming [ is dc-free, without loss of generality, we minimize
the following energy functional:

2 (1)
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with respect to the weights w; and the wavelet parameter
vectors n;. We used the Levenberg-Marquard method for
the optimization process. Figure 3b-d shows the wavelet
features being optimized one by one to match the local im-
age structure of the object. In this example, a Gabor wavelet
was adopted as mother wavelet.

It is important to note that the parameters n; are chosen
from the continuous domain and the wavelets are positioned
with sub-pixel accuracy, contrasting with most existing dis-
crete approaches. This assures that a maximum of the im-
age information can be encoded with only a small number
of wavelets.

2.2. Learning General Features

Let x = {I1,..., I} be aset of object training images.
For each image I;, we generate a set of adaptive features
W;, using the optimization method described in Section 2.1.

All the generated adaptive features for all the object im-
ages are then put together in a single pool of features €2,
defined as:

Q:U\I@- 2)

For selection of general features, we used Adaboost
learning in the same way of Viola and Jones [11] to both
select features and project a classifier. A large set of non-
object (background) images is used in addition to the object
training images. The general features are those which best
separate the whole set of object samples from non-object
samples during classification. We refer the reader to [11]

for more details about the Adaboost classifier and the fea-
ture selection mechanism.

The object detector classifier is applied in all possible
image locations and scales. We used a cascade technique
[11] to improve the efficiency of this operation. However,
even using a cascade classifier, real-time performance can
not be achieved due to the time required to compute our
features. We solved this problem by using traditional Haar-
like/rectangle features in the first levels of the cascade. This
allows for efficient rejection of background patches during
classification. The image patches that are not filtered by the
Haar cascade are then fed into a cascade of classifiers using
our features. The choice of which cascade level should be
used to switch from Haar features to our features is applica-
tion dependent. Switching in lower levels allows for more
accuracy, but switching in higher levels allows for more ef-
ficiency.

2.3. Implementation

In our experiments, we used a frontal face dataset con-
taining 4000 faces for training purposes. Each training im-
age was rescaled and cropped to a 24x24 patch size. A
pool of adaptive features was generated by running the op-
timization process described in Section 2.1 for each sam-
ple. We used different types of wavelets for different train-
ing samples, including Haar and Gabor filters with different
frequencies. The total number of features in the pool was
80000, as we generated 20 adaptive wavelet features per
sample. It takes less than a second to generate features for
a particular 24x24 sample in a conventional 3GHz desktop
computer.

For learning general features, we used a database of
about 1000 background (non-faces) images from which
24x24 patches are sampled. A cascade classifier was trained
by considering 4000 faces and 4000 non-faces at each level,
where the non-face samples were obtained through boot-
strap [7]. Each level in the cascade was trained to reject
about half of the negative patterns, while correctly accept-
ing 99.9% of the face patterns. A fully trained cascade con-
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Figure 4. ROC Curves for our approach and traditional Haar fea-
tures in a frontal face test dataset. We used only half of the number
of features in the feature pool compared to Haar features and still
get superior performance.

sisted of 24 levels.

During detection, a sliding window was moved pixel by
pixel at different image scales. Starting with the original
scale, the image was rescaled by a factor of 1.2 in each iter-
ation. Multiple overlapping detection results were merged
to produce a single result for each location and scale.

The CMU+MIT frontal face test set, containing 130
grayscale images with 511 faces was used for evaluation. A
face is considered to be correctly detected if the Euclidean
distance between the center of the detected box and the
ground-truth is less than 50% of the width of the ground-
truth box, and also if the width (i.e., size) of the detected
face box is within £70% of the width of the ground-truth
box.

Figure 4 shows a plot of Receiver Operating Characteris-
tic (ROC) curves, comparing our approach with traditional
Haar-like/rectangle features in the CMU+MIT test set. The
Haar detector was also trained with a cascade consisting of
24 levels in the same training set. The feature pool, how-
ever, was twice as large than our approach, containing about
160000 features. With half of the features in the pool, we
achieve superior performance and a faster learning time (see
table 1). A Haar filter corresponding to the first 18 levels
of the cascade was used in our approach for generating the
ROC curve.

We have also done preliminary training on profile face
detection. Similarly to frontal face training, we used a
database of 4000 faces and 80000 adaptive features. Only
full profile faces were considered. In order to report results
on standard CMU profile datasets, we still need to train ad-
ditional detectors for half-profile and profile faces with dif-
ferent in-plane rotations.

| Feature Pool | Number of Features | Learning Time |

160000
80000

Haar Features
Our Approach

around 5 days
around 3 days

Table 1. By learning adaptive and general features, we can use a
smaller feature pool, which allows reduced training time, while
still keeping superior performance in detection rate, when com-
pared to a traditional pool of Haar features.

2.4. Discussion

Although we have quantitatively compared our method
only with Haar features, we believe that our technique has
advantages over other methods that use more complex fea-
tures. As recently demonstrated by Munder and Gavrila [6],
local adaptive features have more discriminative power than
global features, such as those obtained by Principal Com-
ponent Analysis or Fisher Discriminant Analysis. Global
features tend to smooth out details, which are captured by
local adaptive features. In addition, our method provides a
principled mechanism to create a dictionary with a large va-
riety of meaningful, optimized features. We believe this is
an important contribution on the feature level for learning-
based object detection. Our approach could be combined
with state of the art techniques on the learning algorithm
level [1, 8] to obtain even better results.

Although adaptive features are projected to reconstruct
an object image, they play an important role in discrim-
ination, as motivated in Section 2. An alternative ap-
proach would be to bypass the learning of adaptive features
and determine the optimal local feature parameters (posi-
tion, scale, and orientation) to maximize a discrimination
criterium between object and non-object samples directly.
However, this would not be feasible computationally, espe-
cially if we are targeting subpixel precision.

Current feature selection methods sample the feature
space at discrete positions, scales and orientations. The pool
of features therefore contains many configurations that are
not useful for classification. In addition, important feature
configurations may not be included in the feature pool, due
to the sampling process. This becomes more problematic
when multiple features of different types are considered. In
our method, only meaningful features that match the local
structure of the object samples, with subpixel precision, are
included in the pool.

Our approach is related to the work of Krueger [3], who
uses adaptive Gabor wavelets as adaptive features for object
representation. His work is applicable for object recogni-
tion, but not for object detection, since only a single training
image is considered and no general features are learned.

A key advantage of our method is the integration of mul-
tiple types of features to describe the appearance of an ob-
ject. In addition to wavelet filters, other types of features,



such as local edge orientation histograms [4], could be op-
timized in a similar way. An interesting observation is that
the wavelet filters with large coefficients in fact tend to align
with the orientation of local intensity edges in the image.
Hence, edge-based classifiers could be projected based only
on the spatial support of the wavelet features.

The fact that the features adapt to the training set makes
our method suitable to detect different objects other than
faces. This contrasts with traditional Haar-like/rectangle
features, which are more appropriated for symmetric ob-
jects like frontal faces.

3. Face Tracking

The second component of our system is a face tracking
algorithm. After the face is detected in a particular video
frame, tracking the face is required to analyze the trajectory
of the person and enable just a single keyframe of the face
to be stored in a database.

Our face tracking method is based on applying face de-
tection in every frame of the video sequence. In order to
keep tracking the face even when the face detector fails, we
also use a simple correlation-based tracker. More specifi-
cally, when a face is detected, the correlation-based tracker
is triggered. For the subsequent frame, if the face detec-
tion fails, tracking is updated with the window given by the
correlation tracker. Otherwise, if the face detector reports
a window result with close position and size to the current
tracking window, then this face detection window result is
used to update tracking. This mechanism is important to
avoid drifting.

In order to improve the efficiency of our detector and al-
low real-time face tracking performance (25/30Hz) in con-
ventional desktop computers, we apply the following tech-
niques:

e We only apply the detector at specific scales provided
by the user and at motion regions detected by back-
ground subtraction.

e Aninterleaving technique (explained below) is applied
to combine view-based detectors and tracking.

In most surveillance scenarios, human faces appear in
images in a certain range of scales. In our system, the user
can specify the minimum and maximum possible face sizes
for a particular camera, so that face detection is applied only
for sub-windows within this range of scales. We also apply
background subtraction, using statistical mixture modeling
[10], to prune sub-windows that do not lie in motion re-
gions.

One problem faced by most existing systems is the com-
putational time required to run a set of view-based detectors
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Figure 5. Our surveillance system interleaves view-based detectors
to save frame rate for tracking.

in each frame. This causes large inter-frame image vari-
ation, posing a problem for tracking. We handled this is-
sue by using an interleaving technique that alternates view-
based detectors in each frame. This idea is illustrated for
frontal and profile face detection in Figure 5. In each frame,
rather than running both frontal and profile detectors, we
just run one detector for a specific view (e.g., frontal view).
The detector for the other view (profile view) is applied in
the subsequent frame and so forth. This allow us to im-
prove frame rate by 50%, while facilitating tracking due to
less inter-frame variation.

Tracking is terminated when there is no foreground re-
gions (obtained from the background subtraction module)
near the current tracking window or when the face detec-
tor fails consecutively for a given time or number of frames
specified by the user.

4. KeyFrame Selection

In addition to detecting and tracking human faces, we
also store a keyframe for each captured face image in a
database. In our system, the keyframe is an image which
contains only the face of the person, not the full frame.
A timestamp associated with each keyframe is also stored,
allowing the system to answer questions like“Show me
all people who entered the facility yesterday from 1pm to
Spm”. The stored face keyframes can also be used for
recognition either by a person or by an automatic face
recognition system.

For each person that enters and leaves the scene, only
one keyframe of its face needs to be stored in the database.
Given the tracking information for this person, we select the
face image with maximum resolution that was detected by
the face detector. We give priority to frontal faces, mean-
ing that a frontal face keyframe would be selected even if a
higher resolution profile face image was present along the
tracking.

Associated with each face keyframe, we also store a link
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Figure 6. Our keyframe selection technique is used to ouput a per-
son keyframe in case the face is not visible.

to a video sequence corresponding to the period in which
the person was tracked. Then, the user can not only search
for faces, but also click on a specific face keyframe to get a
video showing what that particular person was doing.

4.1. Zero False Negatives

Ideally, for every person leaving the scene, a face
keyframe would be generated and stored in the database.
However, due to false negatives in face detection, impor-
tant events might be missed. Moreover, in our surveillance
scenario, depending on the direction that the person is walk-
ing, only a back view of the person may be captured. In this
case, the face is not visible and no keyframes are generated.

We address this problem by using a keyframe selection
technique that combines a face classifier with a person clas-
sifier (see Figure 6). If a face is detected and tracked in the
video sequence, a face keyframe is stored in the database.
Otherwise, a person keyframe is generated if a person is de-
tected and tracked in the video.

A simple person classifier was used in our system. We
segment motion blobs based on background subtraction and
use measurements such as area and aspect ratio to classify
the blob as a person. The goal is to have a system that does
not miss any event.

Our keyframe selection technique is a simple, but use-
ful feature to be part of a surveillance system. We pro-
vide an interface which includes search based only on face
keyframes (see Figure 7) and a more sensitive search which
includes both person and face keyframes (see Figure 8).
Search based only on face keyframes is useful to rapidly
recognize people in surveillance video. The search based
on face and person keyframes is useful to guarantee that no
event was missed.

We captured data from a surveillance camera for ten
consecutive days and analysed ten hours of this data, with
each hour corresponding to the peak hour (i.e., the hour
with most people entering the facility) in each day. Table
2 shows our results. Out of 445 people entering the fa-
cility (not walking back to the camera), we captured 351
faces, with only 7 false positives. The reason that some
faces were missed is that sometimes people enter the door

Captured Faces 351
Face False Positives 7
Detected Extra Persons | 134
People Walking Back | 40
Person False Positives 19

Table 2. Results obtained from ten hours of surveillance video.

looking down, occluding the face from the camera, which
is placed in the ceiling. By running our keyframe selection
technique, we can capture all remaining 94 persons, as well
as 40 persons walking back to the camera, with more 19
false positives.

We plan to present a demo of our system at the confer-
ence, showing our techniques being applied to live surveil-
lance video.

5. Conclusions

We have presented reliable techniques for face detection,
tracking and keyframe selection in surveillance video. Our
methods were incorporated in a smart surveillance system
which is currently being commercialized. The face detec-
tion component is based on local feature adaptation prior to
Adaboost learning. This technique offers better detection
rates and faster training than traditional methods based on
Haar features. It also allows the integration of a large dictio-
nary of features in a principled way. Our face tracking com-
ponent runs in real-time by using multiple interleaved clas-
sifiers along the temporal domain. Finally, our keyframe
selection technique is useful to provide the user keyframes
of persons when the face is not visible, so that no event is
missed.

As future work, we plan to test our object detection and
tracking approach with different objects and carry out a
more extensive evaluation, analyzing parameters such as the
size of the feature pool and the training set. We expect to
have improved performance with larger feature pools and
better ability to learn from a small number of examples.
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