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Abstract

Many facial image analysis methods rely on learning-
based techniques such as Adaboost or SVMs to project clas-
sifiers based on the selection of local image filters (e.g.,
Haar and Gabor filters) from large sets of training data. In
general, the learning process consists of selecting discrim-
inative image filters from a large feature pool that contains
filters uniformly sampled from the parameter space. In this
paper, we argue that we are able to improve these methods
by incorporating a local feature adaptation technique prior
to learning, which generates a more compact and meaning-
ful pool of image filters, consequently reducing both learn-
ing and detection/recognition computational costs, while at
the same time improving accuracies. In the first stage of our
approach, local feature adaptation is carried out by a non-
linear optimization method that determines image filter pa-
rameters (such as position, orientation and scale) in order
to match the geometrical structure of each training sample.
In the second stage, Adaboost feature selection technique is
applied to the adapted feature pool to obtain the final set
of discriminative local image filters. We demonstrate the
effectiveness and efficiency of the proposed framework in
the face detection domain. In the experiments, we have ap-
plied our method using a pool of wavelet features, includ-
ing Haar and Gabor filters. The results showed that with
local feature adaptation, significant improvements in terms
of detection accuracy and computational cost reduction are
achieved over learning based on the same features sampled
uniformly from the parameter space.

1. Introduction

In the past few years, many facial image analysis meth-
ods (such as face detection, recognition and expression
analysis) have been built upon learning-based techniques
which select discriminative local image filters from large
sets of training data [13, 15, 1]. The key contribution of our
work is to improve these methods with a direct but much
useful technique in the feature-level: adapting local image

filters to encode the local geometrical structures of training
samples prior to learning.

As noted by Munder and Gavrila [9], local filters of-
fer advantages over global features such as PCA [16] or
FDA [14], which are more sensitive to occlusion and tend
to smooth out important object details. However, current
learning methods based on local features suffer from a scal-
ability problem in the feature selection process. For a spe-
cific feature type (e.g., a Gabor filter), most methods in-
clude many feature configurations in a feature pool (e.g.,
Gabor filters uniformly sampled at different positions, ori-
entations and scales), and then select the most discrimina-
tive features using a learning algorithm. Therefore, as new
feature types are considered, the feature pool increases dra-
matically, leading to computational problems. This scal-
ability issue has several implications. First, training time
can be excessively long due to the large feature pool and
brute-force feature selection. Most methods have hundreds
of thousands of local features in the pool and take order of
weeks for training on conventional machines. Second, the
detection/recognition rate can be significantly affected as
important feature configurations may not be included in the
feature pool due to the sampling process, whereas many fea-
tures that are less meaningful for discrimination are present
in the pool.

We propose a novel framework to overcome the above
limitations by combining and selecting multiple types of vi-
sual features in the learning process. Our approach relies
on the observation that selected local features tend to match
the local structure of the object. Figure 1 shows the first
selected features by Adaboost in the context of face detec-
tion [13] and recognition [15]. In this example, the selected
Haar filters capture the local image contrast. In the middle
image of the top row, the dark part of the filter coincides
with the dark image region (the eyes), while the bright part
of the filter matches the bright image region under the eyes
(the cheek and nose). Similarly, in the bottom row, Gabor
wavelets capture the local structures of the face. In fact, Liu
and Shum [8], in their KullBack-Leibler boosting frame-
work, argued that features should resemble the face seman-
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Figure 1. Selected features from Adaboost in the context of face
detection (top) and face recognition (bottom). Note that the fea-
tures tend to adapt to the local face structure.

tics, matching the local or global face structure.
Based on this observation, we present an approach that

first pre-selects local image filters based on how well they
fit the local image structures of an object, and then use tra-
ditional learning techniques such as Adaboost or SVMs to
select the final set of features. In this paper, we focus on
the face detection problem. Please note that our framework
could be potentially extended to other tasks like face recog-
nition, facial feature extraction, and expression analysis.

Our implementation can be summarized in two stages.
In the first stage, we learn adaptive features that adapt to
each particular sample in the training set. This is carried
out by a non-linear optimization method that determines
local image filter parameters (such as position, orientation
and scale) that match the geometric structure of each object
sample. By combining adaptive features of different types
from multiple training samples, a compact and diversified
feature pool is generated. In the second stage, Adaboost fea-
ture selection is applied to the pool of adaptive features in
order to select the final set of discriminative features. Hav-
ing in mind our target application - face detection - this idea
is better illustrated in Figure 2. Throughout this paper, we
will use the term adaptive features to describe features that
match the geometric structure of a particular object training
image and general features to describe the final set of dis-
criminative features that encode common characteristics of
all training face images.

In the face detection domain, we show that current meth-
ods based on local image filters can benefit from our ap-
proach. In particular, our experiments show that significant
improvements in terms of detection accuracy and computa-
tional cost reduction are achieved when comparing learning
based on adaptive features with learning based on features
sampled uniformly from the parameter space. In this com-
parison, we consider wavelet filters of different types, in-
cluding Haar and Gabor filters with multiple frequencies,
and global features generated by grouping a set of local fil-
ters.

The remaining of this paper is organized as follows: in

Figure 2. Our approach has two stages: first we compute adaptive
features for each training sample and then use a feature selection
mechanism to obtain general features.

Section 2, we describe our method in detail to incorporate
local feature adaptation in the training process. Section 3
shows the implementation details of our system and the ex-
perimental results on the face detection domain. In Section
4, we present a thorough discussion about advantages and
potential applications of our framework. Finally, Section 5
concludes our work.

2. Training with Local Adapted Features

In this section, we describe our framework to incorporate
local feature adaptation in the training process. We start by
showing the feature adaptation algorithm for each individ-
ual training image containing the target object. Then, we
show how to apply this adaptation method to create a mean-
ingful feature pool containing multiple types of wavelet fea-
tures. Lastly, the adapted feature pool is used in Adaboost
learning to project an object detector classifier. Although
we have used wavelet filters in our work, technically other
local image filters could also be applied in the same settings.

2.1. Feature Adaptation

Given a particular image of the target object, our goal is
to learn the parameters of wavelet features, including posi-
tion, scale, and orientation, such that the wavelet features
match the local structures of the object. This is motivated
by the wavelet networks proposed by Zhang [17] and intro-
duced in computer vision by Krueger [5].

We start by including a family of N two-dimensional
wavelet functions Ψ = {ψn1 , . . . , ψnN }, where ψni(x, y)
is a particular mother wavelet (e.g., Haar, Gabor, and etc.)
with parameters ni = (cx, cy, θ, sx, sy)T . Here, cx and cy
denote the translation of the wavelet, sx and sy denote the
dilation, and θ denotes the orientation. The choice of N is
depending on the degree of desired representation precision.

Let I be an input training image. First, we initialize the
set of wavelets Ψ along the image in a grid, as shown in
Figure 3a, with the wavelets having random orientations,



Figure 3. Learning adaptive features for a particular training im-
age. (a) Input training image with wavelets initialized as a grid
along the face region, with random orientations and scales. (b)-
(e) Wavelet features being optimized one by one, with parame-
ters (position, scale, and orientation) optimized to match the local
structure of the input face image.

and scales initialized to a unified value that is related to the
density with which the wavelets are distributed. Then, as-
suming I is dc-free, without loss of generality, we minimize
the following energy function:

E = min
ni,wi for all i

‖I −
∑

i

wiψni‖2, (1)

with respect to the wavelet parameter vectors ni and
their corresponding weights wi. We used the Levenberg-
Marquardt method for the optimization process. Figures
3b-e show the wavelet features being optimized one by one
to match the local image structure of the object. In this ex-
ample, a Gabor wavelet was adopted as the mother wavelet.

It is important to note that the parameters ni are opti-
mized in the continuous domain and the wavelets are posi-
tioned with sub-pixel accuracy, contrasting with most exist-
ing discrete approaches. This assures that a maximum of
the image information can be encoded with a small number
of wavelets.

Using the optimal wavelets ψni and weights wi, the im-
age I can be closely reconstructed by a linear combination
of the weighted wavelets:Î =

∑N
i=1 wiψni .

Rather than relying on the optimization process de-
scribed above, the wavelet weights wi can be computed
directly once the wavelet parameters ni are optimized. If
the wavelet functions are orthogonal, this can be done by
just computing the inner products of the image I with each
wavelet filter, i.e., wi = 〈I, ψni〉.

In the more general cases where the wavelet functions
may not be orthogonal, a family of dual wavelets Ψ̃ =
{ψ̃n1 . . . ψ̃nN } has to be considered. The wavelet ψ̃nj is
the dual wavelet of ψni if it satisfies the bi-orthogonality
condition: 〈ψni , ψ̃nj 〉 = δi,j , where δi,j is the Kronecker
delta function.

Given an image I and a set of wavelets Ψ =
{ψn1 , . . . , ψnN }, the optimal weights are given by: wi =
〈I, ψ̃ni〉. It can be shown that ψ̃ni =

∑
j

(
A−1

i,j

)
ψnj ,

whereAi,j = 〈ψni , ψnj 〉. This is a faster and more accurate
solution than using Marquardt optimization to compute the
wavelet weights.

2.2. Integrating Visual Features

In the previous section, we have described how to obtain
adaptive features for a single object training image. Now
we proceed to generate a pool of adaptive features obtained
from multiple training images.

Let χ = {I1, . . . , IM} be a set of object training images.
For each image Ii, we generate a set of adaptive features
Ψi, using the optimization method described in Section 2.1.

Integration of multiple feature types is possible by us-
ing different wavelet settings for each object sample. More
specifically, each set Ψi is learned with different parame-
ters, including: (1) number of wavelets; (2) wavelet type;
(3) wavelet frequency; (4) group of features treated as a sin-
gle feature.

The number of wavelets indicates how many wavelet
functions will be optimized for a particular object image.
From this set, we can further select a subset of functions
that have the largest weights. Wavelet filters with larger
associated weights in general tend to coincide with more
significant local image variations. In our system, we used
only Haar and Gabor wavelets for the wavelet type param-
eter, but other feature types could also be considered. The
frequency parameter controls the number of oscillations for
the wavelet filters. Finally, we also allow a group of wavelet
functions to be treated as a single feature, which is impor-
tant to encode global object information.

All the generated adaptive features for all the object im-
ages are then put together in a single pool of features Ω,
defined as: Ω =

⋃M
i=1 Ψi.

Figure 4 shows different adaptive features (such as Haar
and Gabor wavelets with different frequencies, orientations
and aspect ratios) learned from a dataset of frontal face im-
ages. In the resulting feature pool, different types of local
wavelet filters as well as global features which are obtained
by grouping individual wavelet functions are present.

The wavelet settings (type, frequency, how many fea-
tures to group, etc.) for each training face image can be
initialized randomly to allow a variety of different features
in the pool. This initialization process is fully automatic
and allows the creation of a compact and diversified feature
pool.

2.3. Learning General Features

In the previous section we have described a method to
generate a pool of adaptive features from a set of training
images. Now, in order to project a face detector, we select
general features, i.e., the features from the pool that encode
common characteristics to all face samples.

We used Adaboost learning [13] to both selecting gen-
eral features and projecting a classifier. A large set of non-
face (background) images is used in addition to the training
images. The general features are those that best separate



Figure 4. Some examples of features present in the pool of learned
adaptive features for a frontal face dataset. A large variety of difer-
ent wavelet filters are considered. The top row shows local wavelet
functions, whereas the bottom row shows global features gener-
ated by combining a set of local filters.

Figure 5. The first three selected general features for a frontal face
training database.

the whole set of face samples from non-face samples dur-
ing classification. We refer the reader to [13] for more de-
tails about the Adaboost classifier and the feature selection
mechanism.

Figure 5 shows the first three general features selected by
Adaboost, using a pool of adaptive features obtained from
a database containing frontal faces. The first selected fea-
ture gives more importance to the eyes region. The sec-
ond selected feature is a local coarse-scale Gabor wavelet
with three oscillations, which align with the eyes, nose, and
mouth regions. The third feature is a global feature that en-
codes the rounded face shape.

The face detector is applied in all possible image loca-
tions and scales. We used a cascade technique [13] to im-
prove the efficiency of this operation. However, even using
a cascade classifier, real-time performance (25/30Hz) can
not be achieved due to the time required to compute our
features. We solved this problem by using traditional Haar-
like/rectangle features in the first levels of the cascade. This
allows for efficient rejection of background patches during
classification. The image patches that are not rejected by the
Haar cascade are then fed into a cascade of classifiers using
our features. The choice of which cascade level should be
used to switch from Haar features to our features is applica-
tion dependent. Switching in lower levels allows for more
accuracy, but switching in higher levels allows for more ef-
ficiency.

3. Experiments

In this section we describe the implementation of our
system and report experimental results. We demonstrate the

usefulness of local feature adaptation prior to learning in the
face detection domain.

In our experiments, we used a frontal face dataset con-
taining 4000 faces for training purposes. Each training im-
age was re-scaled and cropped to a 24x24 patch size. A pool
of adaptive features was generated by running the optimiza-
tion process described in Section 2.1, with different wavelet
settings (wavelet type, frequency, etc.) for each sample. As
a result, a pool of 80000 adaptive features was generated,
containing a large variety of wavelet filters. It takes less
than a second to create hundreds of adaptive features for
a particular 24x24 sample in a conventional 3GHz desktop
computer.

For learning general features, we used an additional
database of about 1000 background (non-faces) images
from which 24x24 patches are sampled. A cascade clas-
sifier was trained by considering 4000 faces and 4000 non-
faces at each level, where the non-face samples were ob-
tained through bootstrap [11]. Each level in the cascade
was trained to reject about half of the negative patterns,
while correctly accepting 99.9% of the face patterns. A
fully trained cascade consisted of 24 levels. A Haar filter
corresponding to the first 18 levels of the cascade was used
in our experiments.

During detection, a sliding window was moved pixel by
pixel at different image scales. Starting with the original
scale, the image was re-scaled by a factor of 1.2 in each it-
eration. Multiple overlapping detection results were merged
to produce a single result for each location and scale.

The CMU+MIT frontal face test set, containing 130
gray-scale images with 511 faces was used for evaluation.
A face is considered to be correctly detected if the Euclid-
ian distance between the center of the detected box and the
ground-truth is less than 50% of the width of the ground-
truth box, and also if the width (i.e., size) of the detected
face box is within ±70% of the width of the ground-truth
box.

In order to show the effectiveness of feature adapta-
tion prior to learning, we compared our approach to a
classifier learned from a similar feature pool, containing
the same number and type of features (Haar, Gabor, etc.),
but were sampled uniformly from the parameter space (at
discrete positions, orientations, and scales), rather than
adapted to the local structure of the training samples. Fig-
ure 6a shows a plot of the Receiver Operating Characteristic
(ROC) curves for this comparison, demonstrating the supe-
rior performance of our method. In addition to achieving
improved detection accuracy, the number of weak classifiers
needed for each strong classifier is significantly smaller in
our method (see Figure 6b). This clearly has a direct impact
in both training and testing computational costs (about 50%
reduction).

Figure 7 shows the comparison between our approach



Figure 6. (a) ROC Curve comparing classifiers learned from adap-
tive (optimized) and non-adaptive (non-optimized) features in the
CMU+MIT dataset. (b) Number of classifiers for each level of the
cascade in both methods. Our approach offers advantages in terms
of detection accuracy and reduced computational costs over tradi-
tional methods that use local features uniformly sampled from the
parameter space.

Figure 7. ROC Curves for our approach and traditional Haar fea-
tures in the CMU+MIT dataset. We used only half of the number
of features in the feature pool compared to Haar features and still
get superior performance.

and traditional Haar-like/rectangle features. The Haar de-
tector was also trained with a cascade consisting of 24 lev-
els in the same training set. The feature pool, however, was
twice as large than our approach, containing about 160000
features. With half of the features in the pool, we achieve
superior performance and a faster learning time (see table
4).

4. Discussion

Different methods have been proposed to enhance Ad-
aboost learning with more powerful features. Wang and Ji
[14] used FDA and RNDA features for multi-view face de-
tection. Lienhart [7] proposed an extended set of Haar-like
features to improve detection performance. Levi and Weiss
[6] used edge orientation histograms to learn from a small
number of examples. PCA features [16] have also been used
as part of the feature pool. More recently, Huang et al. [4]
proposed a sparse feature set for object detection.

The uniqueness of our approach has several aspects.
First, it can be applied to improve existing methods based

on local image filters. As an example, Gabor wavelets in
connection with Adaboost Learning have proven to be very
successful in facial expression and recognition algorithms
[1, 15]. Our method could be directly applied to locally
adapt these filters prior to Adaboost learning. Second, it
provides a principled mechanism to integrate multiple types
of local features, offering a solution to the scalability issue
inherent on the feature level of learning algorithms. Finally,
our proposed framework allows the pre-selection of rele-
vant local features which are strongly correlated with the
face structures, leading to a more discriminative classifier.

In our framework, multiple types of local features can
be integrated to form a compact and diversified feature
pool. In addition to wavelet filters, other types of fea-
tures, such as local edge orientation histograms [6], could
be adapted/optimized in a similar way. An interesting ob-
servation is that the wavelet filters with large coefficients
in fact tend to align with the orientation of local intensity
edges in the image. Hence, edge-based classifiers could be
projected based only on the spatial support of the wavelet
features.

Many learning methods based on local features sample
the feature space uniformly at discrete positions, scales, and
orientations [15, 1]. Thus, the feature pool contains many
configurations that are not useful for classification, whereas
important feature configurations may not be included due
to the sampling process. This becomes more problematic
when multiple features of different types are considered. In
our method, only meaningful features that match the local
structure of the object samples, with subpixel precision, are
included in the pool.

The ability to integrate multiple types of features, as
well as to pre-select features correlated to the object struc-
tures, makes our method more scalable in the domain level.
In other words, it is suitable to detect different objects
other than faces. This contrasts with traditional Haar-
like/rectangle features, which are more appropriated for
symmetric objects like frontal faces.

Although adaptive features are projected to reconstruct
an object image, they play an important role in discrim-
ination, as motivated in Section 1. An alternative ap-
proach would be to bypass the learning of adaptive features
and determine the optimal local feature parameters (posi-
tion, scale, and orientation) to maximize a discrimination
criterium between object and non-object samples directly.
However, this would not be feasible computationally, espe-
cially if we are targeting subpixel precision.

We note that our contribution is made on the feature level
of learning-based methods. Our goal in this paper is not to
provide an integrated state-of-the-art face detector system,
but rather provide a feature selection tool that can be com-
bined with more advanced boosting methods, like Gentle-
Boost [2], Real Adaboost [12], and Vector Boosting [3], in



Feature Pool Number of Features Learning Time

Haar Features 160000 around 5 days
Our Approach 80000 around 3 days

Table 1. By learning adaptive and general features, we can use a
smaller feature pool, which allows reduced training time, while
still keeping superior performance in detection rate, when com-
pared to a traditional pool of Haar features.

order to achieve state-of-the-art results. In a more interest-
ing way, our method could be integrated into the learning
method recently proposed by Pham and Cham [10], which
achieves extremely fast learning time compared to previous
methods. We believe this method would have an even re-
duced computational learning time by using locally adapted
features.

Our approach is related to the work of Krueger [5], who
uses adaptive Gabor wavelets as features for object repre-
sentation. His work is applicable for object recognition, but
not for object detection, since only a single training image is
considered and no general features are learned for an object
class.

5. Conclusions

The main contribution of this paper is to use local feature
adaptation prior to learning, which enables training based
on a compact and diversified dictionary of visual features.
Our experiments show that our approach offers advantages
in terms of improved detection accuracy and significant re-
duced computational costs over traditional methods which
use non-adapted local features uniformly sampled from the
parameter space.

As future work, we plan to test our approach with differ-
ent objects and carry out a more extensive evaluation, ana-
lyzing parameters such as the size of the feature pool and the
training set. We expect to have improved performance with
larger feature pools and better ability to learn from a small
number of examples. We also plan to extend our method to
the problems of face recognition and expression analysis.
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