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Abstract 

Video surveillance automation is used in two key modes: watching for known threats in 
real-time and searching for events of interest after the fact. Typically, real-time alerting 
is a localized function, e.g. an airport security center receives and reacts to a “perimeter 
breach alert,” while investigations often tend to encompass a large number of 
geographically distributed cameras like the London bombing, or Washington sniper 
incidents.  Enabling effective event detection, query and retrieval of surveillance video 
for preemption and investigation involves indexing the video along multiple dimensions. 
This chapter presents a framework for event detection and surveillance search that 
includes: video parsing, indexing, query and retrieval mechanisms. It explores video 
parsing techniques that automatically extract index data from video, indexing which 
stores data in relational tables, retrieval which uses SQL queries to retrieve events of 
interest and the software architecture that integrates these technologies. 
 
 
1. Introduction 
 

Video analysis and video surveillance are active areas of research. The key challenges 
are video-based event detection and large-scale data management and retrieval. While 
detecting and tracking objects is a critical capability for smart surveillance, the most 
critical challenge in video-based surveillance (from the perspective of a human 
intelligence analyst) is retrieval of the analysis output to detect events of interest and 
identify trends. In this chapter, we describe a specific system, the IBM Smart 
Surveillance Solution, in order to detail an open and extensible framework for extracting 
events in video which can be used for real-time alerting, searching during investigations 
with unpredictable characteristics, or exploring normative (or anomalous) behaviors. 

 
Current systems have begun to look into automatic event detection. These are often 

point solutions for detecting license plate numbers, abandoned objects, or motion in 
restricted locations. However, the area of context-based interpretation of the events in a 
monitored space is still in its infancy. Challenges here include: using knowledge of time 
and deployment conditions to improve video analysis, using geometric models of the 
environment and other object and activity models to interpret events, and using learning 
techniques to improve system performance and detect unusual events. The first hurdle 
that must be overcome is to provide extensible search capabilities based on the broadest 



possible set of meaningful event metadata which can be provided by state-of-the-art point 
solutions. 

 
This chapter explores these issues using as an example the IBM Smart Surveillance 

Solution. Its architecture is outlined as an example of a system which addresses the 
problems of indexing event metadata and providing extensible search. Its components 
provide examples of video parsing, indexing and retrieval methods which are deployed 
by the system.  Lastly, its interface shows many examples of how an end-user may search 
for specific information regarding a real-world investigation. 

 
2. Background 

 
 Video surveillance systems which run 24/7 (24 hours a day and seven days a week) 

create a large amount of data including videos, extracted features, alerts, statistics etc. 
Designing systems to manage this extensive data and make it easily accessible for query 
and search is a very challenging and potentially rewarding problem. However, the vast 
majority of research in video indexing has taken place in the field of multimedia, in 
particular for authored or produced video such as news or movies, and spontaneous but 
broadcast video such as sporting events. Efforts to apply video indexing to completely 
spontaneous video such as surveillance data are still emerging.  

 
The work in video indexing of broadcast video has focused on such tasks as shot 

boundary detection, story segmentation and high level semantic concept extraction. The 
latter is based on the classification of video, audio, and text into a small (10-20) but 
increasing number of semantically interesting categories such as outdoor, people, 
building, road, vegetation, and vehicle.  For broadcast video, the goal is to find a high 
level indexing scheme to facilitate retrieval. The task objectives are very different for 
surveillance video. For surveillance video, the primary interest is to learn higher level 
behavior patterns. In both broadcast and surveillance video, there exists a semantic gap 
between the feasible low level feature set and the high level semantics or ontology 
desired by the system users. 

 
 Because of its practical nature, surveillance video analysis has been extensively 
explored. However, compared to the vast amount of research in broadcast video search, 
such as (Hauptmann, 2006; Naphade, 2004), very few systems address the issue of search 
in surveillance video.  Lee (2005) describes a user interface to retrieve simple 
surveillance events like presence of person and objects. Stringa (1998) proposed a 
content-based retrieval system for abandoned objects detected by a subway station 
surveillance system. In their system, similar abandoned objects can be retrieved using 
feature vectors of position, shape, compactness, etc.  Berriss (2003) utilized the MPEG-7 
dominant color descriptor to establish an efficient retrieval mechanism to search for the 
same person from surveillance systems deployed in retail stores. Meesen (2006) analyzed 
the instantaneous object properties in surveillance video key-frames, and performed 
content-based retrieval using a generic dissimilarity measure which incorporates both 
global and local dissimilarities between the query and target video key-frames. There is 
significant effort in industrial surveillance systems (ObjectVideo; PyramidVision) 



targeted toward real-time event detection. Very few of these systems have focused on 
video search. 3VR (3VR) does provide capabilities to search for a person based on face 
recognition.  In summary, there is a very limited number of both research and commercial 
systems focused on searching surveillance video. As surveillance systems grow in scale 
and utility, there is an increasingly critical need to provide the corollary search 
capabilities. 

 
While applying video analytics to provide real-time alerting based on predetermined 

event definitions, such as “tripwire,” has been explored both in the research literature and 
in commercial systems, the challenges of searching through surveillance video remain 
largely unaddressed. While video analysis and pattern recognition technologies are at the 
core of “intelligent” or “smart” surveillance, effective search of surveillance video 
requires research into searchable meta-data representations for video based features, data 
models for indexing and correlating diverse types of meta-data, and architectures for 
integrating technologies into large scale systems.  

 
 Searching surveillance video essentially revolves around the following key search 
criteria: (1) Specific search for people and vehicles and (2) Generic search for objects and 
events of interest. Search applications require a combination of these criteria to create 
composite queries and the ability for the search to be applied across multiple cameras 
distributed over a spatial region.  
 
 In this chapter, we use the IBM Smart Surveillance System (SSS) as an example 
system for discussing various aspects of the technology involved in event detection, 
query and retrieval. The IBM Smart Surveillance Solution (SSS) is an IBM service 
offering for use in surveillance systems and provides video based behavioral analysis 
capabilities. It offers not only the capability to automatically monitor a scene but also the 
ability to manage the surveillance data, perform event based retrieval, receive real time 
event alerts through a standard web infrastructure and extract long term statistical 
patterns of activity. The IBM SSS is an open and extensible framework designed so that 
it can easily integrate multiple independently developed event analysis. Section 2 
describes the architecture of the IBM SSS including a description of the two main 
components: the SSE (Smart Surveillance Engine) which takes the camera inputs and 
produces event metadata, and MILS (Middleware for Large Scale Surveillance) which 
provides data management and retrieval capabilities. Section 3 presents the underlying 
processes which comprise the video parsing (or analytics) performed by the SSE to create 
event metadata. Section 4 describes MILS in more detail including the services it 
provides and the data structure used. Section 5 presents the user interface of the system. 
Sections 6 and 7 explore the various aspects of searching for people, events and objects. 
Sections 8 and 9 present examples of compound queries and the concept of spatio-
temporal searching. Section 10 shows some performance results for searching in the 
Smart Surveillance System. We conclude the chapter with a discussion of the significant 
research challenges that remain in enabling large scale searching of surveillance video.  
 
 

3. The IBM SSS 
 



The IBM SSS includes two components: (1) Smart Surveillance Engine (SSE) which 
provides video analysis capabilities; (2) Middleware for Large Scale Surveillance 
(MILS) which provides data management and retrieval capabilities. These two 
components support the following features: 
 
• Local Real-time Surveillance Event Notification: This set of functions provides real-

time alerts to the local application. 
• Web-based Real-time Surveillance Event Notification: This set of functions provides 

a web-based real-time event notification within 3 seconds of the occurrence of a 
specified event in the monitored area; for example “Speeding Vehicle.” 

• Web-based Surveillance Event Retrieval: This set of functions provides the ability to 
retrieve surveillance events based on various attributes like object type, speed, or 
color. 

• Web-based Surveillance Event Statistics: This set of functions provides the ability to 
compute a variety of statistics on the event data. For example the distribution over 
time of arrivals and departures from a building over a day. 
 

 
Figure 1: An open and extensible architecture for IBM SSS. The smart surveillance 
engine (SSE) provides a plug and play framework for video analytics.  The event meta-
data generated by the engines are sent to the database as XML files.  Web services 
API’s allow for easy integration and extensibility of the meta-data.  Various 
applications like event browsing and real time alerts can use an SQL-like query 
language through web services interfaces to access the event meta-data from the data 
base. 
 
 

Figure 1 shows the software architecture of IBM SSS. For details, refer to Shu (2005). 
which supports the above four features with the following software components: 
 
Smart Surveillance Engine (SSE) The SSE is designed to process one stream of video 
in real-time, extracting object meta-data and evaluating user defined alerts. The SSE 



uploads messages in XML to the central data repository. The SSE provides the software 
framework for hosting a wide range of video analytics like behavior analysis, face 
recognition, license plate recognition etc. One computer can run multiple analytics on 
multiple channels of video. 
 
Middleware for Large Scale Surveillance (MILS) MILS provides the algorithms 
needed to take the event meta-data and map it into tables in a relational database. 
Additionally, MILS provides event search services, meta-data management, system 
management, user management  and application development services. MILS uses off the 
shelf data management (IBM DB2), a web server (IBM Websphere Application Server) 
and messaging software (IBM MQ) to provide these services. 
 
Solutions These are mainly web applications (written in HTML, Java, JSP, applets, 
Javascript, and AJAX) which use the web services provided by MILS to provide the 
functionality needed by the user to query the database and view the results. 
 
The data flow in the IBM SSS architecture is summarized as following: 
1. Sensor data from a variety of sensors is processed in the Smart Surveillance Engines 

(SSEs).  Each SSE can generate real-time alerts and generic event meta-data. 
2. The meta-data generated by the SSE is represented using XML. The XML documents 

have some set of fields which are required and common to all engines and others 
which are specific to the particular type of analysis being performed by the engine. 

3. The meta-data generated by the SSEs is transferred to the backend MILS system. This 
is accomplished via the use of web services data ingest APIs provided by MILS. 

4. The XML meta-data is received by MILS and indexed into predefined tables in the 
IBM DB2 database. This is accomplished using the DB2 XML extender. This allows 
for fast searching using the primary keys. 

5. MILS provides a number of query and retrieval services based on the types of meta-
data available in the database. 

 
 

4. Video Parsing Performed by the SSE 
 

In the first item in the data flow of the architecture of the SSS, the Smart Surveillance 
Engine (SSE) processes the sensor data (typically video from a camera) to generate real-
time alerts and generic event meta-data. The basic approach used to extract alerts and 
events from surveillance video involves detection and tracking. The specific nature of the 
detection and tracking vary based on the type of video analysis technique used. For 
example, as a car (person) enters a camera’s view, the SSE would detect the entry of the 
license plate (or face) and recognize and track it until the car (or person) leaves the 
camera field of view.  In the IBM SSE, the following main steps are followed to extract 
important features for event detection from video and non-video information. In this 
chapter, we will only focus on the video-based event detection: 

• Camera Stabilization 
• Moving Object Detection and Tracking 
• Object Classification 



• Color Classification 
• Alert Detection 
• Compound Spatio-Temporal Event Detection 
• Face Capture and Tracking 
• People Counting 
• Behavior Analysis 
 
 

4.1 Camera Stabilization 
 
In order to achieve robust event detection results for complex environments such as 
outdoor video surveillance on windy days, camera stabilization techniques (Jin, 2001) 
have been applied to the input video streams to correct the subtle camera motion. We use 
a point tracking method (tracking salient feature points from frame to frame) similar to 
the method used by Lucas (1981) and motion compensation to estimate the camera 
movement and output stabilized video for further processing.  
 
4.2 Moving Object Detection and Tracking 
 
The most widely applicable form of surveillance video parsing uses moving object 
detection and tracking. In common with most video surveillance systems, we use 
background subtraction (Tian, 2005) to detect changes in a video stream. Background 
subtraction works by maintaining a statistical model of the observed values of a pixel and 
modeling the variations to distinguish a change caused by a moving object from changes 
due to lighting changes or camera vibrations. The detected objects are tracked over their 
life within a single camera using a tracking system (Senior, 2006). The tracker associates 
multiple detections of the same object over time and constructs tracks which each 
represent the movement of a single object (or sometimes the coherent motion of a group 
of objects).  Since it corresponds to a physical object, the track (which designates a time 
interval) is the fundamental representation in the database. For a given object, we can 
derive characteristics, such as the object’s type, appearance and identity, which are 
assumed to be constant over time, although our estimates of these characteristics may be 
derived from accumulations of multiple observations of the object over time.  The 
following sections discuss how the various attributes of objects can be extracted to enable 
searching. 
 
4.3 Object Classification 
 
After moving object detection and tracking have been performed, object classification is 
used to determine if object tracks belong to people or vehicles. We deploy a two-phase 
system in order to achieve classification for an arbitrary scene. In the first phase, 
human/vehicle recognition is attained using classical feature-based classification based 
on shape and motion of the detect object. Classical features include the aspect ratio, 
compactness (ratio of perimeter squared over area), speed and variation in speed. This 
phase is used to initialize view-normalization parameters by recording the observed sizes 
of confidently classified objects (whose real-world size is thus known or assumed) for 
each view. The parameters allow the second phase to perform improved classification 
based on normalized features, i.e, features which are scaled according to the view. The 



normalization also enables absolute identification of size and speed which can be used in 
various ways including identifying vehicles of a given (real-world) size and searching for 
objects traveling at specific speeds across different locations in the image and across 
different viewpoints/cameras. 
 
4.4 Color Classification 
 
Tracked objects are also classified as one of six colors: red, yellow, green, blue, black or 
white. Color is computed incrementally over the life of the object. When the object first 
appears, a color histogram is initialized. This histogram is updated periodically if the 
object remains in the scene. The histogram is computed based on (1) converting RGB to 
HSI color space and (2) quantizing HSI space to the six colors based on user-defined 
parameters. These parameters include the thresholds used to determine if saturation is 
high enough for different bands of intensity.  The ultimate dominant color of the object is 
determined based on ad hoc rules which take into account object type (vehicle, person) 
and lighting conditions. These rules are based on thresholds for each color and the 
balance between black and white. If the object contains large amounts of black (because 
of shadows or object type) then the balance between black and white can be modified. 
Similarly, if only a small amount of hue is necessary for it to be the dominant color of an 
object (as in the case of vehicles) these thresholds can be lowered accordingly. 
 
4.5 Alert Detection 
 
Based on the object detection and tracking outputs, eight types of basic alerts can be 
currently detected in our system. The parameters of these alerts can be specified on the 
user interface. 
 
Motion detection: Defines an event where a specified number of moving objects, 
satisfying the specified parameter values, is detected in a region of interest (ROI). The 
parameters for this event are the ROI, the minimum and maximum sizes for the detected 
objects, minimum number of frames the motion should last, and the minimum number of 
moving objects to detect. 
 
Directional motion: Defines an event where a moving object is detected in the specified 
region and in the specified direction. The parameters are the ROI, the direction of motion 
in that region, and the tolerance in direction angle.  
 
Abandoned object: Defines an event where an object satisfying the desired parameters is 
left in the specified region. The parameters are the region of interest, the minimum and 
maximum detected object sizes, and the waiting time before considering the object 
abandoned. 
 
Object removal: Defines an event where an object, selected by drawing a region around 
it, is removed. The parameters are the region drawn around the object, and the sensitivity 
level. The sensitivity level is the threshold used to determine if the object is removed. 
This threshold is based on the amount of change measured in the region. 
 



Trip wire: Defines an event where the line drawn is crossed in the specified direction. 
The parameters are the line of interest, the direction of crossing, and the minimum and 
maximum object sizes 
 
Region alert: This alert detects which part of the moving object enters or leaves the 
specified region.  
 
Camera blind/camera moved: This primitive event detects if/when the camera is moved 
or blinded. 
 
Camera motion stopped: This primitive event detects if/when a moving camera is 
stopped. 
 
4.6 Compound Spatio-Temporal Event Detection 
 
We define multiple events or activities which may occur across different times or 
multiple cameras based on heterogeneous meta-data as compound events. Examples 
include: a person leaving a building (seen from one camera) and entering a region (seen 
in another camera) or tailgating (one person entering using a badge entry system, 
followed by another not using the badge entry system). In order to provide the flexibility 
to specify customized events with varying complexity, and enter them to the database in a 
generic way, we introduce a spatio-temporal event detection system which lets the users 
specify multiple composite events of high-complexity, and then detects their occurrence 
automatically. Events can be defined on a single camera view or across multiple camera 
views. Semantically higher level event scenarios can be built by using building blocks 
which we call primitive events (such as the basic alerts). Primitive events are connected 
to each other by an operator using a user-friendly interface. Operators include: AND, OR, 
SEQUENCE (one event follows another), and XOR.  More importantly, the newly 
defined composite events can be combined with each other. For example, an event may 
be defined as either a car OR a person in a certain region. Another example could be an 
event defined as a car in region 1 AND a person crossing into region 2. This layered 
structure makes the definition of events with ever higher complexity possible. The event 
definitions are written to an XML file, which is then parsed and communicated to the 
tracking engines running on the videos of the corresponding cameras. For example, when 
multiple events are combined by a SEQUENCE operator, a time interval can be defined 
among them. With the proposed system, we can not only detect “a person exiting the 
building,” we can also detect “a person coming from the south corridor and then exiting 
the building.” Later in Section 10 of this chapter, the interface and results for an example 
of a compound spatio-temporal event are shown. 
 
 
4.7 Face Capture and Tracking 

 
Faces are key to identifying people.  Automatically recognizing people from surveillance 
cameras still remains a challenging problem for face recognition technologies (FRVT, 
2006; Senior, 2007). The first step in achieving automatic face recognition is the indexing 
of video with a “presence of people” index. While face-based people detection is 



valuable, in most realistic scenes, it isn’t sufficient to enable people searching because 
people: 
• people could be facing away from the camera, in which case face capture / 

recognition will fail 
• could be entering the scene with a pose which limits the visibility of the face from the 

camera, 
Our approach to creating a “presence of people” index uses a combination of face and 
person detection to ensure a very low rate of false negatives. 
 Our face detection method relies on extracting adapted features to encode the local 
geometric structures of training samples prior to learning. Local feature adaptation is 
carried out by a non-linear optimization method that determines feature parameters such 
as position, orientation and scale in order to match the geometric structure of each 
training sample. This non-linear optimization is similar to the Levenberg-Marquadt 
method which is a well-known numerical method which minimizes an objective function 
over a space of parameters of the function.  In a second stage, Adaboost learning is 
applied to the pool of adaptive features in order to obtain general features, which encode 
common characteristics of all training face images and thus are suitable for detection. 
Compared to other techniques e.g., Viola (2001), our method (Feris, 2007) offers faster 
learning time and improved detection rate for quantitative evaluation on standard 
datasets). 
      As described in Feris (2007), after detecting a face in the field of view of a 
surveillance camera, we apply a correlation-based tracking algorithm to track the face in 
the subsequent video frames. More specifically, when a face is detected, the correlation-
based tracker is triggered. For the subsequent frame, if the face detection fails, tracking is 
updated with the window given by the correlation tracker, i.e. the window with highest 
correlation to the previous window. Otherwise, if the face detector reports a window 
result with a close position and size to the current tracking window, then this face 
detection window result is used to update tracking. This mechanism is important to avoid 
drifting. Continuous face detection is used to re-initialize the tracker, using multiple 
view-based classifiers (frontal and profile) interleaved along the temporal domain in the 
video sequence. Each view-based classifier is based on the two stage Adaboost learning 
method described above – one for frontal views and another for profile views. By using 
two classifiers, the face detector will more robustly detect all faces regardless of pose. 
  
4.8 People Counting 
 
Automatic counting of people, entering or exiting a region of interest, is a very important 
feature for video surveillance systems. We developed an automatic and robust people 
counting system which can count multiple people who interact in the region of interest, 
by using only one camera mounted overhead. Two-level hierarchical tracking is 
employed. An example of hierarchical tracking can be found in Funahashi (2005). For 
cases not involving merges or splits, a fast blob tracking method is used. See Francois  
(2004) as a related example. In order to deal with interactions among people in a more 
thorough and reliable way, the system uses the mean-shift tracking algorithm (Comaniciu, 
2000). Using the first-level blob tracker in general, and employing the mean shift tracking 
only in the case of merges and splits makes the system more computationally efficient. 
The system setup parameter can be automatically learned in a new environment from a 3 



to 5 minute video with people going in or out of the target region one at a time. We tested 
the proposed method with video sequences which contain many interactions (such as 
merges/splits, shaking hands, and hugging) between people in the ROI. Most of these 
interactions occur right in the vicinity of the entry/exit line, thus successfully resolving 
them is essential to determine direction and perform counting accurately. The system 
runs at about 33fps on 320x240 images without code optimization on 2GHz Pentium 
machines. Average accuracy rates of 98.5% and 95% are achieved on videos with normal 
traffic flow and videos with many cases of merges and splits, respectively. More details 
of the algorithm can be found in paper by Velipasalar (2006a). 
 
4.9 Behavior Analysis 

 
In IBM SSS, we have a preliminary structure for detecting trajectory anomalies. This 
system shown in Figure 2 analyses the paths of tracked objects, learns a set of repeated 
patterns that occur frequently, and detects when an object moves in a way inconsistent 
with these normal patterns.  
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                        (a)                                                 (b)                                            (c) 
Figure 2 (a): Summary view showing the retrieval of  trajectories all events that occurred in 
the parking lot over a 24 hour period.  Trajectory color coding, start white and end is red.  
(b): Activity distribution over extended time period, x-axis is time, y-sxis is the number of 
people in the area. Each day of the week is shown with a different line. (c): Unsupervised 
behavior analysis. Object entrance/departure zones (green ellipses) and prototypical 
tracks (brown curves) with typical variation (crossbars). 
 

The system begins by detecting object entrance and exit locations. Here the start and 
end points of tracks are clustered to find regions where tracks often end or begin. These 
points will tend to be where paths or roads reach the edge of the camera’s field of view. 
Having clustered these locations, we have a simple classification for trajectories by 
labeling a track with its start and end location (or as an anomaly when it starts or ends in 
an unusual location such as a person walking through the bushes). For example, when we 
cluster trajectories for our camera which views the entrance to our building, trajectories 
are classified into one of 5 classes – entering/exiting into the left side (from the road on 
the left or from the center), enter/exiting to the right side (from the road on the right or 
from the center), or moving horizontally across the road. We then apply a secondary 
clustering scheme to further detect anomalous behavior.  This scheme operates as 
follows: the trajectories of all tracks with a given start/end location labeling are 
resampled and clustered together. This gives an average or “prototypical track” together 
with standard deviations, as shown in Figure 3. Thus most tracks from a given entry 
location to a given exit will lie close to the prototypical track, with typical normal 



variation indicated by the length of the crossbars. Tracks that wander outside this normal 
area can be labeled as anomalous and may warrant further investigation. Principal 
components of the cluster can also indicate typical modes of variation or “eigentracks” 
giving a more accurate model of normal vs. abnormal. 

 
 

5. The IBM Middleware for Large Scale Surveillance  
 

In the previous section, we described the components of the IBM Smart Surveillance 
Engine (SSE) which extracts event metadata from the camera input. In this section, we 
describe the other major component of the IBM Smart Surveillance Solution (SSS), the 
IBM Middleware for Large Scale Surveillance or MILS. We first describe in 5.1 the 
services provided by MILS which comprise the MILS Application Programming 
Interface. In subsection 5.2 we describe the data structures used within MILS to store the 
information used to index the data and perform relevant searches. 
 
5.1 Services Provided by the MILS 

 
MILS provides the data management services needed to build a large scale smart 
surveillance application and to enable extensive search capabilities. While MILS builds 
on the extensive capabilities of the IBM DB2 database system, it is essentially 
independent of this product and can be implemented on top of 3rd party relational 
databases. It supports the indexing and retrieval of spatio-temporal event data. MILS also 
provides analysis engines with the following support functionalities via standard web 
services interfaces using XML documents. 

 
A: Meta-data Ingestion Services: These are web services calls which allow an engine to 
ingest events into the MILS system. There are two categories of ingestion services 

A.1: Index Ingestion Services  
A.2: Event Ingestion Services  

B: Schema Management Services: These are web services which allow a developer to 
manage their own meta-data schemata. A developer can create a new schema or extend 
the base MILS schema to accommodate the metadata produced by their analytical engine. 
C: System Management Services: These services provide a number of facilities needed 
to manage a surveillance system including 

C.1: Camera Management Services  
C.2: Engine Management Services 
C.3: User Management Services 
C.4: Content Based Search Services 
 

5.2 Data Structures in MILS 
 
The MILS system has three types of data structures, namely, (1) the system data structure 
which captures the specification of a given monitoring system, including details like 
geographic location of the system, number of cameras, physical layout of the monitored 
space, etc. (2) the user data structure which contains user names, privileges and user 
functionality, (3) the event data structure which contains the events that occur in a 



specific sensor or zone in the monitored space.  Each of these data structures is briefly 
described in the following subsections. 

 
A) System Data Structure 
 
The system data structure has a number of components, listed below. 

A.1: Sensor/Camera Data Structure 
A.2: Engine Data Structures 
 

B) User Data Structure 
 
The user data structure captures the privileges of a given user. These include  
• selective access to camera views 
• selective access to camera / engine  configuration and system management 

functionality  
• selective access to search and query functions. 
 
C) Event Data Structure 

This data structure represents the events that occur within a space that may be monitored 
by one or more cameras or other sensors.  IBM SSS uses the timeline data structure 
which uses time as a primary synchronization mechanism for events that occur in the real 
world between sensors. The basic MILS schema allows multiple layers of annotations for 
a given time span. The following is a description of the schema: 
• Event:  An event is defined as an interval of time.  
• StartTime: Time at which the event starts.  
• Duration: This is the duration of the event. Events with zero duration are permitted, 

for example snapping a picture or swiping a badge through a reader. 
• Event ID: This is a unique number which identifies a specific event. 
• Event Type: This is a event type identifier. 
• Other descriptors: Every analysis engine can generate its own set of tags such as basic 

types or more complex types. If the tags are basic types CHAR, INT, FLOAT, they 
can be searched using the native search capabilities of the database. However, if the 
tag is a special type (for example color histogram) the developer needs to supply a 
mechanism for searching the field. 
 
The most fundamental index into surveillance video is the time of occurrence of an 

event. The challenge is to automatically derive the time of occurrence of “events of 
interest” by analyzing the video. Once an event is detected in video, the time interval of 
the event can be annotated with additional meta-data which captures a more detailed 
description of the event.  Hence, the most basic data structure for surveillance events is a 
time interval. Table 1 below shows the basic data model for two types of surveillance 
events (1) a car driving through a parking lot captured on camera 23 and (2) the license 
plate of a car recognized on camera 35 
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Table 1.  Event time is used as the basis for annotation surveillance events  

      
     Each unique event that occurs within a scene is assigned an event identifier which is 
guaranteed to be unique across all cameras that are being indexed into a single database 
instance.  The event ID is used as the primary key to select  from and join across multiple 
tables in the database.  The time of occurrence of the event is used to correlate events 
across multiple cameras that exist in the system. This data structure can easily be 
extended to accommodate new types of meta-data as new types of video analytics are 
added to the system.  If the meta-data is one of the basic types (INT, CHAR, FLOAT 
etc.) supported by the database it can be searched using SQL. For special types of meta-
data, like color histograms additional user defined search functions have to be developed. 

 
 

6. Interface of IBM SSS 
 
Figure 3 – 8 show some screen shots of the IBM SSS interface for the list of camera 
views, and the results of searches for car, person, face capture, license plate, and object 
color, as well as a summarized view of a day’s traffic. In all the figures, the upper left 
region contains a map of the facility showing the locations of the cameras. The upper 
right region contains instant alerts. Alerts are updated in real-time as they occur. The 
lower left region contains a video player. Initially it contains a live video of the currently 
selected camera. But this player can also show a selected alert or event. The lower right 
region changes as the user selects what he/she would like to search. This region can 
contain either the page to specify the search criteria or the results of a search. In the 
figures, the lower right region differs depending on the search criteria. 
 



 
 

 
Figure 3: An Interface showing the various camera views currently available in the system 
 

 
Figure 4: An Interface showing the Results from a “Find Person” Query 



 
Figure 5: An Interface showing the Results of “Find Faces” 

 
Figure 6: An Interface showing the Results of “License Plate Recognition” 



 
Figure 7: An Interface showing the Results of “Red Car” search 

 
Figure 8: An Interface showing the track summary of one day data 

 
 
 



 
 

 
 

7. Specific People and Vehicle Search 
 
As shown in the user interface, the SSS can be used to search for events based on a large 
set of attributes provided by the engines (SSEs) and stored in the database and retrieval 
system (MILS). In this section and the next three sections, we detail the search 
functionality and search performance of the system. In this section, we describe the 
search capabilities for finding people and vehicles and determining the number of people 
crossing through a region. In Section 8, we describe the generic search capabilities 
including object color, object class, object size, object shape, object location, object 
movement, time of event of occurrence and event duration. In Section 9 we give an 
example of compound search while in Section 10 we give examples of more complex 
searches which we call compound spatio-temporal search. Finally in Section 11 we give 
some results evaluating the performance of the system in both precision and recall and for 
time to recall for detecting and tracking objects and executing specific search queries. 
 
7.1 Searching for People 
 
After detecting and tracking human faces, we also store a keyframe for each captured 
face image in the database, associated with a timestamp. This allows the user to issue 
queries like ``Show me all people who entered the facility yesterday from 1pm to 5pm." 
An example of this search is shown at the right of Table 2. 
 Ideally, for every person passing through the scene, a face keyframe would be 
generated and stored in the database. However, due to false negatives in face detection 
and face pose and person orientation issues, important events might be missed. We 
address this problem by using a keyframe selection technique that combines a face 
classifier with a person classifier. If a face is detected and tracked in the video sequence, 
a face keyframe is stored in the database. Otherwise, a person keyframe is generated if a 
person is detected and tracked in the video. 
 We analyzed ten hours of data from one camera, taking video of the busiest hour from 
each of ten days. Table 2 shows our results. Out of 445 people entering the facility (not 
walking away from the camera), we captured 351 faces, with only 7 false positives. The 
reason that some faces were missed is that sometimes people enter the door looking 
down, occluding the face from the camera, which is placed on the ceiling. By running our 
keyframe selection technique (using face and person detectors), we captured all 
remaining 94 persons, as well as 40 persons walking away from the camera, with an 
additional 19 false positives.  
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Table 2:  Results obtained from ten hours of surveillance video. Example faces 
(frontal and profile) captured by our system (blurred to preserve privacy) 

 
7.2. Searching for Vehicles 
 
Searching for vehicles based on license plates is achieved using license plate recognition 
technology, which is more reliable than face recognition.  An example system used in the 
IBM SSS was developed by Hi Tech Solution (HiTech, website). Unlike human faces, 
license plates vary widely based on geography. Variations include language, font, 
background and numbering scheme.  Typically, there is no single algorithm or company 
which can recognize license plates across wide geographies.  One approach to handling 
this variation is to standardize the interfaces to the license plate algorithms (such as Hi 
Tech’s SeeCar algorithm) and standardize the meta-data representation for the license 
plate. The software architecture of IBM SSS supports this approach. 
 
7.3 People Count 
 
Figure 9 shows the result of  one-week long test in IBM Hawthorne cafeteria, we found: 
1) the morning time (8:00am-11:00am) has the lowest traffic load in a day; 2) the lunch 
time (11:00am-2:00pm, especially 12:00pm-2:00pm) has the highest traffic load, (as 
expected for a cafeteria);  3) Friday has less traffic than other week days.  
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Figure 9: Results of people counting for a week in the IBM Hawthorne cafeteria 

 
8. Generic Search Criteria 
Generic search includes search for objects and behaviors of objects over time. This search 
can be qualified by one or more of the following: object color, object class, object size, 
object shape, object location, object movement, time of event of occurrence and event 
duration. 
 
8.1 Search by Object Color 
Object color is determined by (1) converting RGB object colors to a 6 color 
Hue/Saturation/Intensity (HSI) space, (2) periodically updating and normalizing the 6 
color HSI cumulative histogram over the life of the object and (3) determining the three 
dominant colors and their percentages. For vehicle color estimation, the final primary 



color is determined based on hue if sufficient (regardless of the amount of achromatic 
pixels), and the relative amount of black and white. Table 3 shows the results of color 
classification for vehicles entering and exiting our facilities for a total of 8 hours (4 hours 
for two days).  The overall correct color classification is 80%. Over half the misclassified 
vehicles are black or white vehicles misclassified as white or black respectively. 
Although this may be improved with parameter tuning taking into consideration the 
variations in lighting conditions, the most significant issue here is due to the variable 
amount of shadows included in the object segmentation and the percent of the true black 
components for each vehicle (i.e. windshield size, tires, accessories etc.) Figure 10 and 11 
show illustrative examples of vehicles classified correctly and incorrectly. 
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Table 3 Color Results:  BL-Black, WH-White, RE-Red,  YE- 
Yellow, BU-Blue, GR-Green 

 
 

 
Figure 10. Retrieved keyframes (cross indexed to video by time) (1) yellow, (2)  
green, (3) blue, (4) red, (5) black and (6) white vehicles.  (Trajectory color indicates 
direction of movement, blue is track start, red is track end). 

 



 
Figure 11. Keyframes 1,2,3 show errors from searching for black objects. 
Keyframes 4,5,6 are results of searching for white objects.  For 1,2,3 notice the 
dark shadows and color of windows etc which lead to misclassification. In the 
keyframe (5), the garbage truck appears to be black on examining the original 
video playing , it is seen that the truck’s lower body is white. 

 
8.2 Search by Object Class 
Object classification is performed using a view invariant classifier (Brown 2004). An 
object can be classified as either a person or a vehicle based on shape features such as 
compactness and principal axis ratio, and motion features such as speed and degree of 
recurrent motion. Table 4 (left) shows results for vehicles and people entering the front of 
our laboratory for 4 hours one morning. (May 16 2007, Camera #2, between 8am and 
12pm). Overall 307/334 or 92% of the vehicle/person object tracks were correctly 
classified. 
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Table 4 Left: Object Classification Result:  V: Vehicles, P: Person, O: Other Right: 
Search using object size.  P: Person, C: Car, MS-T: Medium Sized Truck, L-T:  Large 
Truck, O: Other. 

 
8.3 Search by Object Size 
Object size is often useful to determine object sub-class for objects moving orthogonal to 
the camera viewpoint. Object size was used to distinguish pedestrians from vehicles and 
to distinguish standard vehicles (cars, SUVs, minivans) from mid-size vehicles (delivery 
trucks, large pickups) and large trucks (such as garbage trucks and tractor trailers) for our 



camera looking orthogonal to the entry road. Table 4 (right) shows the results of a size 
search used for object classification. 
 
8.4 Search by Object Shape 
Currently our system does not support explicit search by shape.  However as described in 
the object classification section, shape of objects is used to determine the class. 
 
8.5 Search by Object Movement 
Object movement can be qualified by several parameters such as speed, acceleration, 
direction, and extended properties of the objects trajectory (like finding all people 
walking in a zigzag manner through the parking lot).  The SSE computes several of these 
parameters for use in evaluating user specified events like directional motion of the 
object.  At this time, our search interface only provides the ability to search based on the 
speed of the object.  
 
8.6 Search by Object Location 
This is achieved by storing the entire trajectory of the object into the database.  The 
tracker (described in 4.2) generates a trajectory for each moving object in the scene in 
image coordinates. When the user selects a region of interest (ROI) within an image 
(yellow box), this is used to generate an SQL query which retrieves  all the objects whose  
trajectories intersect the ROI. Figure 12 (left) shows the results of events recovered when 
the user selects the yellow region outlined in the image. 
 

 
Figure 12. (Left) Results of spatial search, showing the trajectories of all objects that 
passed through the user-selected yellow region.  The user can click on the trajectory 
to view the corresponding video clip.  (Right) Loitering events (note the long person 
trajectories) retrieved by using the event duration query. 

 
 
8.7 Search by Time of Occurrence of Events 
Every event indexed into the database is required to have an event start timestamp and 
event end timestamp (see section on data structure).  These time stamps are used to 



retrieve events within the user specified time of interest. Currently we only support 
retrieval of events that occurred: a) before a user specified time b) after a user specified 
time c) during a user specified interval. 
 
8.8 Search by Duration of Event 
Every event recorded by the system has an associated time duration.  The duration of an 
event can be used for multiple purposes.  Below are sample events from a query for 
events of duration longer than 50 seconds. These sample events demonstrate how 
loitering can be detected by using the event duration query (figure 12 right). 
 
 
9. Compound Search 
 
All the criteria discussed above can be combined into a single query to search for events 
of greater complexity. Consider the following scenario: Employees at a facility have 
registered a complaint that one of the drivers from an express mail company is driving 
very fast in the parking lot.  Since it is known that the delivery truck is yellow, we can 
use the composite query as follows: 
FIND ALL,  Object Type = “VEHICLE”, Object Size  > X1 and Object Size <X2,  
Object Color = Yellow, Object Speed > S1 
Applying such a query to events over a month would help establish a pattern of speeding 
violations committed by the delivery truck, thus narrowing down the specific driver. 
 
10.   Compound Spatio-Temporal Search 
 
In a number of applications, the events of interest are a combination of basic events over 
space (cameras) and time. Figure 13 shows a detected tailgate event at the entrance by 
using the spatio-temporal event detection method. First, the tailgate event is described by 
using the building blocks and operators shown in Fig. 13(a). The three primitives here 
correspond to the opening of the gate, detection of two cars in the ROI (Region of 
Interest) after the gate, and the closing of the gate respectively. The middle primitive 
event in Fig. 13(a) is defined so that it will be detected when there are two objects in the 
ROI. As can be seen in Figures 13(b) and 13(c), the second and third primitives are 
detected successfully. The opening of the gate cannot be detected due to weather 
conditions affecting the performance of the background subtraction algorithm. (This 
refers to subsection 4.2 on Moving Object Detection and Tracking. )Then, the description 
of the scenario was modified as shown in Figure 13(d) where the first primitive is 
changed so that it can detect a vehicle right at the gate. In this case, the first primitive can 
be detected successfully as well. 
 
Many complex events, such as a person entering the building and then removing an 
object or a person jumping over a fence and entering a specified region, can be expressed 
in terms of primitive events and detected by using the proposed system. We also tested 
our system successfully with several scenarios like people tailgating to enter the building 
and a truck following an unusual path defined on the views of four cameras. These events 



were defined and introduced to the system by people with no technical expertise by using 
the proposed scheme and the interface. 

 
                          Figure 13. Detecting a “tailgate” event. 
 
11.  Search Performance 

 
The performance of a search system can be characterized along two dimensions: 
precision and recall.  These dimensions provide a measure of how well the system is 
meeting the requirements of the user’s query.  The precision and recall of the overall 
system is a function of the precision and recall of each of the individual video parsing 
mechanisms (face, license plate, etc).  The previous sections have presented the results 
for people detection.  The precision and recall of all of the other retrieval techniques such 
as color, size, location, event time, and event duration are dependent on the precision and 
recall of the underlying event parsing system (object detection and tracking).  A detailed 



evaluation of event parsing (detection and tracking) can be found in  (Brown 2005a, 
2005b) 
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As shown in Table 5, we used a test set of videos which was hand marked by a person for 
objects in each frame and tracks over the sequence. The results of running our base object 
detection and tracking algorithms are shown in Tables 6 and 7. At the selected operating 
point (set of thresholds of object size, sensitivity of detection thresholds, track match 
thresholds, etc.) the base performance of the detection and tracking algorithms is good on 
objects that are of significant size (above 169 sq. pixels). The false positives when 
measured at a track level tend to be very short lived trajectories (77 frames, less than 3s).  
Typically, events that occur in the real world are of significantly longer duration.  While 
improvement in the base event parsing is always desirable, the current level of 
performance is more that adequate for a search and real-time alert in retail and city 
surveillance. 

 
                   Table 7                                                                   Table 8      
Object Tracking Performance Summary                  Retrieval Time Summary 

Object Tracking Results

169 sq-pixelsAvg size of missed tracks

24/90 = 26.6% False Negatives (missed tracks)

25  with average length of 77 framesFalse Positives (spurious tracks)
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Table 8 shows a summary of retrieval time for the system. This is the time between the 
user launching a query and the system responding with results.  This time varies widely 
based on the type of query, with location searches being the most expensive and searches 
based on native SQL types falling into a different bucket.  Below is a sample 
performance result for color retrieval, which is a native SQL query.    

 
12. Conclusions 
 
Enabling effective search of surveillance video is a challenging problem, as it involves 
not only the challenges of extracting events and activities in video, but also the 
challenges of generating searchable meta-data, efficient indexing into a database and 



intuitive search and visualization mechanisms.  The current activities in research and 
industry have only begun to scratch the surface of the challenges involved in surveillance 
video.   
 
This chapter presented a framework for addressing detection, query and retrieval issues in 
surveillance video using the IBM Smart Surveillance System. This system has a broad 
range of detection capabilities which can be used to automatically monitor a scene in 
real-time including person/vehicle recognition, color identification, complex alert 
detection, face capture, and people counting. This framework can also manage the 
unwieldy amount of surveillance data, perform event-based retrieval and receive real time 
event alerts through a standard web infrastructure. This latter capability enables large 
distributive systems which can scale to a large number of cameras and facilities. The 
system can also extract long term statistical patterns of activity to facilitate traffic 
monitoring and improved understanding of operational conditions. Lastly, the system is 
an open and extensible framework which can easily integrate multiple independently 
developed event analysis technologies in a common infrastructure. 
 
 Many challenges and research opportunities remain open in the space of surveillance 
video analysis and search. Examples include dealing with the challenges of searching for 
color across varying scene conditions such as time of day, camera settings, lighting etc., 
searching for people who have been seen earlier (in different cameras, on different days, 
under different lighting conditions) or dealing efficiently with indexing large amounts of 
video and providing intuitive interfaces for enabling search and interaction. One “Grand 
Challenge” is to reduce the time to investigate situations like the London bombings or the 
Washington sniper incident and find the perpetrators in a timely fashion. 
 
13. Future Research Directions 
 
We are planning to investigate on-line learning techniques to improve the performance of 
our algorithms in specific scenarios. Conventional offline methods are designed for 
generic scenarios, often involving large training sets with samples drawn independently 
from some probabilistic distribution. Offline training can be very computationally 
expensive, like the adaboost learning process for face detection, which can take order of 
weeks to be completed in conventional machines. In contrast, on-line learning methods 
use one example at a time to update the learning parameters and thus are more suitable to 
process large amounts of data.  A key advantage of these techniques is adaptation to new 
environments. Consider as an example a face detector which is deployed in a particular 
camera. With online learning, the detector would continuously tune its parameters to 
adapt to the particular camera conditions (like lighting, background, etc.) as new data 
arrives. 
 
Currently, our visual object tracker is restricted to a single camera. We plan to extend our 
approach to track objects across multiple cameras. This is a very challenging problem, as 
objects can change their appearance dramatically from one camera view to another, due 
to different camera viewpoints and camera intrinsic properties like different color 
responses. Obtaining reliable solutions for this problem will allow us to better monitor 



sites such as retail stores, where we may desire to analyze the complete trajectories of 
people across multiple cameras. 
 
We also plan to incorporate other computer vision modules in our system, such as face 
analysis for gender and age classification, activity recognition (e.g., detection of a person 
falling down), more sophisticated trajectory analysis and clustering, tracking and object 
classification in crowded environments, and many others. All these new modules can be 
easily integrated in our system framework as DLL plug-ins.  
 
Thus far our system relies on static cameras, which allows us to use background 
modeling techniques to segment moving objects. In many cases, however, this 
segmentation may be very poor due to crowded scenarios or extreme lighting changes. A 
more interesting issue happens when we consider moving cameras, rather than static 
cameras. In this case, background modeling is meaningless. We are currently 
investigating analytics modules that work well in these circumstances. 
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