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Sequential Point Clouds: A Survey
Supplementary

Haiyan Wang and Yingli Tian, Fellow, IEEE,

Abstract—Point clouds have garnered increasing research attention and found numerous practical applications. However, many of these
applications, such as autonomous driving and robotic manipulation, rely on sequential point clouds, essentially adding a temporal
dimension to the data (i.e., four dimensions) because the information of the static point cloud data could provide is still limited. Recent
research efforts have been directed towards enhancing the understanding and utilization of sequential point clouds. This paper offers a
comprehensive review of deep learning methods applied to sequential point cloud research, encompassing dynamic flow estimation,
object detection & tracking, point cloud segmentation, and point cloud forecasting. This paper further summarizes and compares the
quantitative results of the reviewed methods over the public benchmark datasets. Ultimately, the paper concludes by addressing the
challenges in current sequential point cloud research and pointing towards promising avenues for future research.

Index Terms—4D sequential point cloud; Deep learning; Flow estimation; Object detection & tracking; Point cloud segmentation; Point
cloud forecasting.

✦

1 COMMON DEEP NETWORK ARCHITECTURES

In this section, we briefly summarize the common deep
networks for general feature learning of high dimensional data.
There are mainly two streams methods. One is applying the
convolution neural networks to directly learn the spatio-temporal
features (Sec. 1.1). Another stream is adopting the recurrent
networks and recurrently comprehending the hidden states (Sec.
1.2).

1.1 Convolution Neural Network
According to the representation of the input data, these methods
can be categorized into grid-based and point-based architectures.

1.1.1 Grid-based Architectures
These methods transfer point clouds into regular representations
such as voxel or point tube, which could further support the
common convolution layers to extract features. Figure 1 shows a
standard grid-based network for feature learning.
4D MinkNet [3] was the first one to exploit the common deep
learning network on high-dimensional data. It adopted the idea from
Sparse Tensor [9] and proposed a generalized sparse convolution
to operate SPL. The proposed convolution layer can be blended
with various deep networks and well generalized to different tasks.
To deal with the computational problem when generalizing the
convolution to high dimensional spaces, the authors designed a
novel kernel that is not hyper cubic and thus diminishes the memory
cost. Moreover, the high-dimensional conditional random fields
were introduced to enforce the consistency between the space and
time domains. Incorporating all of these designs, MinkNet was
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Fig. 1: The illustration of a Grid-based Architecture. The figure is
reproduced based on [3].

established to provide a general deep network to handle sequential
point clouds.
PSTNet [6] was another grid-based method which performs
spatio-temporal convolution on the sequential point clouds. They
decoupled the spatial and temporal information from the input raw
point clouds which is shown to be more reasonable and effective.
Unlike the above-mentioned method MinkNet [3], which are based
on sparse convolution, PSTNet developed a Point tube structure to
manage the input data and conduct the proposed convolution. The
point tube incorporated the spatial and temporal kernels separately
to capture the spatio-temporal local structure information. To
tackle both the sequence-level and point-level classification tasks
such as semantic segmentation, the authors introduced the PST
convolutions and transposed convolutions to construct the PSTNet
hierarchically.

1.1.2 Point-based Architectures
These methods assemble the network based on a set of MLP (Mul-
tiple Layer Perception) layers and aggregate feature information
from neighborhood regions along with both spatial and temporal
domains. We show a point-based architecture in Figure 2.
MeteorNet [11] was a seminal work that explores deep learning on
the SPL data with a direct point-based method. Treating PointNet++
[15] as an elementary unit, it proposed an architecture to digest
the input point cloud sequences by early/later fusion methods,
which provided a common solution to learn sequential point cloud
features. Moreover, another core contribution was that they fused
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Fig. 2: The illustration of a point-based architecture build upon
[11].

the temporal information by explicitly grouping the meaningful
neighbor regions. Two grouping methods were proposed to solve
the problem, direct grouping and chain-flow grouping. The direct
grouping-based method increased the radius monotonically with
the time increases to search the nearest neighbor region. The chain-
flow-based method predicted the flow using the offline network
Flownet3D [10] to better find the correspondence between frames.
The scene flow could help to find a better search radius to confirm
the nearest neighbor region.

1.2 Recurrent Neural Network

Besides the convolution networks, the recurrent neural network
is another intuitive method to process SPL data. PointRNN [5]
proposed a Point Recurrent Neural Network (PointRNN) to learn
the representation of moving point clouds. PointRNN extended the
idea from the 2D RNN to the 3D/4D RNN. Meanwhile, due to the
problem of representing the point cloud into a single state vector,
PointRNN separated the position features and auxiliary features
to sever as the state vectors for updating. Another problem when
applying RNN to point clouds is that simple concatenation of data
over the temporal series cannot be conducted due to the point
clouds being unordered. Instead, PointRNN tackled this problem
by adopting a correlation layer between the previous state vector
and current input data. It would search the nearest neighbor points
linked to the query point and concatenate them separately. The final
pooling operation would extract a single vector from the previous
representations. The authors affirmed the effectiveness of LSTM
for the moving point cloud prediction task.

1.3 Discussion

All of the above-mentioned deep learning methods investigated
general pipelines to conduct feature learning from SPL data.
Here we briefly summarize the characters of different network
architectures:

• Convolution Neural Networks exploit operations over the
entire spatial and temporal domain. The extracted spatial
and temporal features have a more mutual impact. Thus these
networks focus more on the feature consistency along temporal
sequence. Some high-level tasks which require a better
semantic understanding such as detection and segmentation
will benefit more from feature learning of Convolution Neural
Network.

• Essentially, Recurrent Neural Networks emphasize more
on the long-range dependency along the time dimension.
The temporal relation between distinct frames is explicitly
represented by their recurrent design. Thus, those long-range
sequence tasks are more appropriate with Recurrent Neural
Network such as action recognition or object tracking.

2 DATASETS

We summarize the datasets commonly used in SPL analysis in
Table 1.
ATG4D Dataset [14] consists of 5,000 sequences of training
data including total 1.2 million Lidar sweeps, while the testing
set contains 500 sequences and 5,969 sweeps. The dataset is
captured by the Velodyne 64E LiDAR and is mainly used for
motion forecasting tasks.
Flythings3D Dataset [12] is currently the largest synthetic dataset
for scene flow estimation which contains about 22,000 stereo
frames with spatial size of 960x540 pixels. These images are
rendered from randomized synthetic sequences along with moving
objects from ShapeNet [19]. The ground truth annotations include
segmentation maps, disparity maps, disparity changes, and optical
flow maps. Thus, the point cloud sequences can be reconstructed
from the disparity maps and the corresponding groundtruth scene
flow annotations can be obtained through back-projecting the 2D
optical flow maps and disparity changes to the 3D space.
KITTI Dataset [8] is popular dataset and widely used for object
detection and tracking tasks. It consists a total of 50 sequences
with the split of 16 training sequences, 5 offline testing sequences
and 29 online testing sequences. Specifically, sequence 0 to 15 are
adopted for training and sequence 16 to 20 for offline testing.
KITTI Raw Dataset [7] is adopted for the sequential foresting task
which is a superset for other KITTI versions such KITTI Scene
flow, detection, etc. The raw KITTI dataset contains a total of 151
sequences of Lidar data, which is divided into 60, 46, and 45 for
train, val, and test respectively.
KITTI Scene Flow 2015 Dataset [13] is a real dataset that is
proposed/designed for autonomous driving along with the deep
learning tasks such as flow estimation, SLAM (Simultaneous
Localization and Mapping), semantic & instance segmentation,
depth prediction & completion, and object detection & tracking.
The dataset has been collected around the city of Karlsruhe,
Germany using RGBD cameras and a Velodyne 64 LIDAR scanner.
Based on KITTI dataset [8], Menze et al. [13] took advantage
of raw data and augmented it with detailed 3D CAD models,
leading to a KITTI scene flow estimation benchmark with annotated
groundtruth. There are a total of 200 training and 200 test scenes
and previous research [4], [10], [18] removed the useless points
belong to ground to better focus on the scene flow information.
Since there is no groundtruth annotation in the testing dataset,
researchers often choose 150 out of 200 training scenes as their
training set and the rest 50 as their testing set.
NuScenes Dataset [2] is a large-scale autonomous driving dataset
collected by Motional, with the purpose of aiding computer vision
research and improving the safety of self-driving. The whole dataset
consists of 1000 outdoor scenes where 850 scenes are used for
training and validation, and the rest 150 scenes are for testing.
There are a total of 1.4M object bounding boxes in 40k keyframes
which are 7 times more object annotations than KITTI dataset
[8]. The segmentation annotation covers 32 semantic categories
resulting 1.4 billion annotated points across 40,000 pointclouds.
SemanticKitti [1] is built upon KITTI [8] Odometry dataset, Se-
manticKitti is a large-scale dataset containing semantic annotations
for sequential point clouds. The Lidar point clouds are scanned at
a rate of 10 Hz which help to better understand both semantic and
temporal information. The whole dataset consists of 22 point clouds
sequences and 43,551 point cloud frames. Specifically, they are
divided with 19,130 frames (sequence 0 to 10) for training, 4,071
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TABLE 1: Summary of the commonly used SPL datasets.

Datasets Size Annotation Train&Val/Test Synthetic
ATG4D [14] 5,500 sequences, 1.2M frames Motion trajectory 5,000/500 (Frame) ×

Flythings3D [12] 22,000 pair frames Point-wise scene flow 20,000/2,000 (Frame) ✓
KITTI [8] 21 sequences, 7,987 frames Bounding box; Object ID 16/5 (Sequence) ×

KITTI Raw [7] 151 sequences Raw data (Point clouds) 106/45 (Sequence) ×
KITTI Scene Flow [13] 150 pair frames Point-wise scene flow 100/50 (Pair) ×
NuScenes Dataset [2] 1,000 scenes, 0.3M frames Bounding box; Motion trajectory 850/150 (Scene) ×

SemanticKitti [1] 22 sequences, 43,551 frames Point-wise class label; Object ID 19,130/4,071 (Frame) ×
Synthia 4D [16] 6 sequences, 22,589 frames Point-wise class label 20,703/1,886 (Frame) ✓

Waymo Open Dataset [17] 1,150 sequences, 20M frames Bounding box; Scene flow 1,000/150 (Sequence) ×

TABLE 2: Comparison of Point Cloud and Depth Image

Point Cloud Depth Image
Pros
1. Data Representation Points can carry diverse attributes, like color and intensity. Structured grid format simplifies many processing tasks.
2. Flexibility Can represent sparse or dense areas with equal ease. Uniform resolution across the image.
3. Use Cases Versatile for diverse applications from 3D reconstruction to Lidar processing. Easily paired with traditional color cameras for RGB-D data.
Cons
1. Memory Consumption Can consume significant memory for dense data. Fixed memory based on image resolution.
2. Processing Requires specialized algorithms and data structures due to unordered data. Limited to depth information unless paired with color.
3. Resolution Density and accuracy can vary across different sections. Cannot represent sparse data as effectively as point clouds.

frames (sequence 8) for validating and 20,351 frames (sequence
11 to 21) for testing. They provide challenges for both 3D and 4D
semantic segmentation. There are a total of 25 object classes and
the 3D semantic segmentation task only evaluates the performance
of the 19 classes which are all static scenes or objects, while the
4D semantic segmentation task involves the 6 more moving classes
leading to a more challenging situation. The temporal information
between multiple frames is crucial to obtain better performance on
the 4D semantic segmentation task.
Synthia 4D Dataset [11] Synthia [16] is a large synthetic dataset
collected for scene understanding, self-driving, and semantic
segmentation purpose. It contains more than 200,000 HD images
from videos and 20,000 HD images from snapshots under different
styles of scenes including European style, modern city, highway,
and green areas. The dataset provides groundtruth annotation for
13 class labels of semantic segmentation, depth estimation, and
car ego-motion. Recently, MeteorNet [11] creates a Synthia 4D
dataset derived from Synthia dataset. They generate 3D videos by
back-projecting the depth image to the 3D space. The 6 sequences
are selected under 9 weather conditions in different scenarios.
Waymo Open Dataset (WOD) [17] is a recent large-scale self-
driving dataset including two datasets including perception and
motion dataset. The whole dataset contains 1,150 scenes where the
training, validation and testing split consists of 798, 202, and 150
scenes respectively. The perception dataset is annotated with 1,950
lidar sequences while the motion dataset has 103,354 sequences.
Each sequence is collected at sampling frequency of 10Hz and last
20s.

3 POINT CLOUD VS DEPTH IMAGES

We here compare the data difference between point cloud and depth
image. Point clouds are collections of data points in 3D space that
can encompass diverse attributes like color and intensity. As shown
in Table 2, their flexibility allows them to represent both sparse
and dense areas seamlessly, making them versatile for applications
ranging from 3D reconstruction to Lidar processing. However, they
often require significant memory, especially for dense datasets,
and their unordered nature demands specialized algorithms for

processing. Additionally, point clouds can sometimes have varying
density and accuracy across different sections.

On the other hand, depth images are 2D representations where
each pixel’s value indicates the distance from the camera to the
real-world point. Their structured grid format is beneficial for
simplifying many processing tasks, and they maintain a consistent
resolution throughout the image. When combined with traditional
color cameras, depth images can produce RGB-D data. Despite
these advantages, depth images have a fixed memory footprint
based on their resolution, mainly provide depth information (unless
paired with color), and aren’t as adept at representing sparse data
compared to point clouds.
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