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Abstract—Understanding human behavior and activity facilitates advancement of numerous real-world applications, and is critical for
video analysis. Despite the progress of action recognition algorithms in trimmed videos, the majority of real-world videos are lengthy
and untrimmed with sparse segments of interest. The task of temporal activity detection in untrimmed videos aims to localize the
temporal boundary of actions and classify the action categories. Temporal activity detection task has been investigated in full and
limited supervision settings depending on the availability of action annotations. This paper provides an extensive overview of deep
learning-based algorithms to tackle temporal action detection in untrimmed videos with different supervision levels including
fully-supervised, weakly-supervised, unsupervised, self-supervised, and semi-supervised. In addition, this paper reviews advances in
spatio-temporal action detection where actions are localized in both temporal and spatial dimensions. Action detection in online setting
is also reviewed where the goal is to detect actions in each frame without considering any future context in a live video stream.
Moreover, the commonly used action detection benchmark datasets and evaluation metrics are described, and the performance of the
state-of-the-art methods are compared. Finally, real-world applications of temporal action detection in untrimmed videos and a set of

future directions are discussed.

Index Terms—Action Understanding, Temporal Action Detection, Untrimmed Videos, Deep Learning, Full and Limited Supervision.

1 INTRODUCTION

This paper provides a comprehensive overview of
automatic action detection in videos. Temporal action
detection aims to detect the start and end of action instances
in long untrimmed videos and predict the action categories.
Spatio-temporal action detection further localizes actions
in both temporal and spatial domains. Online action
detection requires detecting actions in each frame without
considering the future context. Action detection is crucial
for many video analysis applications such as sport analysis,
autonomous driving, anomaly detection in surveillance,
understanding instructional videos, etc. Learning with
limited supervision is a scheme where annotations of
actions are unavailable or only partially available during
the training phase. Because annotating long untrimmed
videos is very time-consuming, designing action detection
methods with limited supervision has been very popular.
This survey reviews action detection task in temporal and
spatio-temporal domains, offline and online setting, and
with full and limited supervision.

1.1

Social networks and digital cameras have led to substantial
video and media content produced by individuals each
day. Hence, video understanding continues to be one of
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Temporal Action Detection Task
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Fig. 1. Temporal action detection aims to localize action instances in time
and recognize their categories. The first row demonstrates an example
of action “long jump” detected in an untrimmed video from THUMOS14
dataset [1]. The second row is an example of an untrimmed video
including several action instances of interest with various lengths.

the essential research subjects in computer vision. While
deep learning has accomplished remarkable performance in
many computer vision tasks, video understanding is still far
from ideal. Action understanding, as a vital element of video
analysis, facilitates the advancement of numerous real-
world applications. Collaborative robots need to recognize
how the human partner completes the job to cope with
the variations in the task [2]. Sport analysis systems
must comprehend game actions to report commentaries
of live activities [3]. Autonomous driving cars demand
an understanding of operations performed by surrounding
cars and pedestrians [4].

In this paper, we define trimmed videos as pre-segmented
video clips that each contains only one action instance. In
other words, the context of the action, i.e., moments before



or after the action are not included in the video. Therefore,
action detection in trimmed videos only need to classify
the action categories without the need to detect starting
and ending timestamps. Recognizing actions in trimmed
videos has many applications in video surveillance,
robotics, medical diagnosis [5], and has achieved excellent
performance in recent years [6], [7], [].

However, the majority of videos in the wild, i.e., recorded
in unconstrained environments, are naturally untrimmed.
Untrimmed videos are lengthy unsegmented videos that may
include several action instances, the moments before or after
each action, and the transition from one action to another.
The action instances in one video can belong to several
action classes and have different duration.

Temporal activity detection in untrimmed videos aims to
localize the action instances in time and recognize their
categories. This task is considerably more complicated
than action recognition which merely seeks to classify
the categories of trimmed video clips. Fig. 1 shows an
example of temporal activity detection in an untrimmed
video recorded in a stadium. The first row demonstrates the
detection of action “long jump” in temporal domain where
the start and end time of the action are localized. The goal
is to only detect the actions of interest, i.e., actions that belong
to a predefined set of action classes. The temporal intervals
of other activities that do not belong to this set of actions
are called temporal background. For example, the segments
right before or right after action “long jump” may belong
to other diverse activities such as crowd cheering in the
stadium. In some cases, the frames right before or right after
an action are visually very similar to the start or end of the
action which makes the localization of action intervals very
challenging. Another challenge (as shown in the second row
of Fig. 1) is that action instances may occur at any time of
the video and have various duration, lasting from less than
a second to several minutes [9].

Temporal action detection mainly targets activities of high-
level semantics and videos with a sparse set of actions
(e.g., actions only cover 30% of the frames in [10]).
However, in some cases, the goal is to predict action
labels at every frame of the video. In such cases, the
task is referred to as temporal action segmentation which
targets the fine-grained actions and videos with dense
occurrence of actions (93% of the frames in [11]). One can
convert between a given segmentation and a set of detected
instances in the temporal domain by simply adding or
removing temporal background segments [12]. Temporal
action detection similar to object detection belongs to the
family of detection problems. Both of these problems aim
to localize the instances of interest, i.e., action intervals in
temporal domain versus object bounding boxes in spatial
domain, Fig. 2 (a and c¢). When targeting fine-grained
actions, temporal action detection (segmentation) is similar
to semantic segmentation as both aim to classify every
single instance, i.e., frames in temporal domain versus pixels
in spatial domain, Fig. 2 (b and d). As a result, many
techniques for temporal action detection and segmentation
are inspired by the advancements in object detection and
semantic segmentation [13], [14], [15].
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Fig. 2. Task Relations: (a) Temporal detection of action “Long Jump” on
THUMOS 14 [1]. (b) Temporal detection (segmentation) of fine-grained
actions shown by different colors in a “making pancakes” video on
Breakfast [11]. (c) and (d) Results from [16] on PASCAL [17].
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Spatio-temporal action detection further localizes actions in
both temporal and spatial domains. In the “long jump”
example (Fig. 1), this task requires predicting the temporal
boundaries of the action, detecting the bounding box of the
person performing the action in each frame, and recognizing
the action category. Action detection can be studied in
offline or online settings. In offline setting, the goal is
to localize action instances and predict their categories in
recorded videos using the full content of the video. Online
action detection requires the detection of actions in each frame
upon arrival without considering the future context in a live
video stream.

Action detection has drawn much attention in recent years
and has broad applications in video analysis tasks. As
surveillance cameras are increasingly deployed in many
places, the demand for anomaly detection has also surged.
Anomalous events such as robbery or accidents occur less
frequently compared with normal activities and it can be
very time-consuming to detect such events by humans.
Therefore, automatic detection of suspicious events has a
great advantage. By growing popularity of social media
many people follow online tutorials and instructional videos
to learn how to perform a task such as “changing the car
tire” properly for the first time. The instructional videos
are usually untrimmed and include several steps of the
main task, e.g., “jack up the car” and “put on the tire” for
changing the tire. Automatic segmentation of these videos to
the main action steps can facilitate and optimize the learning
process. Another application is in sport video analysis to
localize the salient actions and highlights of a game and
analyze the strategies of specific teams. Furthermore, action
detection has a critical role in self-driving cars to analyze
the behavior of pedestrians, cyclists, and other surrounding
vehicles to make safe autonomous decisions.

1.2 Taxonomy

To the best of our knowledge, this is the first comprehensive
survey describing deep-learning based algorithms for
activity detection in untrimmed videos with different
supervision levels. Temporal action detection methods with
full and limited supervision are discussed in Sections 2.2
and 2.3, respectively. Spatio-temporal action detection and
online action detection are briefly reviewed in Sections 2.4
and 2.5, respectively. Section 3 summarizes action detection
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benchmark datasets, evaluation metrics, and performance
comparison among the state-of-the-art methods. Finally,
Section 4 discusses the real-world applications of action
detection and potential future research directions. A brief
introduction of the tasks is provided below.

Temporal Action Detection (TAD): This task aims to
detect temporal boundaries and labels of action instances
in untrimmed videos. Depending on annotation availability
in training set, temporal action detection can be studied in
the following settings (see Table 1).

e Fully-supervised TAD: Temporal boundaries and
labels of action instances are available for training.

o« TAD with point-level supervision: A single frame
within the temporal window of each action instance is
annotated for all videos.

o Weakly-supervised TAD: Only video-level labels of
action instances are available in most cases.

e Semi-supervised TAD: The data is split to a small
set Sg and a large set S;. The videos in Sg are
fully annotated while the videos in S;, are either not
annotated or only annotated with video-level labels.

e Unsupervised TAD: No annotations of the action
instances are available.

o Self-supervised TAD: A pretext task is defined
to extract features from large databases in an
unsupervised setting by leveraging its structure.
The pre-trained models are then used to improve
the performance for temporal action detection
(downstream task) which can be supervised,
unsupervised, or semi-supervised.

o TAD with limited supervision: This setting includes
weakly-supervised, unsupervised, self-supervised, and
semi-supervised settings.

TABLE 1
Main categories of temporal action detection task with different
supervision levels in training set. “v” indicates “available”; “X” is for
“unavailable”, and « is “partially available”.

Supervision Level | Action Temporal Boundaries | Action Labels

Fully-supervised v v
Weakly-supervised X v
Unsupervised X X
Semi-supervised * *
Self-supervised Vx X vV X

Spatio-temporal Action Detection: This task aims to
localize action instances in both spatial and temporal
domains, and recognize the action labels.

Online Temporal Action Detection: Given an incoming
stream of video frames, this task aims to classify actions
at each frame without seeing the future, by processing the
data up to the current time.

2 AcTION DETECTION METHODS

We begin this section by introducing important technical
terms in Section 2.1. Temporal action detection methods
with full and limited supervision are described in Sections
2.2 and 2.3, respectively. Spatio-temporal action detection is
reviewed in Section 2.4, and online action detection is briefly
discussed in Section 2.5.

2.1 Term Definition

To facilitate reading subsequent sections, we define some of
the common terms here.

Definition 1. Temporal action detection. This task aims
to find the temporal boundaries and categories of actions
in untrimmed videos. For a given video, annotation ¥,
includes a set of action instances as the following

Uy = {pn = (ts,nstens ln)}ﬁf:h @
where N is the number of action instances, and ¢, is the
n-th action instance. The start time, end time, and label of
¢r, are denoted by t; ., ten, and [, respectively. Label I,
belongs to set {1,--- ,C}, where C' is the number of action
categories in the whole dataset. Annotation ¥, can be fully,
partially, or not available for the videos in training set.

Definition 2. Temporal proposals. Temporal proposal P, is
a temporal region of an input video that is likely to contain
an action of interest. P, is identified with a starting time
ts n, an ending time t.,, a predicted action label /,,, and
a confidence score c¢,. Confidence score is the predicted
probability that the interval contains an action. Proposal P,
can be formulated as P, = (ts.n,te,n; ln;s Cn)-

Definition 3. Temporal IoU (tloU). This is the ratio of
temporal intersection over union between two temporal
intervals. It is often measured between a predicted proposal
(interval I,) and its closest ground-truth action instance

(interval I;), formulated as tIoU (1), 1) = Zgﬁ :

Definition 4. Temporal proposal labeling. For a given
action class ¢, the predicted proposals with label ¢ are
matched to ground truth actions with label ¢ using
tloU. Each proposal is matched with the annotated action
with maximum tloU. Proposals with tloU above a given
threshold are declared as true positives. To penalize multiple
detections of the same action, at most one proposal (with
the highest confidence score) is assigned to each annotated
action instance and the remaining proposals are declared
as false positives. Ground truth action instances with no
matching proposals are declared as false negatives.

Definition 5. Precision and recall for proposal generation.
Precision is the ratio of true positive proposals to the total
number of predicted proposals. Precision must be high to
avoid producing exhaustively many irrelevant proposals.
Recall is the ratio of true positive proposals to the total
number of ground-truth action instances. Recall must be
high to avoid missing ground-truth instances.

Definition 6. Actionness score. Actionness score a; is the
occurrence probability of any action of interest at time ¢ .



Definition 7. Startness and endness scores. Startness score
(endness score) at any time is the probability that any action
of interest starts (ends) at that time.

Definition 8. Action completeness score. The maximum
tloU between a candidate proposal and ground truth action
instances is action completeness score of that proposal.

Definition 9. Action classification. Temporal proposals are
fed to action classifiers to produce a probability distribution
over all action classes where the maximum probability is
the action classification score. Some methods use their own
action classifier while others utilize classifiers from earlier
work such as SCNN [18], UNet [19], and Cuhk [20] for a fair
comparison. More details are provided in the Appendix.

Definition 10. Video Feature Encoding. Untrimmed videos
are often lengthy and can be as long as several minutes.
Thus, it is difficult to directly input the entire video to
a visual encoder for feature extraction due to the limits
of computational resources. A common strategy for video
representation is to partition the video into equally sized
temporal intervals called snippets, and then apply a pre-
trained visual encoder over each snippet. Then, each video
can be represented with a sequence of visual features that
are further processed for action detection. Common visual
encoders are I3D [21], Two-stream [22], C3D [23], TSN [24],
ResNet50 [25], R2+1)D [26], and P3D [27]. The features
extracted from pre-trained visual encoders are typically
trained for trimmed action classification tasks and are
not necessarily suitable for temporal localization. Recently,
researchers have proposed pretraining for localization to learn
video representations that are more transferable to action
localization [28], [29], [30], [31], [32]. More details are
provided in the Appendix 1.1.1.

2.2 Temporal Action Detection with Full Supervision

In fully-supervised action detection, the temporal
boundaries and labels of action instances are provided
for each video of training set (annotation ¥, in Eq. (1)
is fully provided). During inference, the goal is to detect
the temporal boundaries of action instances and predict
their labels. A main step in action detection is to generate
temporal proposals (def 2) with high precision and recall
(def 5). Fully-supervised temporal proposal generation
methods can be categorized to anchor-based (Section 2.2.1)
and anchor-free (Section 2.2.1). Some methods combine
the advantages of anchor-free and anchor-based proposal
generation methods (Section 2.2.3). Section 2.2.4 reviews
common loss functions that are used during training for
proposal evaluation. Section 2.2.5 discusses modeling
long-range dependencies of video segments in untrimmed
videos to improve action localization.

2.2.1 Anchor-based Proposal Generation and Evaluation

Anchor-based methods, also known as top-down methods,
generate temporal proposals by assigning dense and multi-
scale intervals with pre-defined lengths to uniformly
distributed temporal locations in the input video. Formally,
given a video with 7' frames, £ temporal positions, known
as anchors, are uniformly sampled from every o frames.
The proposal lengths must have a wide range to align
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Fig. 3. Anchor-free vs anchor-based proposal generation.

with action instances of various lengths in untrimmed
videos [9]. Therefore, multi-scale temporal windows are
centered around each anchor as initial temporal proposals
(e.g., windows with 2% frames for 4 < k < 9 in [18]).
To evaluate the quality of temporal proposals for action
classification, action completeness, boundary regression
(Section 2.2.4), fixed-size features must be extracted from
multi-scale proposals. Earlier methods uniformly sample
fixed number of frames from proposals for feature extraction
[18] or concatenate the features of fixed-size intervals [33],
[34]. Such strategies do not extract rich features to represent
the temporal and semantic structure of the proposals. The
following feature extraction strategies were later proposed
to improve the quality of features: 1) Rol Pooling [35], 2)
Multi-tower Network [13], 3) Temporal Feature Pyramid
Network (TFPN) [36], and 4) U-shaped Temporal Feature
Pyramid Network (UTFPN) [37]. The details of these
methods are explained in Appendix.

2.2.2 Anchor-free Proposal Generation and Evaluation

Anchor-free methods employ a bottom-up grouping
strategy for proposal generation, often based on predicting
actionness, startness, and endness scores (def 6, 7) at
each temporal position of the video. They are capable to
generate proposals with precise boundaries and flexible
duration as the proposal lengths are not predefined. Anchor-
free temporal proposal generation was first introduced in
TAG [38] to group continuous temporal regions with high
actionness scores (def 6) using a classic watershed algorithm
[39] on complemented actionness scores. The proposal
features were extracted with temporal pooling which is too
simple to represent the temporal context.

BSN [40] proposed to predict actionness, startness and
endness signals (def 6, 7), and generate flexible proposals
by matching the temporal positions that are high in
startness and endness scores. The proposal features were
constructed by concatenation of a fixed number of points,
sampled from probability signals by linear interpolation.
BSN Proposals are generated and evaluated separately
which is inefficient and ignores the global context of the
video. To mitigate this problem, BMN [41] captures the
global context of the video by aggregating the features
of all proposals and simultaneously evaluating them all.
However, they ignore the global information for boundary
prediction leading to inaccurate localization for actions
with blurred boundaries. This issue was addressed in
DBG [42] by employing global information to predict
boundary probabilities. AFSD [43] predicts the distance
to the temporal boundaries for each temporal location



in the feature sequence, and proposed a novel boundary
refinement strategy for precise temporal localization. BC-
GNN [44] proposed to model the relations between the
boundary and content of proposals by constructing a graph
where boundaries and content of proposals are taken as
nodes and edges, and their features are updated through
graph operations. The updated edges and nodes are used to
predict confidence scores of proposals.

2.2.3 Anchor-based and Anchor-free Combination

Anchor-based methods consider segments of various
lengths as initial proposals but since the segment sizes
are designed beforehand, they cannot accurately predict
the temporal boundary of actions with various lengths.
Anchor-free methods generate flexible proposals but
usually exploit local context to extract action boundary
information. Therefore, they are sensitive to noise, likely
to produce incomplete proposals, and fail to yield robust
detection results. Several methods proposed to balance the
advantages and disadvantages between anchor-based and
anchor-free approaches for proposal generation [45], [37],
[46], [47]. Some methods such as MGG [37], PBRNet [46],
and RapNet [47] proposed to generate coarse segment
proposals with UTFPN (anchor-based), and simultaneously
predict fine-level actionness scores (anchor-free) at each
temporal position. Then, actionness information is used to
adjust the segment boundary of proposals.

2.2.4 Common Loss Functions for Proposal Prediction

During the training, the predicted proposals are supervised
with the following common loss functions.

Definition 11. Actionness loss. This is a binary cross-
entropy loss that classifies the temporal proposals as action
or background. Given N proposals, this loss is defined as:

1 N
%“:’ﬁVg;mbg%>+u_b”bgl_%% )

where a; is the predicted actionness score (def 6), and
b, € {0,1} is ground-truth label for the i-th proposal. If the
proposal is positive (def 4), then b; = 1. Otherwise, b; = 0.

Definition 12. Action completeness loss. Given N
proposals, the completeness loss is defined as:

1 N

L =
com Npos vt

where ¢; is the predicted action completeness score (def
8) for i-th proposal, and g; is the ground-truth action
completeness score. d is a distance metric which is often
Lo or smooth L; loss. I; is the label of the i-th proposal
and condition [I; > 0] implies that action completeness is
only considered for positive proposals (def. 4). Ny is the
number of positive proposals during each mini-batch.

Definition 13. Action classification loss. This is the cross-
entropy loss and the probability distribution is over all
action classes and temporal background:

1 N
_ E L
Lcls — _N yat IOg(pi )7 (4)

where [; € {0,1,---,C} is the label of i-th proposal, and plz‘
is the probability of class [;.

Definition 14. Action regression loss. To adjust the
temporal boundary of proposals, the start and end offset
of proposals are supervised by regression loss:

N
1
Lreg = D (05 = 0%3) + (0c,
Npos i—1

—oz )| [li>0], (5

where term o, ; is the difference between the start coordinate
of i-th proposal and the start coordinate of the closest
ground truth action instance. The term oj ; is the predicted
offset. Similarly, o.; and o, are the ground-truth and
predicted offset for end coordinate of the i-th proposal. The
condition [l; > 0] implies that boundary adjustment is only
considered for positive proposals (def. 4).

2.2.5 Modeling Long-range Dependencies

As mentioned earlier, untrimmed videos are often lengthy
and must be partitioned into shorter clips for feature
extraction. Processing these shorter clips independently
can lead to loss of temporal or semantic dependencies
between video segments. The following tools are employed
to capture long-range dependencies in videos: 1) Recurrent
Neural Networks (RNNs), 2) Graph Convolution Networks,
3) Transformers. We provide an overview of these methods
here and more details are provided in Appendix.

Recurrent Neural Networks: In RNN-based methods such
as [48], [49], [501, [51], [52], [53], [54], [55], the hidden state
encodes the information from previous time steps which is
useful to capture temporal dependencies. However, RNNs
are not capable to encode long videos as the hidden vector
gets saturated after some time steps.

Graph Convolution Networks: Graph models [56], [57],
[44], [58], [59] are proposed to model the inter and intra
dependencies of the proposals, exploit the relations between
the boundary and action content of the proposals, and
capture the relations between cross-scale snippets. In some
methods [56], temporal dependencies are employed only for
proposal refinement (not proposal generation).

Transformers: Transformer and attention mechanism are
powerful tools to capture long-range dependencies in
untrimmed videos [60], [61], [62]. Some methods proposed
to directly generate action proposals by mapping a set
of learnable embeddings (the latent representations of the
action queries) to action instances [60], [61], [63]. Despite
having advantage of modeling long-range dependencies,
transformers have high parametric complexity and can lead
to over-fitting on small datasets.

2.3 Temporal Action Detection with Limited Supervision

Fully-supervised action detection requires the annotation
of temporal boundaries and action labels for all action



instances in training videos, which is time-consuming and
costly. To eliminate the need for exhaustive annotations
in the training phase, researchers have explored the
design of efficient models that require limited ground-
truth annotations. We discuss weakly-supervised methods
in Section 2.3.1, and other learning methods with
limited supervision (unsupervised, semi-supervised, self-
supervised, and special supervision) in Section 2.3.2.

2.3.1

Weakly-supervised learning scheme requires coarse-grained
or noisy labels during the training phase. Following
the work of [64], weakly-supervised action detection in
common settings requires only the video-level labels of
actions during training while the temporal boundaries of
action instances are not needed. During testing both labels
and temporal boundaries of actions are predicted. There are
also other weak signals utilized for action detection such as
frequency of action labels [65], and total number of events in
each video [66]. A common strategy in weakly-supervised
action detection is to use attention mechanism to focus on
discriminative snippets and combine salient snippet-level
features into a video-level feature. The attention scores are
used to localize the action regions and eliminate irrelevant
background frames. Attention signals are predicted with
class-specific attention and class-agnostic attention methods
which are discussed in this section.

Weakly-supervised Action Detection

2.3.1.1 Term Definition

To facilitate reading this section, we provide the definition
of frequently used terminologies.

Definition 15. Temporal class activation maps (T-CAM).
For a given video, T-CAM is a matrix denoted by A
which represent the possibility of activities at each temporal
position. Matrix A has n. rows which is the total number
of action classes, and T columns which is the number of
temporal positions in the video. Value of cell Alc,t] is the
activation of class c at temporal position t. A is formulated
as A = WX @b where X € R is a video-level feature
matrix, and d is the feature dimension. Also, W € R"e*d
and b € R, are learnable parameters and & is the addition
with broadcasting operator.

Definition 16. Class-specific attention scores. In a given
video, class-specific attention score is the occurrence
probability of action class c at temporal position ¢, denoted
by alc, t]. Formally, a[c, ] is computed by normalizing the
activation of class c over temporal dimension:

exp(Alc, t
ale,t) = —22AGD (6)
> i—1exp(Ale, 1])
where A is the T-CAM (def. 15), and T is the number
of temporal positions. Therefore, row a. is the probability
distribution of occurrence of class c over video length.

Definition 17. Class-agnostic attention score. In a given
video, class-agnostic attention score, denoted by A, is the
occurrence probability of any action of interest at temporal

6

position t, regardless of the action class. The attention vector
for all temporal positions of the video is denoted by A.

Definition 18. Attention-based aggregated features. The
video-level foreground and background features are
generated using temporal pooling of embedded features
weighted by attention scores. Class-specific features are
defined based on class-specific attention scores a. (def.
16) for each class c¢ while class-agnostic features are
defined based on class-agnostic attention vector A (def.
17). Aggregated foreground feature is most influenced by
feature vectors with high attention that represent actions
while background feature is impacted by features with low
attention. 7" is the video length and X is the video feature
matrix. These features are formulated as the following:

Foreground:  Background:

Class-specific: fe=Xac be = ﬁX(l —ac),

f=2X\ b= AX(1-N).

Class-agnostic: =% =%

2.3.1.2 Class-specific Attention for Action Localization

Class-specific attention module computes the attention
weight a[c, t] (def. 16) for all action classes ¢ and all temporal
positions ¢ in each video. The attention scores attend to the
portions of the video where an activity of a certain category
occurs. Here, we review some of the strategies to learn class-
specific attention with weak supervision.

Class-specific attention learning with MIL: In general
scheme of MIL (multi-instance learning), training instances
are arranged in sets, called bags, and a label is provided for
the entire bag [67]. In the context of action detection, each
video is treated as a bag of action instances. To compute the
loss for each bag (video), each video should be represented
using a single confidence score per category. The confidence
score for each category is computed as the average of
top k activation scores over the temporal dimension for
that category. In a given video, suppose set {t{,t5,--- 15}
are k temporal positions with highest activation scores for
class c¢. The video-level class-wise confidence score s¢ for
class ¢ is defined as s¢ = %Zle Ale, t§] where Ale, tf]
is the activation (def 15) of class c at temporal position
tf. Probability distribution p¢ is computed by applying
softmax function on s¢ scores over class dimension. MIL
loss is a cross-entropy loss applied over all videos and
all action classes. For video i and action class ¢, p{ is the
class-wise probability score, and y{ is a normalized ground-
truth binary label. The number of action classes and videos
are denoted by n. and n. MIL loss supervises class-wise
probability scores and learns T-CAM (def. 15).

AL , , , exp (s°)
Ly =— —yilog(pf), P°==m—"F—- (7)
n ; C:Zl ) Zc:j €xp (SC)

Class-specific attention learning with CASL: The CASL
(co-activity similarity loss) was initially introduced in W-
TALC [68] and is based on ranking hinge loss. The main
idea is that for a pair of videos (with indices m and n)
including the same action class ¢, the foreground features



in both videos (f!*, f' ) should be more similar than the
foreground feature in one video and the background feature
in the other video (b]" or b7) (def. 18). d is a metric (e.g.,
cosine similarity) and ¢ is a margin parameter. The average
of L™ is computed over all video pairs that include action
class c. This loss trains class-specific attention scores a. (f.
and b, are defined based on a, (def. 18)).

C

+ max (0, d(fI, f) — d(b, f) +6)}.

mn __ 1 m n _ m 7
L = 2{maX(O,Cl( ) = d(fI ) +6) ®)

Class-specific attention learning with center loss: Center
loss [69] learns the class-specific centers and penalizes
the distance between the features and their class centers.
3C-Net [65] employed center loss to enhance the feature
discriminability and reduce the intra-class variations. For
each video 7 and each action class ¢, center loss computes
the distance (L2 norm) between class-specific foreground
feature f! (def. 18) and cluster center feature z. (updated
during training), Leenter % > Zc:yi(c)=1 chz — zc||§
Here, N is the number of videos, and condition y*(c¢) = 1
checks if action class c occurs in video i.

2.3.1.3 Class-agnostic Attention for Action Localization

Class-agnostic attention module computes attention A (def.
17) directly from raw data, by applying fully connected and
ReLU layers over video features, followed by a sigmoid
function to scale attention weights to [0, 1].

Class-agnostic attention learning with cross-entropy:
The video-level class-agnostic foreground and background
features f and b (def. 18) are fed to a classification module,
and supervised with a cross entropy loss, where w, s are
the weights of the classification module, C' is the number of
action classes, and y is the label of action that happens in
the video. Label 0 represents the background class.

do exp (we - f)
Prale) = 5 ep (i 1)

Similarly, Ly, is defined for p,, which is a softmax
applied over multiplication of background feature b and
the classification module. This loss trains attention vector A
through class-agnostic features f and b (def 18) [70].

s Lfg=-— IOg(pfg ). )

Class-agnostic attention learning with clustering loss:
Nguyen et al [71] separated foreground and background
using clustering loss by penalizing the discriminative
capacity of background features. Attention A is trained by
separating foreground and background features f and b
(def. 18). Here, u, v are trainable parameters.

el _ e o
T~ exp(uf) +exp(vf) =~ exp(ub) + exp(vb)’
Leuster = — log Zf = IOg 2b- (11)

Class-agnostic attention learning with prototypes:
Prototypical network designed for classification task [72],
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represents each class as a prototype and matches each
instance with a prototype with highest similarity. The
semantically-related prototypes are pushed closer than
unrelated prototypes. RPN [73] proposed a prototype
learning scheme for action localization. For temporal
position ¢ and action class c, the similarity score s; . between
feature x; and prototype p. is computed and similarit;z
vector s; consists of s; . for all classes, s; . = — ||z; — pe||5-
The similarity vector s; is fused with attention score )\; into
a video-level score 3, 5 = Z; AtS¢. Score 5 is supervised
by a classification loss with respect to the video-level labels
to learn attention score \;.

Class-agnostic attention learning with CVAE: DGAM [74]
separated actions from context frames by imposing different
attentions on different features using CVAE [75]. The
objective of DGAM is max¢(o,1] log p(y| X, A) + log p(X|\)
where X denotes the features, y is the video-level label, and
A is the attention signal. The first term encourages high
discriminative capability of the foreground feature f and
punishes any discriminative capability of the background
feature b. The second term is approximated by a generative
model which forces the feature representation X to be
accurately reconstructed from the attention A using CVAE.
By maximizing this conditional probability, the frame-wise
attention is optimized by imposing different attentions on
different features to separate action from context.

2.3.14 Direct Action Proposal Generation

Some methods localize the actions by applying thresholds
on attention scores [70], [68], [76], [19]. Thresholding treats
the snippets independently, neglect their temporal relations,
and is not robust to noises in class activation maps.
AutoLoc [77] directly predicted the temporal boundary
of action instances (inner boundaries), and obtained the
outer boundaries by inflating the inner boundaries. They
designed a novel loss to encourage high activations in the
inner area and penalize high activations in the outer area
because a complete action clip should look different from
its neighbors. CleanNet [78] predicted a temporal contrast
score by summing up actionness, starting and ending scores
(def. 6, 7) for action proposals. The framework is trained
by maximizing the average contrast score of the proposals,
penalizing fragmented short proposals which promotes
completeness and continuity in the proposals.

2.3.1.5 Action Completeness Modeling

Hide-and-seek [76] forced the model to see different parts
of actions by randomly masking different video regions.
However, random hiding does not always guarantee the
discovery of new parts and disrupts the training process.
Step-by-step [79] trained a series of classifiers iteratively to
find complementary action parts, by erasing the predictions
of predecessor classifiers from videos. The major draw-
back with this approach is the computational expense
to train multiple classifiers. Similarly, Zeng et al. [80]
proposed a strategy that selects the most discriminative
action instances in each training iteration and hide them in
the next iteration. CMCS [81] enforced multiple branches in



parallel to discover complementary action parts where each
branch generates a different class activation map (def. 15).
They used diversity loss [82] to encourage the branches to
produce activations on different action parts.

2.3.2 Action Detection with Different Levels of Supervision

In this section, we review action detection methods with
point-level supervision, semi-supervision, self-supervision,
omni-supervision, and in unsupervised setting.

Action Detection with Point-level Supervision: Point-
level supervision is defined as annotating a single frame
within the temporal window of each action instance in
the input video [83], [84], [85]. Point-level supervision
requires extra annotations compared to weakly supervised
methods but still significantly reduces the labeling cost
and provides rich information. SF-Net [83] argued that
single-frame supervision provides strong signals about
the background. They expanded each annotated single
frame to its nearby frames to mine pseudo action
frames and utilized the unannotated frames to mine
pseudo background frames. PTAL [84] performed boundary
regression based on keyframe prediction. Lee et al.
[85] utilized action-background contrast to learn action
completeness from dense pseudo-labels. BackTAL [86]
introduced the background-click supervision by annotating
a random frame from a series of consecutive background
frames. They performed a supervised classification on
annotated background frames to improve the quality of the
class activation sequence (def. 15).

Semi-supervised Action Detection: In a semi-supervised
setting, a small number of videos are fully annotated with
the temporal boundary of actions and class labels, while
many videos are either unlabeled or include only video-
level labels. Many of semi-supervised methods employ
consistency regularization by applying perturbations on
video features and training the model to be robust to
the perturbed inputs [87], [88], [89], [90]. Ji et al. [87]
applied sequential perturbations (time warping and time
masking [91]) on video features. The student model takes
this perturbed sequence as the input, but the teacher model
predicts directly on the original feature sequence. The
student model is optimized with a supervised loss applied
to labeled videos and a consistency loss for all videos.
PM-MT [88] proposed a map warping to generate 2-D
supervision for perturbed video features. KFEC [90] proposed
K-farthest crossover to construct perturbed features. SSTAP
[89] introduced two temporal perturbations, i.e., temporal
feature shift and temporal feature flip. All semi-supervised
methods use 60% of annotated data for a fair comparison
except TTC-Loc [92] (using 30% of labels on THUMOS14
and 2% on ActivityNet 1.3).

Self-supervised Action Detection: Self-supervised learning
refers to training with pseudo labels where pseudo labels
are automatically generated for a pre-defined pretext task
without involving any human annotations. Actionbytes [93]
adopted a self-supervised iterative approach for training
boundary-aware models by decomposing trimmed videos
into ActionBytes. SSTAP [89] designed two pretext tasks, i.e.,
masked feature reconstruction and clip-order prediction,
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to learn the relation of temporal clues and achieved
the state-of-the-art results on ActivityNet-1.3 among semi-
supervised methods. Gong et al. [94] proposed a self-
supervised equivariant transform consistency constraint
and attained the state-of-the-art results on ActivityNet-1.2
among weakly-supervised methods.

Unsupervised Action Detection: Unsupervised learning
does not need any human-annotated labels during training.
Gong et al. [95] used only the total count of unique actions
that appear in the video set as a supervisory signal. They
propose a two-step iterative clustering and localization
procedure. The clustering step provides noisy pseudo-labels
for the localization step, and the localization step provides
temporal co-attention models to improve the clustering
performance.

Omni-Supervised Action Detection: Shi et al. [96] proposed
a multi-level supervision method for action detection. They
incorporated state-of-the-art semi-supervised models into
a fully-supervised action detection backbone [38]. They
designed an unsupervised foreground attention module
to recognize relatively complete actions without extra
annotation cost. Moreover, they considered weakly-labeled
data with only video-level labels and added a classification
loss for the additional weakly-labeled data.

2.4 Spatio-temporal Action Detection

Spatio-temporal action detection aims to localize action
instances in both space and time and recognize the action
labels. In the fully-supervised setting of this task, the
temporal boundary of action instances, the spatial bounding
box of actions at the frame-level, and action labels are
provided during training and must be detected during
inference, shown in Fig. 4. For feature extraction, most
methods combine a 3D-CNN (e.g., I3D [21]) with a region-
based person detector (e.g., Faster R-CNN [97]).

Spatio-temporal Action Detection Task

Actor Bounding Boxes
g = =
="
x *;@é i
- >

T
No Action of Interest ! Action Detected : Long Jump
i

| NoAction of Interest
i

M Time
Action End

v
Action Start

Fig. 4. Spatio-temporal activity detection: action "long jump” is localized
in time and space. Other than temporal interval of the action, bounding
box of the person performing the action is detected in each frame.

Frame-level Action Detection: Advancements in object
detection inspired frame-level action detection methods
to recognize human action classes at the frame level. In
the first stage, action proposals are produced by a region
proposal algorithm or densely sampled anchors. In the
second stage, the proposals are used for action classification
and localization refinement. Hundreds of action proposals
are extracted per video given low-level cues, such as super-
voxels [98], [99] or dense trajectories [100], [101], and then
proposals are classified to localize actions. After detecting
the action regions in the frames, some methods [102], [103],



[104], [105], [106] use optical flow to capture motion cues.
They employ linking algorithms to connect the frame-level
bounding boxes into spatio-temporal action tubes. Another
group [107], [108], [109] rely on an actionness measure, i.e., a
pixel-wise probability of containing any action. They extract
action tubes by thresholding the actionness scores [107] or
by using a maximum set coverage [109]. The output is a
rough localization of the action based on noisy pixel-level
maps. The main disadvantage of these methods is that the
temporal information is not fully exploited as the detection
is performed on each frame independently.

Clip-level Action Detection: Effective temporal modeling
is crucial as some actions are only identifiable when
the temporal context is available. Kalogeiton et al. [110]
proposed an action tubelet detector that takes as input
a sequence of frames and outputs action categories and
regressed tubelets, i.e., sequences of bounding boxes with
associated scores. The tubelets are then linked to construct
action tubes (sequence of action bounding boxes). Gu et
al. [111] further demonstrate the importance of temporal
information by using longer clips. They extend 2D region
proposals to 3D by replicating them over time, but this
approach fails if there is large spatial displacement over
time. Moreover, using long cuboids directly as action
proposals can generate extra noise for action classification.
Yang et al. [112] perform action detection at clip level and
then link them to build action tubes across the video.
They employ a multi-step optimization process to refine
the initial proposals progressively. Other methods [6], [113]
exploited human proposals coming from pre-trained image
detectors and replicated them in time to build spatio-
temporal tubes.

Modeling Spatio-temporal Dependencies: To understand
human actions, some methods model the relation between
actors and contextual information such as other people
and other objects. Some methods used the graph-
structured networks [114], [115] and attention mechanism
[113], [116], [117], [118] to aggregate the contextual
information from other people and objects in the video.
Wu et al. [113] provided long-term supportive information
to model temporal dependencies and relate past and
present information. Girdhar et al. [116] proposed a
transformer-style architecture to aggregate features from the
spatiotemporal context around the actors. Ji ef al. proposed
Action Genome [119] to model action-object interaction,
by decomposing actions into spatio-temporal scene graphs.
Ulutan et al. [117] proposed an attention mechanism to
model the surrounding context of actors by combining the
actor features and contextual features extracted from the
scene. Tomei et al. [120] employed self-attention to encode
people and object relationships in a graph structure, and
use the spatio-temporal distance between proposals. Pan et
al. [118] proposed a relational reasoning module to capture
the relation between the two actors based on their respective
relations with the context.

2.5 Online Action Detection

Given a video stream, online action detection aims to detect
actions by processing the data up to the current time. Given
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the observed frames, a temporal modeling is required to
aggregate discriminative information from the past and
detect current actions. This problem was first introduced by
De Geest et al. [121] and has been used in applications such
as anomaly detection and autonomous driving. We briefly
review action detection methods in online setting.

Temporal Modeling with RNNs: Several methods
adopted RNNs to model temporal dependencies. Gao
et al. [122] proposed an LSTM-based encoder-decoder
network that takes past information and predicts the
future representations, and recognizes actions as early
as possible. Geest et al. [123] designed a two-stream
feedback network using two LSTM streams. One stream
focuses on interpreting the features, and the other captures
the temporal structure and dependencies. Xu et al. [124]
designed the Temporal Recurrent Network to model the
temporal context by predicting future information. They
utilized the future information with historical evidence
under the constraint of an online setting to detect
actions in the current time. Eun et al. [125] argued
that RNN units operate without explicitly considering
whether input information is relevant to the ongoing
action. They proposed a novel recurrent unit that extends
GRU (gated recurrent unit) and learns to determine if the
input information is relevant to the current action. LAP-
Net [126] is an RNN-based method where an adaptive
sampling strategy was proposed to estimate current action
progression and then decide what temporal ranges should
be used to obtain the supplementary features.

Temporal Modeling with Transformer: OadTR [127]
argued that RNNs suffer from nonparallelism and gradient
vanishing and proposed a transformer to recognize current
actions by simultaneously encoding historical information
and predicting future context. The encoder captures
the global interactions between historical observations
while the decoder extracts auxiliary information by
aggregating anticipated future clip representations. LSTR
[128] presented an online temporal modeling to model
activities at different temporal scales with a transformer.
They divided the entire history into the long- and short-term
memories. The encoder compresses the long-term memory
into a latent representation of fixed length, and the decoder
uses a short window of transient frames to perform self-
attention and cross-attention operations.

3 DATASETS AND EVALUATION

In this section, we provide a summary of benchmark
datasets for action detection task in Table 2 (details in
Appendix), describe the evaluation metrics and analyze the
performance of the state-of-the-art methods.

3.1 Evaluation Metrics

We discuss the metrics designed to evaluate the
performance of proposal generation, temporal action
detection, spatio-temporal action detection, and online
temporal action detection.

Temporal Action Proposal Generation. For this task,
Average Recall (AR) with multiple IoU thresholds is
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TABLE 2
The benchmark datasets for temporal, spatio-temporal, and online action detection.

s . #Action Avg Video #Action Instances Multi-label
Dataset Activities Types  #Videos Categories Length (Sec) (avg per video) (#labels per frame)
THUMOS [1] Sports 413 20 212 15.5 No
MultiTHUMOS [52] Sports 413 65 212 97 Yes
Breakfast [11] Cooking 1,712 48 162 6 No
50Salads [129] Cooking 50 17 384 20 No
MPII cooking 2 [130] Cooking 273 59 356 51.6 No
Ava [111] Movies 437 80 900 3,361.5 Yes
TVSeries [121] TV series 27 30 2,133.3 231 Yes
ActivityNet [131] Daily Activities 19,994 200 115 1.54 No
HACS Segment [132] | Daily Activities 50K 200 156 2.8 No
Charades [133] Daily Activities 9,848 157 30 6.75 Yes
COIN [134] Daily Activities 11,827 180 142 39 No
FineAction [135] Daily Activities 17K 106 - 6 Yes

usually used as evaluation metrics. Most methods use IoU
thresholds set [0.5 : 0.05 : 0.95] in ActivityNet-1.3 [131]
and [0.5 : 0.05 : 1.0] in THUMOS14 [1]. To evaluate
the relation between recall and proposals number, most
methods evaluate AR with Average Number of proposals
(AN) on both datasets, which is denoted as AR@AN. On
ActivityNet-1.3, area under the AR vs. AN curve (AUC) is
also used as metrics, where AN varies from 0 to 100.

Temporal Action Detection. For this task, mean Average
Precision (mAP) is used as evaluation metric, where
Average Precision (AP) is calculated on each action
class. On ActivityNet-1.3 [131], mAP with IoU thresholds
{0.5,0.75,0.95} and average mAP with IoU thresholds set
[0.5 : 0.05 : 0.95] are often used. On THUMOS14 [1], mAP
with IoU thresholds {0.3,0.4,0.5,0.6,0.7} is used.

Spatio-temporal Action Detection. Two metrics are
frequently used for this task. First, frame-AP measures the
area under the precision-recall curve of the detections for
each frame. A detection is correct if the intersection-over-
union with the ground truth at that frame is greater than a
threshold and the action label is correctly predicted. Second,
video-AP measures the area under the precision-recall curve
of the action tubes predictions. A tube is correct if the mean
per frame intersection-over-union with the ground truth
across the frames of the video is greater than a threshold
and the action label is correctly predicted.

Online Temporal Action Detection. There are two metrics
for this task. Per-frame mean average precision (mAP)
is the same as mAP for the offline setting. Calibrated
average precision (cAP) was proposed [121] to correct the
imbalance between positive and negative samples, cAP =
> cPrec(k)x* @, where cPrec = ﬁ, I(k)is 1if frame
k is a true positive, P is the number of true positives, and w

is the negative and positive ratio.

Temporal Action Detection Error Analysis. Alwassel et al.
[136] proposed a diagnostic tool to analyze the performance
of temporal action detectors on ActivityNet v1.3 dataset
based on false-positive (FP) and false-negative (FN) errors
(def 4). They classified FP errors into five main groups
and analyzed the impact of error types on the average-

mAP for several state-of-the-art methods. They concluded
that localization error had the most impact among the
studied methods. Localization error is a prediction with the
correct label that fails to meet the tloU threshold with the
ground truth instance. They also defined six main action
characteristics for the ground truth instances and analyzed
the average FN rate across different algorithms for each
characteristic. They found out that actions with ambiguous
temporal boundaries, high temporal context, and short
duration are harder to retrieve.

3.2 Performance Analysis

In this section, we analyze the performance of the state-
of-the-art methods for temporal and spatio-temporal action
detection, and online temporal action detection.

3.2.1 Spatio-temporal Action Detection

Table 3 provides the performance of offline spatio-temporal
action detection methods on AVA 2.1 dataset. ACAR-
Net [118] achieved the best performance by modeling the
relation between two actors based on their interactions
with the context. STAGE [120] achieved the second best
performance by modeling spatio-temporal dependencies
in a graph-based framework. SlowFast [6] achieved the
third best performance by capturing spatial semantics in
a slow pathway and learning temporal information in
fast pathway. LFB [113], VATX [116], and ACAM [117]
modeled spatio-temporal dependencies by using attention
mechanism to aggregate the contextual information.

TABLE 3
Offline spatio-temporal action detection performance on AVA 2.1
validation set, measured by mAP (%) for loU = 0.5. Some methods
used their own person detector (marked with *).

Visual

Method Flow E Pretrained Person Detector | mAP
ncoder

AVATT11] v 13D [21] Kinetics-400 FRCNN [97] 15.8
ACRN [114] v S3D-G [137] | Kinetics-400 FRCNN [97] 17.4
STEP [112] X 13D [21] Kinetics-400 * 18.6
Better-b [138] X 13D [21] Kinetics-600 FRCNN [97] 21.9
SMAD [115] X 13D [21] Kinetics-400 | Daveetal. [139] | 22.2
RTPR [140] v Res101 [25] - * 22.3
ACAM [117] X 13D [21] Kinetics-400 FRCNN [97] 24.4
VATX [116] X 13D [21] Kinetics-400 * 24.9
LFB [113] X Res101 [25] | Kinetics-400 DTRN [141] 27.7
SlowFast [6] X Res101 [25] | Kinetics-600 DTRN [141] 28.2
STAGE [120] X Res101 [25] | Kinetics-600 DTRN [141] 29.8
ACAR [118] X Res101 [25] Kinetics-400 DTRN [141] 30.0




3.2.2 Online Temporal Action Detection

Table 4 provides the performance of online temporal action
detection methods on THUMOS14 and TVSeries datasets.
LSTR [128] and OadTR [127] are transformer-based models
that achieved the state-of-the-art results and demonstrate
the capability of transformers in temporal modeling. WOAD
[142] is flexible to combine weak and strong supervision
but only their results with full-supervision are reported
in Table 4. TEN [143] employed a Non-local [144] block
to capture long-range dependencies and attained stronger
performance compared to RNN-based models [126], [145],

[125].

TABLE 4
Online temporal action detection performance on THUMOS14 and
TVSeries in terms of mAP and cAP, respectively. The methods are
sorted based on their performance on THUMOS14.

Visual . THUMOS14 | TVSeries
Method | g ey | Pretrained-on | " ap o)) | cAP (%)
RED [127] TS[2] | ActivityNet 153 792
TRN [124] TS[22] | ActivityNet 472 83.7
IDN [125] TS[22] | ActivityNet 50.0 84.7
FATS [145] TS[22] | ActivityNet 51.6 81.7
LAP [126] TS[22] | ActivityNet 53.3 85.3
TEN [143] TS[22] | ActivityNet 55.7 85.0
0adTR [127] | TSN [24] | ActivityNet 58.3 85.4
LSTR[128] | TSN [24] | ActivityNet 65.3 88.1
FATS[145] | TSN [24] Kinetics 59.0 346
IDN [125] TSN [24] Kinetics 60.3 86.1
PKD [146] 13D [21] Kinetics 64.5 86.4
OadTR [127] | TSN [24] Kinetics 65.2 87.2
WOAD [142] | I3D[21] Kinetics 67.1 82.2
LSTR[128] | TSN [24] Kinetics 69.5 89.1

3.2.3 Temporal Action Detection

Table 5 provides the performance of offline temporal action
detection methods with full and limited supervision on
THUMOS14 and ActivityNet datasets. Table 6 summarizes
the advantages and limitations of these methods.

Temporal Action Detection with Full Supervision:
ActionFormer [147] outperformed all the state-of-the-art
methods on THUMOS14 and ActivityNet 1.3 datasets, by
combining the advantages of temporal feature pyramid
network (TFPN) with transformer. After ActionFormer
[147], the methods with superior performance on both
datasets are PBRNet [148], VSGN [59], and TSP [28]. They
all obtained average mAP more than 35% on ActivityNet
1.3 and mAP@50 more than 51% on THUMOS14. PBRNet
[148] included a U-shaped temporal feature pyramid
network (UTFPN) with several benefits such as receptive
field alignment and enriching the features with high-level
semantics as well as fine-grained details. VSGN [59] is
graph-based model that exploits correlations between cross-
scale snippets. TSP [28] proposed a temporally sensitive
pretraining paradigm for clip features. The features trained
with the proposed pretraining strategy combined with
an anchor-free graph-based model (G-TAD [58]) achieved
superior performance on ActivityNet 1.3. On average,
methods with anchor-free components (AF or AB+AF)
achieved better performance compared with anchor-
based (AB) methods because they generated proposals
with flexible boundaries. Transformer is a powerful tool
to capture long-range dependencies in videos. Among
transformer-based models, ATAG [62] obtained stronger
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performance on ActivityNet 1.3 but weaker performance
on THUMOS14 which could be caused by high parametric
complexity and over-fitting on such a small dataset. RTD-
Net [61] reduced the number of parameters by designing
a simpler encoder customized with a boundary-attentive
architecture and achieved a better result on THUMOS14 but
weaker performance on ActivityNet 1.3.

Temporal Action Detection with Limited Supervision:
Among weakly-supervised methods, ASM-Loc [149]
achieved the best performance on THUMOS14 by modeling
temporal structures within and across action segments using
self-attention, up-sampling action proposals with short
duration, and proposal refinement. D2-Net [150] addressed
noise in TCAMs (def. 15) by maximizing the MI between
activations and labels within a video and across videos.
ASM-Loc [149] and D2-Net [150] achieved comparable
performance to some of the semi-supervised methods (
[87], [92]). Several methods attempted to address action
completeness with random masking [76], [79]), diversity
loss [81], adversarial loss [151], EM process [152], or
by sub-action modeling [153], [154], [155]. Among them,
AUMN [155] achieved the best performance by modeling
sub-actions with a memory network and self-attention.
Several methods addressed action-Context separation by
using a generative model [74], modeling context [156],
or designing a three-branch attention module for action
instances, context and background [157], among which
ACM-Net [157] achieved the best result. Gong et al.
[94] attained the state-of-the-art results on ActivityNet-1.2
among weakly-supervised methods by proposing a self-
supervised equivariant transform consistency constraint,
confirming the advantages of self-supervised learning.
Methods with point-level supervision (PLS) required extra
annotations compared to weakly supervised (WS) methods
but still significantly reduced the labeling cost. Lee et
al. [85] achieved a significantly stronger performance
compared to all WS and PLS methods by modeling
action completeness from dense pseudo-labels. Among
semi-supervised methods, KFC [90] achieved the best
performance by proposing K-farthest crossover to construct
perturbed features. ACL [95] is an unsupervised method
but still achieved a comparable performance with respect to
earlier weakly-supervised methods [65].

4 DISCUSSIONS

In this section, we describe the application of action
detection and introduce future research directions.

4.1 Applications

Action detection has numerous real-world applications as
most of the videos in practice are untrimmed. In this section,
we describe several applications of this task.

Action Localization in Instructional videos: With the
rising popularity of social media, people worldwide
upload numerous instructional videos in diverse categories.
Millions of people watch these tutorials to learn new
tasks such as “making pancakes” or “changing a flat tire.”
Based on the psychological studies, it has been shown that
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TABLE 5
Performance of offline temporal action detection methods on testing set of THUMOS14 and validation set of ActivityNet (V is the version)

measured by mAP (%) at tloU thresholds. Temporal proposal generation is evaluated with AR@AN (%) metric. The methods are first sorted based
on mAP@0.5 on THUMOS14 dataset, and then based on mAP-average on ActivityNet. The methods that used extra classifiers are marked with

“*” (details in Appendix). Methods are grouped to FS (Fully-supervised), WS (Weakly-supervised), SS (Semi-supervised), SLS (Self-supervised),

US (Unsupervised), MLS (Multi-level Supervision), and PLS (Point-level Supervision). Weakly-supervised methods with additional ground-truth
annotations are marked with . For fully-supervised methods, proposal generation is categorized to anchor-based (AB), anchor-free (AF), and both

(AB+AF). All semi-supervised methods use 60% of annotated data for a fair comparison (except TTC-Loc [92]).

Visual THUMOS14 ActivityNet Code
Group Method Encoder Model mAP (%) AR@AN mAP (%) AR@AN v
0.3 0.4 0.5 0.6 0.7 200 0.5 0.75 0.95 Avg 100
SCNN[19] C3D 0] Multi-stage CNNs (AB) 363 287 190 - B 20.0 . . - . . Tink
*Sst [45] C3D [23] RNNs (AB) - - 230 - - - - - - - - Link
CDC [14] C3D [23] Encoder-Decoder (AB) 401 294 233 131 79 - 45.3 26.0 0.2 23.8 - Link
SSAD [36] TS [22] TEPN (AB) 43 35 246 - - - - - - - - X
R-C3D [35] C3D [23] 3D Rol Pooling (AB) 48 356 289 - - - 26.8 - - 12.7 - Link
SS-TAD [49] C3D [23] RNNs (AB) 45.7 - 29.2 - 9.6 - - - - - - Link
SSN [38] TS [22] Structured Pooling (AF) 519 410 298 - R 489 39.12 2348 549 2398 - Link
*CTAP [45] TS [22] Confidence Estimator (AB+AF) - - 29.9 - - 50.13 - - - - 73.17 Link
CBR [34] TS [22] Cascaded Regression (AB) 50.1 413 310 19.1 9.9 442 - - - - - Link
S3D [158] C3D [23] TFPN (AB) 479 412 326 233 143 - - - - - - Link
DBS [15] TS [22] Spatial-temporal Dependences (AB) 50.6 431 343 244 147 - 432 25.8 6.1 26.1 - X
*BSN [40] TS [22] Boundary Sensitive (AF) 535 450 369 284 200 53.2 5250 3353 885 33.72 74.16 Link
*MGG [37] TS [22] UTFPN (AB+AF) 539 468 374 295 213 546 - - - - 745 X
AGCN [57] C3D [23] Graphs + Attention (AB) 571 516 386 289 17.0 - - - - 30.4 - X
*BMN [41] TS [22] Boundary Matching (AF) 56.0 474 388 297 205 54.7 50.07 3478 829 33.85 75.0 Link
GTAN [159] P3D [27] Gaussian Kernel (AF) 57.8 472 388 - - 54.3 5261 3414 891 3431 74.8 X
*SRG [160] TS [22] Attention (AF) 545 469 391 314 222 56.7 46.53 2998 483 29.72 74.6 X
*DBG [42] TS [22] Dense Boundary (AF) 578 494 398 302 217 545 - - - - 76.6 Link
*G-TAD [58] TSN [24] Graphs (AF) 545 476 402 308 234 - 50.36 34.60 9.02 34.09 - Link
*BC-GNN [44] TS [22] Graphs (AF) 571 491 404 312 231 56.3 50.56 3475 937 3426 76.7 X
FS *BSN++ [161] TS [22] UTFPN + Attention (AF) 599 495 413 319 228 57.6 51.27 3570 833 34.88 76.5 13 X
TAL-Net [13] 13D [21] Multi-Tower Network (AB) 532 485 428 338 208 - 3823 18.30 0 20.22 - X
*BU [162] 13D [21] Consistency Loss (AF) 539 507 454 380 285 55.7 4347 3391 921 3012 752 Link
A2Net [163] 13D [21] TEPN (AB+AF) 58.6 541 455 325 172 - 4355 28.69 37 2775 - Link
*ATAG [62] TS [22] Graphs + Transformer (AF) 62.0 531 473 380 280 59.4 5092 3535 9.71 34.68 76.7 X
*Lianli [164] TS [22] RNNs + Attention (AF) 66.4 584 488 367 255 56.4 47.01 3052 821 30.88 74.4 Link
PGCN [56] 13D [21] Graphs (AF) 636 578 491 - R - 4826 3316 327 3111 - Link
TadTR [63] 13D [21] Transformer (AF) 624 574 492 378 263 - 49.08 3258 849 3227 - Link
AFNet [165] C3D [23] 3D Rol Pooling (AB) 634 585 495 369 235 49.1 36.1 17.8 52 18.6 - X
AGT [60] 13D [21] Graphs + Transformer (AF) 65.0 581 502 - - - - - - - - Link
PBRNet [148] 13D [21] UTFPN (AB+AF) 585 546 51.3 418 295 - 5396 3497 898 35.01 - Link
*RTD-Net [61] 13D [21] Transformer (AF) 683 623 519 388 237 56.4 4721 30.68 8.61 30.83 732 Link
C-TCN [166] 13D [21] UTFPN (AB) 68.0 623 521 - - - 476 319 62 311 - Link
VSGN [59] TSN [24] UTFPN + Graphs (AB+AF) 66.7 604 524 410 304 - 5238 36.01 837 3507 - X
*TSA-Net [167] P3D [27] Multi-Tower Network (AB) 65.6 614 530 424 288 58.3 - - - - - X
MLTPN [168] 13D [21] UTFPN + Attention (AB) 66.0 626 533 370 212 - 4486 2896 430 2827 - X
TSP [28] R(2+1)D [26] Discriminative Pretraining (AF) 69.1 633 535 404 260 - 5126 3712 929 3581 76.6 Link
DaoTAD [169] R50-13D [25] UTFPN (AB) 628 595 538 436 30.1 - - - - - - Link
AFSD [43] 13D [21] TFPN (AB+AF) 673 624 555 437 311 - 52.4 35.3 6.5 34.4 - Link
SP-TAD [170] 13D [21] UTFPN + Attention (AF) 69.2 633 559 457 334 - 50.06 3292 844 3299 - Link
*Liu [171] TS [22] Temporal Aggregation (AF) 689 640 569 463 310 - 50.02 3497 657 3399 - Link
ActionFormer [147] 13D [21] TFPN + Transformer (AF) 755 725 656 56.6 42.7 - 53.5 36.2 8.2 35.6 - Link
Hide-Seek [76] - Completeness with Random Masking 195 127 6.8 - - - - - - - - 12 | Link
UNet [19] UNet [19] Multi Instance Learning 282 211 137 - - - 74 32 0.7 3.6 - 1.2 | Link
Step-by-step [79] TSN [24] Completeness with Iterative Removal | 31.1 225 159 - - - 27.3 14.7 29 15.6 - 12 X
STPN [70] 13D [21] Cross-entropy Loss 355 258 169 99 43 - 29.3 169 26 - - 1.3 | Link
MAAN [172] 13D [21] Marginalized Average Aggregation 411 306 203 12 6.9 - 337 219 55 - - 1.3 | Link
AutoLoc [77] UNet [19] Boundary Contrastive Loss 35.8 29 212 134 58 - 27.3 15.1 33 16.0 - 1.2 | Link
W-TALC [68] 13D [21] Co-activity Similarity Loss 401 311 228 - 7.6 - 37.0 - - 18.0 - 12 | Link
STAR [173] 13D [21] Temporal Modeling with LSTM 48.7 347 230 - - - 31.1 18.8 47 - - 13 X
T CMCS [81] 13D [21] Completeness with Diversity Loss 412 321 231 15 7 - 36.8 22.0 5.6 224 - 1.2 | Link
Cleannet [78] UNet [19] Temporal Contrast Modeling 37 309 239 139 71 - 37.1 20.3 5.0 21.6 - 1.2 X
TSM [174] 13D [21] Temporal Structure Mining 395 319 245 138 7.1 - 28.3 17.0 35 17.1 - 1.2 X
T 3C-Net [65] 13D [21] Feature Learning with Center Loss 409 323 246 - 7.7 - 372 - - 21.7 - 1.2 | Link
Shen et al [153] 13D [21] Completeness with Sub-actions 440 344 255 152 72 - 36.9 23.1 34 228 - 12 X
AG [175] 13D [21] Temporal Modeling with Graphs 473 364 26.1 - - - 294 - - - - 1.2 | Link
1+ BG [71] 13D [21] Background Modeling 46.6 375 268 176 9 - 36.4 19.2 29 - - 13 X
BaSNet [176] 13D [21] Background Suppression 446 360 270 186 104 - 385 242 5.6 243 - 1.2 | Link
RPN [73] 13D [21] Action Prototype Learning 482 372 279 167 8.1 - 37.6 239 54 233 - 1.2 X
WS TSCN [177] 13D [21] Attention Refinement 478 377 287 194 102 - 376 237 57 236 - 12 X
DGAM [74] 13D [21] Action-Context Separation with CVAE | 46.8 382 288 198 114 - 41.0 235 53 244 - 1.2 | Link
Actionbytes [93] 13D [21] Knowledge Transfer from Clips (SLS) 430 358 290 - 9.5 - 39.4 - - - - 1.2 X
ECM [178] 13D [21] Score Consistency 465 382 291 195 109 - 41.0 249 6.5 255 - 1.2 X
Deep Metric [179] 13D [21] Co-activity Loss with Metric Learning | 46.8 - 29.6 - 9.7 - 35.2 - - - - 1.2 | Link
A2CL-PT [151] 13D [21] Completeness with Adversarial Loss 481 390 301 192 106 - 36.8 22.0 52 225 - 1.3 | Link
EM-MIL [152] 13D [21] Completeness with EM 455 368 305 227 164 N 37.4 N - 20.3 - 12 | Link
ASL [180] 13D [21] Generalized Cross-entropy Loss 51.8 - 31.1 - 114 - 40.2 - - 25.8 - 1.2 | Link
Huang et al [154] 13D [21] Completeness with Sub-actions 491 400 314 188 106 - 36.5 228 60 229 - 13 X
CoLA [181] 13D [21] Refinement with Contrastive Loss 515 419 322 220 131 - 427 257 58 26.1 - 1.2 | Link
Acsnet [156] 13D [21] Action-Context Separation 514 427 324 220 117 - 40.1 26.1 6.8 26.0 - 1.2 X
AUMN [155] 13D [21] Completeness with Sub-actions 549 444 333 205 9.0 - 38.3 235 52 235 - 1.3 X
Gong et al. [94] 13D [21] Temporal Transformation (SLS) 50.8 422 329 210 10.1 - 45.5 27.3 54 27.6 - 1.2 X
FAC-Net [182] 13D [21] Foreground-action Consistency 52.6 443 334 225 127 - 37.6 242 6.0 24.0 - 1.3 | Link
Lee et al. [183] 13D [21] Uncertainty Modeling 523 434 337 229 121 - 412 25.6 6.0 259 - 1.2 | Link
ACM-Net [157] 13D [21] Action-Context Separation 550 446 346 218 108 N 40.1 242 6.2 24.6 - 13 | Link
UGCT [184] 13D [21] Uncertainty Modeling 555 465 359 238 114 - 39.1 224 5.8 23.8 - 13 X
D2-Net [150] 13D [21] Discriminative + Denoising Loss 523 434 36.0 - - - 423 255 58 26.0 - 12 | Link
ASM-Loc [149] 13D [21] Temporal Modeling with Self-attention | 57.1 46.8 366 252 134 - 410 249 62 251 - 1.3 | Link
Moltisanti ef al. [185] BN-I[186] Sampling from Single Timestamps 159 125 9.0 - - - - - - - - - X
SF-Net [83] 13D [21] Action-Background Mining 52.8 422 305 206 120 - 37.8 - - 228 - 12 | Link
PLS PTAL [54] 13D [21] Keypoint Detection + Mapper 58.2 471 359 230 128 - - - - - - - X
BackTAL [86] 13D [21] Background-click Supervision 544 455 363 262 148 - 41.5 27.3 47 27.0 - 1.2 | Link
Lee et al. [35] 13D [21] Completeness with Action Contrast 646 565 453 345 218 - 44.0 26.0 59 26.8 - 1.2 Link
TTC-Loc [92], BD [21] Detection with Adaptive Thresholds 52.8 444 359 247 138 - 376 215 47 222 - X
Jietal [87] TS [22] Mean-Teacher Sequential Perturbations | 53.4 452 372 295 205 53.3 - - - - 75.1 X
SS PM-MT [88] TS [22] Mean-Teacher with Map Warping - - - - - 542 - - - - 75.5 1.3 X
*SSTAP [89] TS [22] Mean-Teacher + Pretext Tasks (SLS) 56.5 488 394 305 207 55.0 50.1 349 74 34.0 75.2 Link
*KFC [90] TSN [24] K-farthest Crossover Perturbations 57.7 515 433 324 229 - 51.6 34.9 9.0 344 - X
us ACL [95] BD [21] Tterative Clustering and Localization 39.6 329 250 167 8.9 - 35.2 214 3.1 21.1 - 1.2 Link
MLS Shi et al. [96] TS [22] Unlabeled and Weakly-labeled Data 456 364 262 155 7.10 - 1947 1254 188 1227 - 1.2 | Link
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Summary of temporal action detection methods with full-supervision (FS) and limited supervision (LS). (+) and (—) denote the advantages and

disadvantages.

Group Objective Category Methods Advantages and Limitations
§ [13], [35], [165], [187] | + Efficiently generate multiple-scales proposals.
Anchor-based [571, [166], [ - Proposals are not temporally flexible and precise.
Proposal [56], [63], [63], [164] | + Generate proposals with flexible duration.
Generation Anchor-free [40], [41], [42], [170] - Proposal evaluation is not efficient in some cases.
[44], [58], [62], [161] | - Distorting the information of short actions due to down-scaling.
+ Combining advantages of anchor-based and anchor-free.
Anchor-based +Anchor-free B7L 8L Do) 8] Not an end-to-end network in most cases.
Rol Poolin (35, [165] + Fast feature extraction from multi-scale proposals.
01 Fooling ’ - Proposal features may include insufficient or irrelevant information.
. + Alignment of receptive field to proposal span to extract rich features from proposals.
Fs Multi-tower Network (18, 1e7] - Multiple networks for different anchor sizes (inefficient).
+ Receptive field alignment for multiple anchor sizes in one network.
T;r;‘;};(l;srzl TFPN (301 (491, 11583, Tes] | Lower layers are unaware of high-level information, top layers lack enough details.
Extraction (37, [46], [166], [168] + Receptive field alignment for multiple anchor sizes in one network.
and U-shaped TEPN [ . N d i f ] + Enriching features with both high-level semantics and fine-grained details.
Evaluation ’ ’ - No modeling of temporal dependencies.
RNNs [48], [49] + Modeling long-term dependencies in proposal feature extraction.
. - Hidden vector saturation for long sequences.
Graphs [44], [56], [57], [58] + Modeling temporal dependencies between proposals or video segments.
P [59], [62] - Temporal dependencies are used only for proposal refinement (not generation) in most cases.
+ Modeling temporal structure for proposal generation and evaluation.
Transformer 1603, 1613, 162], 6] - High parametric complexity.
ST . [19], [68], [175], [176] | + Learning temporal class activation maps.
Multi-Instance Learning (MIL) [65], [93] - Only supervising temporal positions with highest activation scores (top-k for predefined k).
o . Co-activity Similarity Loss + Action-background separation, and action intra-class compactness are addressed .
Localization _V‘flth Y arity [68], [175], [179], [93] - Action-context confusion is not addressed.
Class-specific - Relation between different action categories, and action completeness are not modeled.
Attention + Action intra-class compactness by pushing action features to class centers.
Center Loss [65] + Separates different action classes with help of cross-entropy loss.
- Center loss is sensitive to initialization of class centers.
+ Learning class-agnostic attention.
Cross-entropy (CE) Loss 0L 1751, 1711 - Only sensitive to the most discriminative parts of the action, causing incomplete detection.
Localization with Clustering Loss 73 1711 + Separating foreground-background features. ) )
Class-agnostic ” ’ - Force all background features to belong to one class, even if they do not share common semantics.
Attention Prototype Learnin 1731, [154] + Action intra-class compactness, and inter-class separateness.
LS YP & ’ - Sensitive to initialization of prototypes.
. + Separating actions from context frames with a generative model.
Conditional VAE 74 - Not modeling temporal dependencies and relation between sub-actions.
. B . + Predicting boundaries of action instances instead of thresholding on attention signals.
Direct Localization | Boundary Contrast Modeling [771, 78] - Not modeling action completeness.
. e + Hiding video regions or erasing predictions to see different action parts.
Action Masking or Prediction Removal 7ol 791 - Does not guarantee the discovery of new parts and action completeness.
Completeness Diversity Loss 51] + Enforcing the model to discover complementary pieces of an action.
Modeling sity Lose - Imprecise background modeling by violating MIL assumption (uniform negative distribution).
. e + Highlighting less discriminative segments and modeling background more accurately with EM process.
Expectation-Maximization 2 - Not modeling the temporal structure of the video.

simplifying and segmenting the video into smaller steps
(sub-actions) is a more effective way to learn a new task
[188], [189]. Many datasets are designed to study action
localization and action anticipation such as EPIC-Kitchen
[190] and INRIA Instructional Videos Dataset [191]. All
these tasks are directly related to action detection.

Anomaly Detection in Surveillance Videos: Surveillance
cameras are increasingly deployed in public places,
monitoring the areas of interest to ensure security.
Anomalies are significant deviations of scene entities
from normal behavior [192], [193] such as fighting,
traffic accidents, burglary, and robbery. Compared to
normal activities, anomalous events rarely occur. Therefore,
intelligent computer vision algorithms are required to detect
anomalous events automatically, to avoid the waste of
time and labor [194], [195], [196], [197]. In many real-
time applications, the system must detect anomalous events
as soon as each video frame arrives, only based on
history and the current data. To this end, online action
detection algorithms are developed to accumulate historical
observations and predicted future information to analyze
the current events [198], [199], [200], [201], [124].

Action Spotting in Sports: Professional analysts utilize
sports videos to investigate the strategies in a game,
examine new players, and generate meaningful statistics.
They watch many broadcasts to spot the highlights within

a game, which is a time-consuming and costly process.
Automated sports analytic methods can facilitate sports
broadcasts understanding. Human activity localization in
sports videos is studied in [202], [203], [204], [205], salient
game actions are identified in [206], [207], automatic game
highlights identification and summarization are performed
in [208], [209], [210], [211], [212].Action spotting, which is
the task of temporal localization of human-induced events,
has been popular in soccer game broadcasts [3], [213]
and some methods aimed to automatically detect goals,
penalties, corner kicks, and card events [214].

Action Detection in Autonomous Driving: With the
rapid development of vehicles in urban transportation,
autonomous driving has attracted more attention in the
last decades. The cameras assembled on the self-driving
cars capture the real-time stream of videos that need to be
processed with online algorithms. The car should be aware
of the surrounding environment and detect and anticipate
road users activities to adjust the speed and handle
the situation. Therefore, spatio-temporal action localization
algorithms need to be developed to guarantee the safety of
self-driving cars [215], [216], [4].

4.2 Future work

Action localization with limited supervision has drawn
much research attention by skipping exhaustive annotation



of action instances in untrimmed videos. Subsequently,
knowledge transfer from publicly available trimmed videos
is a promising trend to make up for the coarse-grained
video-level annotations in weakly-supervised settings [93],
[217], [218], [219]. Domain-adaptation schemes must fulfill
the domain gap between trimmed and untrimmed videos
to transfer robust and reliable knowledge. The task of
zero-shot temporal activity detection (ZSTAD) is introduced
in [220] to generalize the applicability of action detection
methods to newly emerging or rare events that are not
included in the training set. The task of ZSTAD is highly
challenging because each untrimmed video in the testing set
possibly contains multiple novel action classes that must be
localized and detected. It is worth mentioning that activity
detection with few-shot learning has been recently explored
in [93], [221], [222], [223], [224], [225]. The advancement of
both zero-shot and few-shot action detection is anticipated
in the near future.

5 CONCLUSION

Action detection schemes have expedited the progress in
many real-world applications such as instructional video
analysis, anomaly detection in surveillance videos, sports
analysis, and autonomous driving. The advancement of
learning methods with limited supervision has facilitated
action detection by detachment from costly need to
annotate the temporal boundary of actions in long
videos. This survey has extensively studied recent deep
learning methods for action detection from different aspects
including fully-supervised schemes, methods with limited
supervision, benchmark datasets, and applications. The
performance analysis and future directions are summarized
to inspire the design of new and efficient methods
for action detection that serves the computer vision
community.
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Abstract—Understanding human behavior and activity facilitates advancement of numerous real-world applications, and is critical for
video analysis. Despite the progress of action recognition algorithms in trimmed videos, the majority of real-world videos are lengthy
and untrimmed with sparse segments of interest. The task of temporal activity detection in untrimmed videos aims to localize the
temporal boundary of actions and classify the action categories. Temporal activity detection task has been investigated in full and
limited supervision settings depending on the availability of action annotations. This paper provides an extensive overview of deep
learning-based algorithms to tackle temporal action detection in untrimmed videos with different supervision levels including
fully-supervised, weakly-supervised, unsupervised, self-supervised, and semi-supervised. In addition, this paper reviews advances in
spatio-temporal action detection where actions are localized in both temporal and spatial dimensions. Action detection in online setting
is also reviewed where the goal is to detect actions in each frame without considering any future context in a live video stream.
Moreover, the commonly used action detection benchmark datasets and evaluation metrics are described, and the performance of the
state-of-the-art methods are compared. Finally, real-world applications of temporal action detection in untrimmed videos and a set of

future directions are discussed.

1 METHODS
1.1 Visual Encoder

Untrimmed videos are often lengthy and can be as long as
several minutes, and thus it is difficult to directly input the
entire video to a visual encoder for feature extraction due to
the limits of computational resources. For instance, popular
video feature extractors such as 3D-CNNs can only operate
on short clips spanning about 4 seconds. A common strategy
for video representation is to partition the video into equally
sized temporal intervals called snippets, and then apply a
pre-trained visual encoder over each snippet. Therefore,
each video can be represented with a sequence of visual
features that are further processed for action detection.
Formally, given input video X with [ frames, a sequence S
of snippets with regular duration o is generated. Then, each
snippet is fed to a pre-trained visual encoder such as two-
stream [22], C3D [23], or I3D [21] for feature extraction. In
two-stream network [22], snippet s,, which is centered at ¢,,-
th frame of the video, has an RGB frame 2, , and a stacked
optical flow o, derived around the center frame. The RGB
frame is fed to spatial network ResNet [25], and the optical
flow is fed to temporal network BN-Inception [226]. The
extracted spatial and temporal features are concatenated to
represent the visual feature f, for snippet s,. Similarly,
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in I3D [21], a stack of RGB and optical flow frames from
each snippet are fed to I3D network, extracting spatial
and temporal feature vectors which are then concatenated.
In C3D [23], the frames of each snippet s, are directly
fed to a 3D-CNN architecture to capture spatio-temporal
information.

1.1.1 Pretraining for Localization

Many methods employ features extracted from pre-trained
visual encoders that are trained for trimmed action
classification task. Due to the inherent discrepancy between
video-level classification and clip-level localization,
these features are not necessarily suitable for temporal
localization.  Recently, researchers have proposed
pretraining for localization to learn video representations
that are more transferable to action localization. Alwassel
et al. proposed a Temporally-Sensitive Pretraining (TSP)
strategy [28], and demonstrated that using features
pretrained with TSP significantly improves the performance
on video action localization. They trained an encoder
to explicitly discriminate between foreground and
background clips in untrimmed videos. Xu et al. proposed
a boundary-sensitive pretext (BSP) task [29] to model
pre-training for temporal localization. They synthesized
temporal boundaries in existing video action classification
datasets, and classified the boundary types in a self-
supervised manner. This strategy resulted in learning
video representations that are more suitable for temporal
localization by capturing temporal boundary information
which is required for this task. Zhang et al. also proposed a
self-supervised pretext task to pre-train feature encoders for
temporal action localization [32] in an unsupervised setting.
They randomly selected temporal regions from one video
and pasted them onto different temporal positions of the



other two videos. The pretext task is to align the features
of the pasted action regions from two synthetic videos and
maximized the agreement between them. Xu et al. proposed
a low-fidelity video encoder optimization method and
reduced the mini-batch composition in terms of temporal,
spatial or spatio-temporal resolution [30]. Through this
approach, the gradients flow backwards through the video
encoder conditioned on a temporal action localization
loss, resolving the task discrepancy (between localization
and classification) and providing more useful feature
representations. Xu et al. proposed a novel post-pre-training
approach [31] in which the video encoder is not frozen
during post-pre-training and is trained end-to-end. They
also introduced a contrastive loss to capture visio-linguistic
relations between activities, background clips and language
during training, which leads to learning video features
that are proper for temporal action localization and video
language grounding.

1.2 Action Classification

For a fair comparison, researchers utilize classifiers from
earlier work SCNN-classifier [18], UntrimmedNet [18], [20],
etc. They uniformly sample a constant number of frames
from the video segment and feed it to ConvNets such as
C3D [23], two stream CNNs [22] or temporal segment net-
works [24]. In some cases, the recognition scores of sampled
frames are aggregated with the Top-k pooling or weighted
sum to yield the final prediction. The following methods
use classifier of UNet [19] On THUMOS14 and classifier of
Cuhk [20] on ActivityNet 1.3: BMN [41], SRG [160], G-TAD
[58], BC-GNN [44], BSN++ [161], BU [162], ATAG [62], Lianli
[164], Liu [171], TadTR [63]. On THUMOSI14, the classifier
of UNet [19] is used in BSN [40], MGG [37], DBG [42], TSA-
Net [167], classifier of SCNN [18] is used in Sst [48], CTAP
[45], and classifier of PGCN [56] is used in RTD-Net [61]. On
ActivityNet 1.3, the classifier of Uts [227] is used in BSN [40],
and classifier of UNet [19] is used in RTD-Net [61].

1.3 Temporal Action Detection with Full Supervision

In this section, we first review some of the common
strategies for proposal feature extraction in anchor-based
temporal action detection. Second, we briefly describe the
methods that model long-range dependencies in untrimmed
videos for fully-supervised action detection.

1.3.1 Anchor-based Proposal Generation and Evaluation

In anchor-based action detection methods, fixed-size
features must be extracted from multi-scale proposals to
evaluate the quality of temporal proposals. We provide
an overview of some of the popular feature extraction
strategies in this section.

Rol Pooling: R-C3D [35] extended the idea of 2D Rol
pooling for object detection [97] to 3D Rol pooling to extract
fixed size features from multi-scale proposals. The limitation
of this approach is that the multi-scale proposals at each
location share the same receptive field, which may be too
small or too large for some temporal scales. Therefore, the
extracted feature may not contain sufficient information or
include too much irrelevant information.
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Multi-tower Network: TAL-Net [13] proposed a multi-
tower network, compose of several temporal convNets, each
one responsible for a certain temporal scale. In this design,
the receptive field of each anchor segment is aligned with
its temporal span using dilated temporal convolutions. The
disadvantage of this model is that is built upon multiple
networks and is not computationally fast.

Temporal Feature Pyramid Network (TFPN): In TFPN,
the predictions are yielded from multiple resolution feature
maps. This idea was first introduced in SSD [228] for object
detection, and then extended to temporal domain for action
detection in SSAD [36] and S°D [158]. They proposed an
end-to-end network where the lower-level feature maps
with higher resolution and smaller receptive field are
responsible to detect short action instances while the top
layers with lower resolution and larger receptive field,
detect long action instances. The limitation of this approach
is that lower layers in the pyramid are unaware of high-level
semantic information, and top layers lack enough details, so
they all fail to localize the actions accurately.

U-shaped Temporal Feature Pyramid Network (UTFPN):
UTFPN was designed to connect high-level and low-level
features in TFPN. It was first proposed for object detection in
[229], [230], [231]. Later, it was extended to temporal domain
in MGG [37] and used in [46], [47], [166], [168]. UTFPN
combines high-level features with corresponding low-level
features with lateral connections. The limitation of UTFPN is
lack of long-range dependencies modeling in videos.

1.3.2 Modeling Long-range Dependencies

Recurrent Neural Networks (RNNs), Graph Convolution
Networks, and Transformers have been employed to
capture temporal and semantic dependencies between video
segments in untrimmed videos. We provide a high-level
overview of these methods in this section.

Recurrent Neural Networks: RNNs are used for sequence
modeling and are capable of capturing long-term
dependencies in videos. Sst [48] and SS-TAD [49] used
RNNs for action detection. They partition the video into
equal-length segments and feed each segment to a visual
encoder for feature extraction. At time ¢, visual feature f;
and the hidden state of the previous time step (h;_1) are fed
to a GRU-based architecture to produce hidden state /. This
hidden state is then used to evaluate multi-scale proposals
at time ¢. PSDF [50] captured the motion information over
multiple resolutions and utilized RNNs to improve inter-
frame consistency. Yeung et al. learn decision policies for an
RNN-based agent [51], and later proposed an LSTM model
to process multiple input frames with temporal attention
mechanism [52]. LSTMs are also used in other frameworks
such as [53], [54], [55] to evaluate temporal proposals. The
advantage of RNNs is that the hidden state encodes the
information from previous time steps which is useful to
capture temporal dependencies. However, RNNs are not
capable to encode long videos as the hidden vector gets
saturated after some time steps.

Graph Convolution Networks: A full action often
consists of several sub-actions that may independently
be detected in several overlapping proposals. Based on



this observation, PGCN [56] captured proposal-proposal
relations by applying graph-convolution networks (GCNs).
They constructed a graph where the nodes are the proposals
and the edges weights model the relation between the
proposals. Through graph convolutions feature of each
proposal gets updated by aggregating the information
from other proposals. Fig. 1 shows an example of
modeling proposal-proposal relations with graphs. AGCN
[57] proposed an attention based GCN to model the inter
and intra dependencies of the proposals. Intra attention
learns the long-range dependencies among pixels inside
each action proposal and inter attention learns the adaptive
dependencies among the proposals to adjust the boundaries.
BC-GNN [44] proposed a graph neural network to model
the relations between the boundary and action content
of temporal proposals. G-TAD [58] captures the relations
between different snippets of input video in a graph where
the nodes are temporal segments of the video and the edges
model the temporal and semantic context of the snippets.
VSGN [59] proposed a cross-scale graph pyramid network
which aggregates features from cross scales.
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Fig. 1. Modeling proposal-proposal relations with graph networks.
Proposal ps is influenced by proposals pi, p2, and p4.

Transformers: Transformer and attention mechanism are
powerful tools to capture long-range dependencies between
video segments in untrimmed videos. ActionFormer [147]
combined a multi-scale feature representation with local
self-attention. They used a light-weighted decoder for
action classification and regression. AGT [60] proposed an
encoder decoder transformer to capture non-linear temporal
structure by reasoning over videos as nonsequential entities.
The encoder generates a context graph where the nodes
are initially video level features and the interactions
among nodes are modeled as learnable edge weights. The
decoder learns the interactions between context graph and
latent representations of the action queries. RTD-Net [61]
proposed a relaxed transformer to directly generate action
proposals. The transformer encoder models long-range
temporal context and captures inter-proposal relationships
from a global view to precisely localize action instances.
They also argued that the snippet features in a video
change at a very slow speed and direct employment of
self-attention in transformers can lead to over-smoothing.
They customized the encoder with a boundary-attentive
architecture to enhance the discrimination capability of
action boundary. ATAG [62] also designed an augmented
transformer to mine long-range temporal context for noisy
action instance localization. Despite having advantage
of modeling long-range dependencies in sequential data,
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transformers have high parametric complexity and can
cause over-fitting on small datasets.

2 DATASETS

We provide a summary of benchmark datasets for action
detection task, also shown in Table 1. Gaidon et al. [232],
[233] introduced the problem of temporally localizing
the actions in untrimmed videos, focusing on limited
actions such as “drinking and smoking” [234] and “open
door and sitdown” [235]. Later, researchers worked on
building the following datasets that include large number
of untrimmed videos with multiple action categories
and complex background information. Some of these
datasets target activities of high-level semantics (such as
sports) while others include fine-grained activities (such as
cooking). The details are summarized in Table 1.

e THUMOSI14 [1] is the most widely used dataset for
temporal action localization. There are 220 and 213 videos
for training and testing with temporal annotations in 20
classes. Action instances are rather sparsely distributed
through the videos and about 70% of all frames are labeled
as background. The number of action instances per video on
average is 15.5 (and 1.1 for distinct action instances). Also,
maximum number of distinct actions per video is 3.

e MultiTHUMOS [52] has the same set of videos as in
THUMOS14 [1], but it extends the latter from 20 action
classes with 0.3 labels per frame to 65 classes with 1.5
labels per frame. Also, the average number of distinct action
classes in a video is 10.5 (compared to 1.1 in THUMOS14),
making it a more challenging multi-label dataset. Also,
maximum number of distinct actions per video is 25.

o ActivityNet [131] has two versions, v1.2 and v1.3. The
former contains 9, 682 videos in 100 classes, while the latter,
which is a superset of v1.2 and was used in the ActivityNet
Challenge 2016, contains 19,994 videos in 200 classes. In
each version, the dataset is divided into three disjoint
subsets, training, validation, and testing, by 2:1:1.

e HACS [132] includes 504K untrimmed videos retrieved
from YouTube where each one is strictly shorter than 4
minutes. HACS clips consists of 1.5M/ annotated clips of 2-
second duration and HACS Segments contains 139K action
segments densely annotated in 50K untrimmed videos
spanning 200 action categories.

e CHARADES [133] consists of 9,848 videos recorded by
Amazon Mechanical Turk users based on provided scripts.
This dataset contains videos with multiple actions and
involves daily life activities from 157 classes of 267 people
from three continents. Over 15% of the videos have more
than one person.

e Breakfast [11] includes 1712 videos for breakfast
preparation activities performed by 52 subjects. The videos
were recorded in 18 different kitchens and belong to 10
different types of breakfast activities (such as fried egg or



TABLE 1
The benchmark datasets for temporal, spatio-temporal, and online action detection.

s . #Action Avg Video #Action Instances Multi-label
Dataset Activities Types  #Videos Categories Length (Sec) (avg per video) (#labels per frame)
THUMOS [1] Sports 413 20 212 15.5 No
MultiTHUMOS [52] Sports 413 65 212 97 Yes
Breakfast [11] Cooking 1712 48 162 6 No
50Salads [129] Cooking 50 17 384 20 No
MPII cooking 2 [130] Cooking 273 59 356 51.6 No
Ava [111] Movies 437 80 900 3361.5 Yes
TVSeries [121] TV series 27 30 2133.3 231 Yes
ActivityNet [131] Daily Activities 19,994 200 115 1.54 No
HACS Segment [132] | Daily Activities 50K 200 156 2.8 No
Charades [133] Daily Activities 9,848 157 30 6.75 Yes
COIN [134] Daily Activities 11,827 180 142 39 No
FineAction [135] Daily Activities 17K 106 - 6 Yes

coffee) which consist of 48 different fine-grained actions.
Each video contains 6 action instances on average and only
7% of the frames are background.

e 50Salads [129] contains 50 videos for salad preparation
activities performed by 25 subjects and with 17 distinct
action classes. On average, each video contains 20 action
instances and is 6.4 minutes long.

e MPII Cooking 2 [130] consists of 273 videos with about
2.8 million frames. There are 59 action classes and about
29% of the frames are background. The dataset provides a
fixed split into a train and test set, separating 220 videos for
training.

e COIN dataset [134], [188] contains 180 tasks and 11, 827
videos and 46,354 annotated segments. The videos are
collected from YouTube in 12 domains (e.g., vehicles,
gadgets, etc.) related to daily activities.

e AVA [111] is designed for spatio-temporal action detection
and consists of 437 videos where each video is a 15 minute
segment taken from a movie. Each person appearing in a test
video must be detected in each frame and the multi-label
actions of the detected person must be predicted correctly.
The action label space contains 80 atomic action classes
but often the results are reported on the most frequent 60
classes.

o TVSeries [121] contains 27 episodes of 6 popular TV series,
totaling 16 hours of video. The dataset is annotated with
30 realistic, everyday actions (e.g., open door). 6,231 action
instances. There are multiple actors, and everyone does an
action his or her way. Different actions can occur at the
same time, being performed by the same or multiple actors.
Also, the way the action is recorded can be very different.
The viewpoint is not fixed and part of the action can be
occluded.

e FineAction [135] includes 103K instances of 106 action
categories, annotated in 17K untrimmed videos. The action
categories are collected from the existing benchmarks for
video collection and annotation such as ActivityNet [131]
and Kinetics [21], and contain a wide range from sports

to daily activities. Several finegrained actions can happen
simultaneously and 11.5% of temporal segments have
multiple action labels with overlaps.
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