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Abstract—The advent of cost-effectiveness and easy-operation depth cameras has facilitated a variety of visual recognition tasks
including human activity recognition. This paper presents a novel framework for recognizing human activities from video sequences
captured by depth cameras. We extend the surface normal to polynormal by assembling local neighboring hypersurface normals from a
depth sequence to jointly characterize local motion and shape information. We then propose a general scheme of super normal vector
(SNV) to aggregate the low-level polynormals into a discriminative representation, which can be viewed as a simplified version of the
Fisher kernel representation. In order to globally capture the spatial layout and temporal order, an adaptive spatio-temporal pyramid is
introduced to subdivide a depth video into a set of space-time cells. In the extensive experiments, the proposed approach achieves
superior performance to the state-of-the-art methods on the four public benchmark datasets, i.e., MSRAction3D, MSRDailyActivity3D,
MSRGesture3D, and MSRActionPairs3D.

Index Terms—Human activity recognition, depth camera, feature representation, spatio-temporal information.
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1 INTRODUCTION

R ECOGNIZING human activities has been widely applied
to a number of real-world applications, e.g., human-

computer interaction [26], surveillance event detection [48],
content-based video search and summarization [52], etc.
Human activity recognition can be performed at various
abstract levels. A movement is a primitive motion pattern
that can be depicted at the limb level, e.g., right leg forward
[30]. An action contains a series of atomic movements, e.g.,
running [16]. An activity consists of complex sequence of ac-
tions, e.g., a football team scoring a goal [1]. The three levels
roughly correspond to the low-level, mid-level, and high-
level vision tasks. However, there is no hard boundary but
a significant gray area among the three levels. In this paper,
we use human activity to indicate the general categories at
all three levels, which involve hand gestures, single persons,
multiple people, and human-object interactions.

In the past decades, research on human activity recog-
nition mainly focused on recognizing human activities
from videos captured by conventional visible light cameras.
Along with the advance of imaging techniques, the recently
emerged depth sensor brings great advantages to the task
of activity recognition. In comparison to conventional color
frames in human activity recognition, depth maps have the
following merits: (1) additional shape cues to provide more
informative geometric description, which has been success-
fully applied to recover skeleton joints from a single depth
map; (2) precluded color and texture, which significantly
ease the problems of human detection and segmentation;
(3) robustness to variable lightings, which greatly brings
benefits to the systems working in a dark environment.
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It was recently shown in [27] [47] that conventional
approaches based upon color sequences could not perform
well on depth maps due to a large amount of false point
detections fired on the spatio-temporally discontinuous re-
gions. On the other hand, depth maps and color frames have
quite different properties. The traditional descriptors based
on brightness, gradient, and optical flow in color frames
might be unsuited to represent the depth maps. It is there-
fore more desirable to design new feature representations
according to the specific characteristics of depth maps, e.g.,
cloud points [42] and surface normals [27].

In this paper, we propose a novel human activity recog-
nition framework based on the polynormal which is a group
of hypersurface normals from a depth sequence. A poly-
normal clusters the extended surface normals from a local
spatio-temporal subvolume. It can be used to jointly capture
the local motion and geometry cues. A general feature
coding approach [4] [8] [22] [25] is then employed to com-
pute the visual polynormal dictionary and corresponding
coefficients. We record the coefficient-weighted differences
between polynormals and visual words. These difference
vectors are aggregated through spatial average pooling and
temporal max pooling for each visual word. The aggregated
vectors of all visual words are finally concatenated as a
feature vector, which can be seen as a non-probabilistic
simplification of the Fisher kernel representation [29]. A
further step is to subdivide a depth video into a set of
space-time cells. An adaptive spatio-temporal pyramid is
proposed to capture the spatial layout and temporal order
in a global and flexible manner. The final representation
of super normal vector (SNV) is formed by combining the
vectors extracted from all the space-time cells.

In an extension to [51], the main contributions of the
proposed approach are summarized as follows. First, we
introduce the polynormal through assembling hypersur-
face normals from a local depth subvolume to reserve the
correlation between neighboring normals and make them
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more resistant against noise than the individual normal
[27]. Second, a novel and generalized scheme is proposed
to aggregate low-level polynormals into the discrimina-
tive representation of SNV. Third, we present the adaptive
spatial-temporal pyramid which is better adapted to retain
the spatial layout and temporal order than the widely used
uniform cells [17] [27] [38]. Fourth, we systematically eval-
uate the individual components and parameter selections
in our framework. Moreover, our approach is flexible to
combine with skeleton joints and compute SNV for each
joint trajectory.

The remainder of this paper is organized as follows.
Section 2 introduces the related work on human activity
recognition with depth cameras. Section 3 describes the
concept of polynormal. In Section 4, we provide the detailed
procedures of computing SNV. A variety of experimental
results and discussions are presented in Section 5. Finally,
Section 6 summarizes the remarks of this paper.

2 RELATED WORK

It is of great challenge to recognize human activities in
unconstrained videos due to large intra-class variations
caused by factors such as viewpoint, occlusion, motion style,
performance duration, etc. It is therefore critical to extract
robust representations of spatio-temporal patterns to these
variations. Since most representations proposed for color
videos have been widely shown to be unsuited for depth
sequences, here we focus attention on the related work that
are specifically developed for depth videos. A number of
representations of human activity in depth sequences have
been explored, ranging from skeleton joints [36] [50], cloud
points [40] [42], projected depth maps [20] [49], local interest
points [10], [47] to surface normals [27] [51].

Biological observations [14] indicate that human activ-
ities can be modeled by the motions of skeleton joints. In
[50], joint differences were employed to capture the activity
cues of static postures, consecutive motions, and overall
dynamics. Zanfir et al. [53] proposed the moving pose by
using speed, configuration, and acceleration of joints. A
skeletal representation was introduced in [36] to model the
geometric relationships among various body parts. A dictio-
nary learning and temporal pyramid matching method was
proposed in [24] to compute skeleton joint based representa-
tions. Relative positions of pairwise joints were adopted in
[41] as a complementary feature to characterize the motion
information.

Compared to skeleton joints, cloud points are more ro-
bust to noise and occlusion. Vieira et al. [37] presented the
spatio-temporal occupancy patterns by partitioning a depth
sequence to space-time cells and computing corresponding
occupancy values. Wang et al. [40] [42] proposed the local
and random occupancy patterns to describe depth appear-
ances. In local occupancy patterns [42], they subdivided a
local subvolume associated with each skeleton joint into
a set of spatial cells and counted the number of cloud
points falling into each cell. Similar representations based
on cloud points were applied to the subvolumes sampled
by a weighted sampling scheme in the random occupancy
patterns [40]. A binary range-sample feature based on τ test

of cloud points was introduced in [23] to achieve reason-
able invariance to geometric change in scale, rotatoin and
viewpoint.

Approaches based on projected depth maps usually
transform the problem from 4D to 2D. Li et al. [20] sampled
a number of 2D points along the contours of projected sil-
houettes and retrieved 3D points on depth maps according
to the selected contour points. Each depth map was finally
represented as a bag of 3D points. Our previous work on
depth motion maps [49] stacked differences between con-
secutive projected depth maps from three orthogonal views.
HOG was then extracted from the depth motion maps as the
global representation of a depth video.

Traditional methods based on local interest points devel-
oped for color videos [5] [16] performed poorly on depth
sequences. Several local interest point approaches specif-
ically designed for depth maps were recently proposed.
DSTIP was introduced in [47] to localize activity-related
interest points from depth sequences by suppressing flip
noise. Hadfield et al. [10] extended the detection algorithms
of Harris corners, Hessian points, and separable filters to the
3.5D and 4D for depth videos.

As demonstrated in [35], the surface normal provides
informative shape and structure cues to describe an object
in 3D. HON4D [27] followed this observation to extend
the surface normal to the 4D space and quantized them
by the regular and discriminative learned polychorons. Our
approach presented in this paper proceeds along with this
direction. It is built upon the polynormal which is a cluster
of neighboring hypersurface normals from a local spatio-
temporal depth volume. A novel scheme is designed to ag-
gregate the low-level polynormals in each adaptive spatio-
temporal cell. The concatenation of feature vectors extracted
from all spatio-temporal cells forms the final representation
of depth sequences.

3 POLYNORMAL

The concept of a normal to a surface in 3-dimensional
space can be extended to a hypersurface in m-dimensional
space. The hypersurface can be viewed as a function
Rm−1 → R1 : xm = f (x1, . . . , xm−1), which is repre-
sented by a set of m-dimensional points that locally satisfy
F (x1, . . . , xm) = f (x1, . . . , xm−1) − xm = 0. The normal
vectors to the hypersurface at these points can be computed
by the gradient ∇F (x1, . . . , xm) =

(
∂f
∂x1

, . . . , ∂f
∂xm−1

,−1
)

.
In the context of depth sequences, i.e., m = 4, each cloud
point satisfies F (x, y, t, z) = f(x, y, t) − z = 0. Therefore
the extended surface normal can be obtained by

n = ∇F =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂t
,−1

)T
. (1)

The distribution of normal orientations is more informa-
tive in term of describing object shapes than the distribution
of gradient orientations [27]. In addition to the geometric
properties encoded in the first two terms, the motion cues
are also incorporated in the third term of the normal vector
in Eq. (1). In order to retain the correlation between neigh-
boring normals and make them more robust to noise, we
propose polynormal to assemble the normals from a local
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Fig. 1. Illustration of generating the polynormal for a cloud point pt.
(a) shows a depth sequence of tennis serve and normals associated
with cloud points. For figure clarity, only a few normals are visualized.
The three white squared regions correspond to the neighborhood L. (b)
denotes the extended surface normal vector. (c) If Lx = Ly = Lt = 3,
the polynormal of pt is consisted of the 27 neighboring normals.

space-time neighborhood. Similar ideas have been validated
in other fields. For instance, the spatial neighborhood of
low-level features are jointly encoded in macrofeatures [2]
and convolutional neural networks [19].

A polynormal p associated with each cloud point in a
depth sequence concatenates L normals in the local neigh-
borhood L of each cloud point:

p =
(
nT1 , . . . ,n

T
L

)T
, n1, . . . ,nL ∈ L. (2)

The neighborhood L is a local spatio-temporal subvol-
ume determined by Lx × Ly × Lt, where Lx, Ly , and Lt
denote the number of neighboring points in x, y, and t axes,
respectively. Fig. 1 illustrates the concept of polynormal. A
short sequence of the activity tennis serve is shown in Fig.
1(a). If we set Lx = Ly = Lt = 3, then the polynormal
of the cloud point pt concatenates the 27 normals from the
three adjacent depth maps as shown in Fig. 1(c).

4 COMPUTING SUPER NORMAL VECTOR

In this section, we describe the detailed procedures of com-
puting SNV based on the low-level polynormals. Most of
recent activity recognition approaches hinge on computing
and aggregating statistics of low-level features [39] [40]
[47]. In these approaches, a video representation can be
obtained by extracting low-level features, coding them over
a visual dictionary, and pooling the codes in some well-
chosen support regions. In our proposed framework, we
compute a visual dictionary and code polynormals by a
generalized coding operator. Rather than directly pooling
the coefficients of the coded polynormals, we aggregate
the weighted differences between polynormals and visual
words into a vector. A depth sequence is subdivided into
a set of space-time cells by an adaptive spatio-temporal
pyramid. The feature vectors extracted from each cell are
concatenated as the final representation of SNV.

4.1 Coding and Pooling Polynormals
Our framework is general to various coding and pooling
approaches. Here we introduce the notations and outline
the related methods on coding and pooling used through-
out this paper. We represent a depth video V by a set
of low-level polynormals P = {p1, . . . ,pN} in RM×N .
D = {d1, . . . ,dK} is a visual polynormal dictionary withK
visual words dk ∈ RM . C indicates a set of spatio-temporal
cells with Cj denoting the j-th cell.

Let G and C indicate the general coding and pooling
operator, respectively. A traditional representation of V is
the vector z obtained by sequentially coding, pooling, and
concatenating over all spatio-temporal cells:

αi = G(pi), i = 1, . . . , N, (3)

hj = C
(
{αi}i∈Cj

)
, j = 1, . . . , |C|, (4)

zT =
[
hT1 , . . . ,h

T
|C|

]
. (5)

In the basic bag-of-visual-words framework [4], hard
assignment or vector quantization G minimizes the distance
of pi to D which is commonly learned by K-means. C
performs averaging over each spatio-temporal pooling cell
Cj :

αi ∈ {0, 1}K ,αi,j = 1 iff j = argmin
k

‖pi − dk‖22, (6)

hj =
1

|Cj |
∑
i∈Cj

αi. (7)

In order to enhance the probability density estimation,
soft assignment was introduced in [8]. It codes a polynormal
pi by multiple visual words in D using a kernel function
(e.g., the Gaussian function) of the distance between pi and
dk. Liu et al. proposed local soft assignment in [22] to further
improve the membership estimation to all visual words. By
taking account of the underlying manifold structure of low-
level features, the coding operator G in local soft assignment
only employs the K nearest visual words NK (pi) to code a
polynormal pi and sets its distances of the remaining visual
words to infinity:

αi,k =
exp

(
−βd̂ (pi,dk)

)
∑K
j=1 exp

(
−βd̂ (pi,dj)

) , (8)

d̂ (pi,dk) =

{
‖pi − dk‖2 if dk ∈ NK (pi) ,
∞ otherwise, (9)

where β is a smoothing factor to control the softness of
assignment. As for the pooling operator C in local soft
assignment, it is observed that max pooling in the following
equation outperforms average pooling:

hj,k = max
i∈Cj

αi,k, for k = 1, . . . ,K. (10)

On the other hand, parsimony has been widely em-
ployed as a guiding principle to compute a sparse repre-
sentation with respect to an overcomplete visual dictionary.
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G in sparse coding [25] approximates pi by using a linear
combination of a limited number of visual words. It is well
known that the `1-norm penalty yields a sparse solution for
α. So the sparse coding problem can be solved by:

min
D,α

1

N

N∑
i=1

(
1

2
‖pi −Dαi‖22 + λ‖αi‖1

)
, (11)

subject to dTk dk ≤ 1,∀k = 1, . . . ,K,

where λ is the sparsity-inducing regularizer to control the
number of non-zero coefficients in αi. It is customary to
combine sparse coding with max pooling in Eq. (10).

Fisher vector [29] extends the bag-of-visual-words rep-
resentation by recording the deviation of pi with respect
to the parameters of a generative model, e.g., the Gaussian
mixture model (GMM): Gξ(pi) =

∑
πkGk(pi). We denote

ξ = {πk,µk,σk, k = 1, . . . ,K} where πk, µk, and σk are
the prior mode probability, mean vector, and covariance ma-
trix (diagonal), respectively. Let γi,k be the soft assignment
of pi to the k-th Gaussian component:

γi,k =
πkGk (pi)∑K
j=1 πjGj (pi)

. (12)

We obtain the Fisher vector of V by concatenating the
gradient vectors from each Gaussian components:

ρk =
1

N
√
πk

N∑
i=1

γi,k

(
pi − µk
σk

)
, (13)

τ k =
1

N
√
2πk

N∑
i=1

γi,k

[
(pi − µk)

2

σ2
k

− 1

]
, (14)

where ρk and τ k are M -dimensional gradients with respect
to µk and σk of the k-th Gaussian component. The rela-
tive displacements of low-level features to the mean and
covariance in Eq. (13-14) retain more information lost in the
traditional coding process. The superiority of Fisher vector
was recently identified in both image classification [32] and
human activity recognition [43].

4.2 Aggregating Polynormals
After coding low-level features over a visual dictionary,
they are usually removed in the representation pipeline
[4] [22] [25]. In our framework, we keep the low-level
features by recording the differences between polynormals
and visual words. As demonstrated in [13] [29] [54], the
relative displacements are able to provide extra distribution
information of the low-level features.

Given the low-level polynormals P ∈ RM×N of a depth
sequence V , they are first transformed by a generalized cod-
ing operator G to the decomposition coefficients G(pi)Ni=1

with G(pi) ∈ RK . Each G(pi) is then `1-normalized to
obtain the assignment G(pi)k of the polynormal pi to the
k-th visual word dk. The size of a volume (depth sequence)
where we perform the aggregation is H × W pixels and
T frames. This volume can correspond to either the entire
video sequence or a subsequence defined by a space-time
cell. We denote by Nt the set of indices of polynormals
within the frame t. For each visual word dk, the spatial

average pooling is first applied to aggregate the coefficient-
weighted differences:

uk(t) =
1

|Nt|
∑
i∈Nt

G(pi)k (pi − dk) , (15)

where uk(t) represents the pooled difference vector of the k-
th visual word in the t-th frame. The temporal max pooling
is then employed to aggregate the vectors from the entire
volume containing T frames:

uk,i = max
t=1,...,T

uk,i(t), for i = 1, . . . ,M, (16)

where uk is the vector representation of the k-th visual
word in the whole volume; i indicates the i-th component in
corresponding vectors. The final vector representation U is
the concatenation of the uk vectors from the K visual words
and is therefore of KM dimensions:

U =
(
uT1 , . . . ,u

T
K

)T
. (17)

In order to globally capture the spatial layout and tem-
poral order, a depth sequence is subdivided into a set of
space-time cells by the proposed adaptive spatio-temporal
pyramid (Section 4.4). We extract a feature vector U from
each cell and concatenate them as SNV. This representation
has several remarkable properties. (1) The displacements
between low-level polynormals to visual words retain more
information that could be lost in the feature quantization
process. (2) We can compute SNV on a much smaller
dictionary size (e.g., K = 100) which largely reduces the
computational cost. (3) SNV utilizes a generalized coding
operator which is more efficient and flexible. (4) The spatial
average and temporal max pooling is more effective to
aggregate low-level and mid-level features for videos. (5)
SNV performs quite well with simple linear classifiers which
are efficient in terms of both training and testing.

4.3 Relationship with Fisher Kernel
We now demonstrate that the proposed SNV is a simplified
non-probabilistic version of the Fisher kernel representation
which has been successfully applied in the image and video
classification tasks [32] [43]. Fisher kernel assumes that
low-level features are distributed according to a generative
model such as GMM.

It is shown in [12] that the gradients of the log-likelihood
of GMM with respect to the parameters describe the con-
tributions of these parameters to the generation process
of low-level features. Here we focus on the gradient with
respect to the mean µk to the k-th Gaussian in Eq. (13). Let
Nt denote a general pooling region in this context and |Nt|
the number of low-level features in this region. If making the
following approximations for each Gaussian component:

• the prior mode probabilities are uniformly dis-
tributed, i.e., πk = 1/K ,

• the soft assignment can be estimated by the coding
coefficient, i.e., γi,k = G(pi)k ,

• the mean can be represented by the visual word, i.e.,
µk = dk ,

• the covariance matrix is isotropic, i.e., σk = εI and
ε > 0 ,
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Fig. 2. Comparison between the traditional (top) and our proposed
(bottom) spatial grids. We place the 4 × 3 spatial grid on the largest
bounding box of the human body instead of the entire frame.

we can simplify Eq. (13) to

ρk ∝
1

|Nt|
∑
i∈Nt

G(pi)k (pi − dk) . (18)

If comparing Eq. (15) and Eq. (18), we find that the two
representations are in the same form. A generalized coding
operator G can be utilized in the proposed framework, while
GMM is used in the Fisher kernel representation. We choose
a general coding approach over GMM in our aggregation
scheme because it is more efficient to compute the centers
(i.e., the visual dictionary), in particular, it was recently
demonstrated in [3] that a reasonably good visual dictionary
can be created by some simple methods, for instance, ran-
dom sampling from a training set. In addition, our empirical
evaluations demonstrate that the representation based on a
general coding approach achieves improved or competitive
recognition results.

In image search and retrieval, the vector of locally ag-
gregated descriptors (VLAD) [13] was proposed to encode
descriptors with respect to the visual words that they are
quantized to. VLAD can be seen as a simplified version
of the Fisher kernel representation as well. However, SNV
differs from VLAD in the three main aspects. First, the
aggregation scheme in SNV is based on a general coding
approach which can be hard assignment, (local) soft assign-
ment, or sparse coding. In contrast, VLAD only hinges on
hard assignment. So the aggregation technique in VLAD
can be treated as a special case in our framework. Second,
the difference vectors of SNV in Eq. (15) are weighted
by the coding coefficients, while no weighting is used in
VLAD. Third, SNV applies both spatial average pooling and
temporal max pooling in Eq. (15-16), conversely, difference
vectors are simply summed up in VLAD.

4.4 Adaptive Spatio-Temporal Pyramid

The aforementioned representation of polynormals is order-
less and therefore ignores the spatial layout and temporal
order of a depth sequence, which could have conveyed
discriminative information for human activity recognition.
The dominant approach of incorporating the spatial and

Fig. 3. The frame index and associated motion energy used to build the
adaptive temporal pyramid. The temporal segments are generated by
repeatedly and evenly subdividing the normalized motion energy axis
instead of the time axis.

temporal information is the spatio-temporal pyramid [17],
which repeatedly partitions a video sequence into a set
of space-time cells through a coarse-to-fine manner. Each
cell is then represented independently and the cell-level
histograms hj are finally concatenated into the video-level
histogram z as in Eq. (4-5). Here we propose an adaptive
spatio-temporal pyramid to retain the spatio-temporal cues
in a more flexible way.

In the spatial dimensions, we place a nH × nW grid to
capture the spatial layout. Since the depth maps greatly
facilitate human detection and segmentation, we put the
spatial grid on the largest bounding box of a human body
across the whole video sequence, instead of on the entire
frame as commonly used in traditional pyramid methods
[17] [27] [38]. This makes each cell contain more foreground
information as shown in Fig. 2.

In the temporal dimension, a pyramid based representa-
tion was introduced by Laptev et al. [17] to take into account
the rough temporal order of a video sequence. It was also
widely employed in depth sequences [27] [42] to incorpo-
rate cues from the temporal context. In these methods, a
video sequence (either color or depth) is repeatedly and
evenly subdivided into a series of temporal segments where
the descriptor-level statistics are pooled. However, different
people could have varied motion speed or frequency even
when they are performing the same action. It is therefore
inflexible to handle these variations by evenly subdividing
a video along the time axis. In addition, it is more desirable
to pool the low-level features within the similar action
modes which usually contain the neutral, onset, apex, and
offset statuses [9]. In order to deal with these difficulties,
we propose the adaptive temporal pyramid based on the
motion energy.

Given a depth sequence, we first project the i-th frame Ii

onto three orthogonal planes to obtain the projected maps
Iiv, v ∈ {1, 2, 3}. The difference between two consecutive
maps is then thresholded to generate a binary map. We com-
pute the motion energy by accumulating the summations of
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Fig. 4. SNV based on the skeleton joint trajectory. The trajectory-aligned
volume is subdivided into a set of space-time cells according to the
adaptive spatio-temporal pyramid. Each cell generates a feature vector
of SNV by the spatial average pooling and temporal max pooling.

non-zero elements of the binary maps as:

ε(i) =
3∑
v=1

i−1∑
j=1

sum
(∣∣∣Ij+1

v − Ijv
∣∣∣ > η

)
, (19)

where ε(i) is the motion energy of the i-th frame; η is
the threshold; sum(·) returns the summation of non-zero
elements in a binary map. The motion energy of a frame
reflects its relative motion status with respect to the entire
activity.

As shown in Fig. 3, our proposed motion energy based
adaptive temporal pyramid evenly subdivides the nor-
malized motion energy axis into several temporal seg-
ments, whose corresponding frame indices are used to
partition a video. In this paper, we use a 3-level temporal
pyramid as illustrated in this figure: {t0t4}, {t0t2, t2t4},
and {t0t1, t1t2, t2t3, t3t4}. Together with the spatial grid,
our adaptive spatio-temporal pyramid in total generates
nH × nW × 7 space-time cells.

4.5 Joint Trajectory Aligned SNV
While the framework discussed above operates on the entire
depth sequence, our approach is also flexible to combine
with the recovered skeleton joints [34] to compute SNV by
using each joint trajectory. This is useful in the scenario
where people significantly change their spatial locations
in a depth video. The aggregation process is the same as
the earlier discussion, except the pooling region is based
on the spatio-temporal volume aligned around each joint
trajectory. It was also shown in the dense trajectories [38]
that descriptors aligned with trajectories were superior to
those computed from straight cuboids.

As shown in Fig. 4, the volume aligned with a joint
trajectory can be viewed as a single video sequence with
T frames and each frame has H ×W pixels. We apply the
adaptive spatio-temporal pyramid on this volume to obtain

Algorithm 1: Computation of SNV
Input: a depth sequence V

a coding operator G
a dictionary D = (dk)

K
k=1

a set of space-time cells V = {vi}
Output: SNV

1 compute polynormals {pi} from V
2 compute coefficients {αi} of {pi} by G
3 for space-time cell i = 1 to |V | do
4 for visual word k = 1 to K do
5 uki := spatial average pooling and temporal

max pooling of αi,k (pi − dk), where pi ∈ vi
6 end
7 U i :=

(
u1
i , . . . ,u

K
i

)
8 end
9 SNV :=

(
U1, . . . ,U |V |

)

nH × nW × 7 space-time cells. In each cell, we use the
same aggregation scheme, i.e., spatial average pooling and
temporal max pooling of the coefficient-weighted difference
vectors as in Eq. (15-16). These vectors computed from all
the space-time cells are concatenated as the joint trajectory
aligned SNV. We in the end combine the SNVs aligned with
all the joint trajectories as the final representation of a depth
sequence.

We summarize the outline of computing SNV of a depth
sequence in Algorithm 1. The depth sequence V can be
either a whole video sequence or a volume aligned with
a joint trajectory. The coding operator G applied in the
aggregation is a general coding approach which can be hard
assignment in Eq. (6), soft assignment in the global version
of Eq. (8), local soft assignment in Eq. (8-9), or sparse coding
in Eq. (11). The set of space-time cells V are determined by
the proposed motion energy based adaptive spatio-temporal
pyramid.

5 EXPERIMENTAL RESULTS

In this section we extensively evaluate the proposed ap-
proach on four public benchmark datasets: MSRAction3D
[20], MSRGesture3D [40], MSRActionPairs3D [27], and
MSRDailyActivity3D [41]. In all experiments, we set the
adaptive spatio-temporal pyramid to be of 4× 3× 7 space-
time cells in height, width, and time, respectively. We em-
ploy LIBLINEAR [7] as the linear SVM solver. Our method
is extensively compared to the depth-based approaches.
The methods designed for color videos are not included
in our comparisons because they have been widely shown
to be unsuited for depth sequences. Experimental results
demonstrate that our algorithm significantly outperforms
the state-of-the-art methods on the four benchmark datasets.
Our source code of computing SNV is available online at
http://media-lab.engr.ccny.cuny.edu/data-code/.

5.1 Evaluation of SNV Parameters
Our systematic evaluations of the parameters and settings in
SNV are conducted on the MSRAction3D dataset. In these
evaluations, the sparse coding approach in Eq. (11) is used
as the coding operator G, and the number of visual words is
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Fig. 5. Recognition accuracies (%) of SNV using different sizes LxLyLt
of a local spatio-temporal neighborhood L to form the polynormal.

empirically set to K = 100. We observe that the recognition
accuracy is quite stable with respect to K ranging from 50
to 200. Note this number is order of magnitude smaller than
the ones used in most visual recognition systems [11] [38].

Polynormal Size: We first evaluate the effects of the size
of local neighborhood L to form a polynormal. As discussed
in Section 3, the size of L is determined by Lx×Ly×Lt. Fig.
5 shows the recognition accuracies of SNV built by different
sizes of L. If no local temporal information is embedded in
the polynormal, i.e., Lt = 1, increasing the spatial size of L
improves the performance, e.g., from 1× 1× 1, 3× 3× 1, to
5 × 5 × 1. This benefits from the correlated local geometric
cues provided by the spatial neighborhood of the extended
normals. When Lx and Ly are fixed, the recognition results
with Lt > 1 outperforms the ones with Lt = 1, e.g., the
recognition accuracy of 3 × 3 × 3 is much higher than
the one of 3 × 3 × 1. In addition, the overall performance
of polynormal is superior to that of individual normal.
This shows that the jointly encoded spatial and temporal
cues in the polynormal are powerful to characterize the
low-level motion and shape information. In the following
experiments, we employ the 3× 3× 3 local neighborhood L
to form the polynormals.

Pooling Strategy: We apply the spatial average pooing
and temporal max pooling to aggregate the low-level poly-

Fig. 6. Recognition accuracies (%) of SNV with different combinations
of spatial (S) / temporal (T) and average (Ave) / max (Max) pooling.

Fig. 7. Comparison of recognition accuracies (%) between the proposed
adaptive spatio-temporal pyramid based on motion energy and the
traditional pyramid based on time.

normals, where spatial pooling is local (from one frame) and
temporal pooling is global (across whole video). The spatial
average pooling in Eq. (15) summarizes the coefficient-
weighted difference vectors within each depth map. This
spatial pooling in local averages the low-level elementary
information to mitigate noise. The temporal max pooling
in Eq. (16) records the best response of the intermediate
representations from each frame. This temporal pooling in
global spotlights the mid-level leading cues to reinforce dis-
crimination. Other pooling combinations will impair these
effects, e.g., max pooling in spatial amplifies noise and av-
erage pooling in temporal undermines discrimination. This
design can be also validated from the evaluation results.
Fig. 6 compares the performances of different combinations
of spatial/temporal and average/max poolings. As demon-
strated in this figure, the proposed pooling strategy signifi-
cantly outperforms others. Hence the appropriate choice of
pooling strategy in spatial and temporal is vital to obtain
effective feature representations for video sequences.

Adaptive Pyramid: We compare the performance of the
proposed adaptive spatio-temporal pyramid to the tradi-
tional spatio-temporal pyramid in Fig. 7. Our adaptive pyra-
mid subdivides a video sequence according to the motion
energy in Eq. (19) which describes the relative status of a

Fig. 8. Percentage of the time spent on each major step in computing
SNV with the default parameter setting.
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TABLE 1
Recognition Accuracy Comparison on the MSRAction3D Dataset.

Method Accuracy

Bag of 3D Points [20] 74.70%
HOJ3D [46] 79.00%
EigenJoints [50] 82.30%
STOP [37] 84.80%
Random Occupancy Pattern [40] 86.50%
Actionlet Ensemble [42] 88.20%
Depth Motion Maps [49] 88.73%
Histogram of Depth Gradients [31] 88.82%
HON4D [27] 88.89%
DSTIP [47] 89.30%
Lie Group [36] 89.48%
Pose Set [44] 90.00%
Efficient Pose [6] 90.10%
Moving Pose [53] 91.70%

SNV-Hard 90.91%
SNV-Soft 90.55%
SNV-LocalSoft 93.45%
SNV-Sparse 93.45%

depth frame with respect to the whole activity, while the
traditional pyramid makes segments based on the time.
As demonstrated in the figure, the two methods have the
same performance in level-1 since they both operate on the
same temporal segment which is the entire video sequence.
In level-2 and level-3, our motion energy based approach
largely outperforms the traditional time based method.
When the three levels are combined into the pyramid
representation, our adaptive pyramid achieves over 1.8%
improvement to the traditional pyramid. This evaluation
result demonstrates that the proposed adaptive pyramid is
better adapted to handle the motion variations and capture
the global temporal order.

Computational Complexity: To analyze the computa-
tional complexity of SNV, we compute SNV from 191 depth
sequences with the resolution of 320 × 240 pixels. These
video clips correspond to a total of 7,776 frames. We report
the run time using MATLAB on a desktop with 2.13GHz
CPU and 24G RAM. With intention of having an explicit
comparison of various steps, the adaptive pyramid is not
considered in this evaluation. The average computational
speed is 0.2 frames per second. Fig. 8 shows the percentage
of time spent on each major step in the computation of
SNV. The pooling process which involves spatial-average
and temporal-max pooling takes most of the time with
74.5%. The sparse coding process is the second most time-
consuming step with 14.5%. It only takes 6.9% to compute
polynormals. The run time can be improved by reducing the
densely sampled cloud points or replacing sparse coding
in Eq. (11) with a more computationally efficient coding
approach, e.g., hard assignment in Eq. (6) or local soft
assignment in Eq. (8-9).

In the following, we extensively compare and analyze
the performances of SNV and the state-of-the-art methods
on the four benchmark datasets. We use SNV-Hard, SNV-
Soft, SNV-LocalSoft, and SNV-Sparse in the experiments to
indicate SNV based on hard assignment, soft assignment,
local soft assignment, and sparse coding in the general
coding operator G, respectively.

Fig. 9. Confusion matrix of SNV on the MSRAction3D dataset. This
figure is better viewed on screen.

5.2 Results on MSRAction3D Dataset

The MSRAction3D [20] is an action dataset of depth se-
quences captured by a depth camera. It contains 20 action
categories: high arm wave, horizontal arm wave, hammer, hand
catch, forward punch, high throw, draw x, draw tick, draw circle,
hand clap, two hand wave, side boxing, bend, forward kick, side
kick, jogging, tennis swing, tennis serve, golf swing, and pick &
throw. Each action is performed 2 or 3 times by 10 subjects
facing the camera. These 20 action categories are selected in
the context of gaming and cover a variety of motions related
to arms, legs, torso, etc.

In order to facilitate a fair comparison, we follow the
same experimental setting as [42]. As shown in Table 1, SNV-
Hard and SNV-Soft improves the accuracy over most exist-
ing methods. SNV-Sparse and SNV-LocalSoft both achieve
the accuracy of 93.45% which significantly outperforms
the previous methods. This demonstrates that local soft
assignment and sparse coding provide more discriminative
weighted coefficients in Eq. (15) than hard assignment and
soft assignment on this task. If we only keep the first level,
i.e., {t0t4} in Fig. 3, of the adaptive temporal pyramid,
the accuracy decreases to 92.00%. This validates that the
recognition performance could benefit from the temporal
cues in the global context. We also compute the Fisher vector
representation of our proposed polynormal. It achieves an
accuracy of 92.73%, 0.72% inferior to SNV. We conjecture
this improvement is due to the robust coding coefficient
and simplified clustering estimation. The confusion matrix
of SNV-Sparse is displayed in Fig. 9. Our approach performs
very well on most action categories. The recognition errors
occur on very similar actions, e.g., hand catch and high throw,
draw circle and draw tick.

We compare the performance of SNV with other pub-
lished results in Table 1. The methods solely based on skele-
ton joints are vulnerable to the errors of recovered joints
due to severe self-occlusions. So the model in [44] selects the
best-k joint configurations which largely remove inaccurate
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TABLE 2
Recognition Accuracy Comparison on the MSRGesture3D Dataset.

Method Accuracy

Action Graph on Occupancy [15] 80.50%
Action Graph on Silhouette [15] 87.70%
Random Occupancy Pattern [40] 88.50%
Depth Motion Maps [49] 89.20%
HON4D [27] 92.45%
HOG2 [28] 92.64%
Histogram of Depth Gradients [31] 92.76%

SNV-Hard 94.58%
SNV-Soft 91.50%
SNV-LocalSoft 94.44%
SNV-Sparse 94.74%

joints. The approach in [53] makes use of pose, speed, and
acceleration of skeleton joints. It is able to perform one-shot
learning and low-latency recognition. While still inferior to
our approach, the methods in [37] [40] [42] improve the
results over [46] [50] because cloud points are more resistant
to occlusions and provide additional shape and appear-
ance cues compared to skeleton joints. SNV outperforms
HON4D [27] by 4.56%, though both methods are based on
the extended surface normals. This is mainly because (1)
polynormals obtain more discriminative local motion and
appearance information than individual normals; (2) the
coding operator is more robust than the polychoron and
learned projectors; (3) our aggregation scheme, i.e., spatial
average pooling and temporal max pooling of weighted
difference vectors, is more representative than the simple
summation of inner production values; (4) the adaptive
pyramid is more flexible than the uniform cells to capture
the global spatio-temporal cues.

5.3 Results on MSRGesture3D Dataset
The MSRGesture3D [40] is a dynamic hand gesture dataset
of depth sequences captured by a depth camera. It contains
12 dynamic hand gestures defined by the American Sign
Language (ASL) including where, store, pig, past, hungry,
green, finish, blue, bathroom, z, j, and milk. Most of these hand

Fig. 10. Confusion matrix of SNV on the MSRGesture3D dataset. This
figure is better viewed on screen.

TABLE 3
Recognition Accuracy Comparison on the MSRActionPairs3D Dataset.

Method Accuracy

Skeleton + LOP [41] 63.33%
Depth Motion Maps [49] 66.11%
Histogram of Depth Gradients [31] 74.40%
Skeleton + LOP + Pyramid [41] 82.22%
HON4D [27] 96.67%
MMTW [45] 97.22%

SNV-Hard 100.00%
SNV-Soft 93.33%
SNV-LocalSoft 96.67%
SNV-Sparse 98.89%

gestures are performed with one hand except store and finish
with two hands. Each dynamic hand gesture is performed 2
or 3 times by 10 subjects. Compared to static hand gestures,
both motion and shape convey semantics in dynamic hand
gestures. Due to the articulated nature of hand structure,
this dataset presents strong self-occlusions.

The leave-one-out cross-validation scheme as [40] is used
in our evaluation. As shown in Table 2, SNV-Hard, SNV-
LocaSoft, and SNV-Sparse obtain the comparable and state-
of-the-art results which outperform previous methods. We
argue that the inferiority of SNV-Soft is due to the neglect of
the underlying manifold structure of low-level polynormals
in the global soft assignment of Eq. (8). The polynormal
based Fisher vector achieves an accuracy of 95.83%, but with
the cost of much higher computational complexity. GMM
in Fisher vector is probably able to model polynormal dis-
tribution well in hand gestures which have less variations
than human actions. The confusion matrix of SNV-Sparse is
displayed in Fig. 10. Our approach performs well on most
dynamic gestures. Most confusions occur in recognizing the
gesture green which shares very similar motions to j only
with different fingers. Since the estimation of hand skeleton
joints is not available, the joint-based methods [36] [44] [50]
[53] cannot be used in this application.

5.4 Results on MSRActionPairs3D Dataset

The MSRActionPairs3D [27] is a paired-activity dataset of
depth sequences captured by a depth camera. It contains 12
activities (i.e., 6 pairs): pick up a box, put down a box, pull a
chair, push a chair, wear a hat, take off a hat, take on a backpack,
take off a backpack, stick a poster, remove a poster, lift a box,
and place a box. Each activity is performed 3 times by 10
subjects. This dataset is collected to mainly investigate how
the temporal information influences recognition results and
how the motion and shape cues are correlated in human
activities.

We follow the same evaluation setup as [27] in our
experiment. As shown in Table 3, SNV-Hard and SNV-
Sparse achieve the state-of-the-art accuracies. It is inter-
esting to observe that SNV based on the simple coding
operator of hard assignment in Eq. (6) obtains this excellent
performance. The polynormal based Fisher vector obtains
an accuracy of 98.33%. These promising results benefit from
our robust modeling of the temporal information. In the
framework of SNV, the chronological orders are embedded
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TABLE 4
Recognition Accuracy Comparison on the MSRDailyActivity3D Dataset.

Method Accuracy

LOP [42] 42.50%
Depth Motion Maps [49] 43.13%
EigenJoints [50] 58.10%
Joint Positions [42] 68.00%
NBNN + Parts + Time [33] 70.00%
RGGP [21] 72.10%
Efficient Pose [6] 73.10%
Moving Pose [53] 73.80%
Histogram of Depth Gradients [31] 74.45%
Local HON4D [27] 80.00%
Actionlet Ensemble [42] 85.75%

SNV-Hard 85.62%
SNV-Soft 81.25%
SNV-LocalSoft 85.00%
SNV-Sparse 86.25%

in three levels. In the low-level, the extended surface nor-
mal in Eq. (1) incorporates the temporal deviation between
adjacent frames. In the mid-level, the polynormal in Fig. 1
further encodes the local temporal cues. In the high-level,
the adaptive temporal pyramid in Fig. 3 captures the global
temporal order. If no adaptive temporal pyramid is used,
SNV-Sparse still achieves an accuracy of 97.78%. This fur-
ther demonstrates that the local temporal cues enclosed in
the polynormal already well reflect the chronological orders.
It is therefore crucial to capture the temporal information in
order to distinguish the activities with similar motions but
different chronological orders.

Comparisons to other methods are shown in Table 3. The
skeleton feature [42] involves pair-wise difference of joint
positions within each frame. The LOP feature [42] is used to
characterize the shape. It counts the number of cloud points
falling into each spatial grid of a depth subvolume. No
temporal information is encoded in the two features. In the
depth motion maps [49], depth sequences are collapsed onto
three projected maps where temporal orders are eliminated.
These methods therefore suffer the inner-paired confusions.
The skeleton and LOP features equipped with a uniform
temporal pyramid improve the recognition result as the
global temporal order is incorporated. However, this result
is still significantly inferior to ours. Because of the high
recognition accuracy, the confusion matrix on this dataset
is omitted.

5.5 Results on MSRDailyActivity3D Dataset

The MSRDailyActivity3D [42] is a daily activity dataset of
depth sequences captured by a depth camera. It includes
16 daily activities performed by 10 subjects: drink, eat, read
book, call cellphone, write, use laptop, vacuum clean, cheer up,
sit still, toss paper, play game, lie down, walk, play guitar, stand
up, and sit down. Each subject performs each activity twice,
one in standing position and the other in sitting position.
Compared to the other three datasets, people in this dataset
present large spatial and scaling changes. Moreover, most
activities involve human-object interactions.

In order to handle the large spatial and scaling varia-
tions, we employ the joint trajectory aligned SNV on this

Fig. 11. Confusion matrix of SNV on the MSRDailyActivity3D dataset.
This figure is better viewed on screen.

dataset. Each joint is tracked through the whole depth se-
quence. A support region or depth patch is associated with
each joint in each frame. Since the depth value inversely
changes with the object size, we set an adaptive size s/z to
each depth patch, where s = 300, 000 is a scaling factor and
z is the depth value of a joint in the current frame. Unlike the
fixed patch size, the adaptive size is more robust to handle
the spatial and scaling variations. So the patch size in Fig. 4
is not necessary to be consistent. We compute SNV and joint
differences for each joint trajectory. The actionlet ensemble
model [41] is then employed to combine the features from
multiple joint trajectories.

We follow the same experimental setting as [42] and
obtain the state-of-the-art accuracy of 86.25%. The confu-
sion matrix of SNV-Sparse is displayed in Fig. 11. Most
recognition errors occur in those almost still activities, e.g.,
read book, write, and use laptop, which contain very subtle
motions. Since most daily activities involve human-object
interactions, this dataset can be also used to evaluate how
the motion and shape characteristics are correlated. It would
be insufficient to capture the motion or shape information
independently because some activities share quite similar
motion cues but present distinct shape properties. SNV
jointly encodes local motions and geometric shapes in the
polynormals which further reflects the co-occurrence of
human motions and object shapes. Accuracy of Fisher vector
equipped with spatio-temporal pyramid is 76.88% which
is 9.37% inferior to our best result. This demonstrates the
advantages of our proposed feature aggregation method
and the aligned joint trajectory strategy.

Table 4 shows the performance comparison of the pro-
posed method to the previous ones. Note: an accuracy of
88.20% was reported in [47]. However, four activities with
less motion (i.e., sit still, read books, write on paper, and use
laptop) were excluded in their experiments. The holistic ap-
proach [49] suffers the non-aligned sequences. The methods
[21] [33] [42] [50] [53] based on either motion or shape
information alone are significantly inferior to our approach
and the ones [27] [42] that jointly model the two cues.
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6 CONCLUSION

We present a novel framework to recognize human activities
from video sequences captured by depth cameras. We have
proposed the low-level feature of polynormal to jointly
model the local motion and shape cues. A new aggregation
scheme is proposed by a general coding operator, as well
as spatial average pooling and temporal max pooling of
the coefficient-weighted differences between polynormals
and visual words. We have introduced the motion energy
based adaptive spatial-temporal pyramid which can be
better adapted to retain the spatial layout and temporal
orders. Our proposed framework is also flexible to be used
in the joint trajectory aligned depth sequence. This is well
suited in the scenarios where significant spatial and scaling
variations present. Our approach is extensively evaluated
on four public benchmark datasets and compared to a
number of state-of-the-art methods. Experimental results
demonstrate that our approach significantly outperforms
previous methods on these datasets. The future work will
focus on exploiting the complementary information and
fusing multiple features from both color and depth channels
for more advanced representations.
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