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  Abstract— A key challenge in large-scale image classification 
is how to achieve efficiency in terms of both computation and 
memory without compromising classification accuracy. The 
learning-based classifiers achieve the state-of-the-art accuracies, 
but have been criticized for the computational complexity that 
grows linearly with the number of classes. The non-parametric 
Nearest-Neighbor (NN) based classifiers naturally handle large 
numbers of categories, but incur prohibitively expensive 
computation and memory costs. In this paper, we present a 
novel classification scheme, i.e., Discriminative Hierarchical K-
Means Tree (D-HKTree), which combines the advantages of 
both learning-based and NN-based classifiers. The complexity of 
the D-HKTree only grows sub-linearly with the number of 
categories, which is much better than the recent hierarchical 
Support Vector Machines (SVM) based methods. The memory 
requirement is the order of magnitude less than the recent 
Naïve-Bayesian Nearest-Neighbor (NBNN) based approaches. 
The proposed D-HKTree classification scheme is evaluated on 
several challenging benchmark databases and achieves the state-
of-the-art accuracies, while with significantly lower computation 
cost and memory requirement. 
 
Index Terms—Hierarchical K-Means Tree (HKTree), Large 
Scale, Image Classification, Naïve Bayesian Nearest Neighbor 
(NBNN), and Support Vector Machine (SVM). 
 

I. INTRODUCTION 
MAGE classification has remained one of the most 
fundamental problems in computer vision, with various 
applications, such as surveillance and augmented reality 

etc. At the same time, the available image data has increased 
dramatically due to the widely accessible Internet, e.g., 
YouTube, Facebook. Hence, the large-scale image 
classification has attracted significant research efforts, 
especially when the number of classes scales up [6, 10, 22]. 
One of the key challenges in the large-scale image 
classification is to achieve efficiency in term of both 
computation and memory without compromising 
classification accuracy. 
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 The learning based classifiers, including Support Vector 
Machine (SVM) [4, 5, 12], Random Forest [26] and 
Adaboost [21], have demonstrated excellent performance for 
the image classification. However, these learning based 
classifiers usually do not scale well on the increasing number 
of image categories. For example, the one-versus-all linear 
SVM, one of the most popular classifiers for the large-scale 
image classification, has the computation complexity linearly 
increasing with the number of image categories. To improve 
the efficiency of the linear SVM, Griffin et al. [11] built class 
taxonomies by measuring affinity between a pair of classes 
with a confusion matrix. In order to achieve a better tradeoff 
between accuracy and efficiency, several papers [7, 15] 
utilized the relaxed hierarchical SVM, which postpones the 
decision for some confusing classes in a hierarchical decision 
structure. However, all of these approaches improve 
classification efficiency through compromising classification 
accuracy to some extent. 
 On the other hand, non-parametric Nearest Neighbor (NN) 
based classifiers require no training and can naturally handle 
large numbers of classes [2, 16, 25, 28]. However, they have 
to retain all the training examples in the testing phase, which 
becomes infeasible even on moderate-scale image 
classification, because of the expensive memory and 
computation cost. 
 Compared to learning-based classifiers, accuracies of NN-
based classifiers are normally much lower, which also limits 
their applications for image classification. The Naïve-
Bayesian Nearest-Neighbor (NBNN) [2] improves the 
classification accuracy of NN-based classifiers by avoiding 
vector quantization and utilizing the image-to-class distance 
metric. However, the computation cost is still linearly 
proportional to the number of classes, even after using some 
approximate NN techniques [18]. Local NBNN [16] 
improves the computation cost of the NBNN by only 
updating the classes found in a local neighborhood. Hence, 
the complexity only grows logarithmically with the number 
of categories. Nevertheless, the computation cost can still be 
expensive when the training data is large and exceeds the 
memory capacity. Both NBNN and local NBNN need to 
retain all training samples. 

Despite these efforts [1, 2, 16, 20, 24] have been made to 
improve the performance of NN-based classifiers, very few 
work has tried to extend the NN-based classifiers to large-
scale image classification by reducing both computation and 
memory costs.  

Some researchers take advantages of the 
complementarities between classifiers of Nearest-Neighbor 
and SVM [20, 24, 27]. Tuytellaars et al. [20] integrated both 
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NBNN and SVM with Bag-of-Words (BOW) representation 
into a Multiple Kernel Learning (MKL) framework [8]. In 
order to reduce the expensive computation cost of the NBNN 
kernel, they had to down-sample the query feature vectors in 
a testing image, which adversely affect classification results. 

In this paper, we first derive and formulate a novel nearest 
neighbor method, the Labeled Hierarchical K-Means Tree (L-
HKTree), which can dramatically reduce the computation and 
memory complexity as compared with other NN-based 
classifiers. By pre-computing label statistics of nearest 
neighbors for training data, the L-HKTree can infer the class 
label of a query image by simply looking up the label 
statistics. 

Built on the efficiency of the proposed NN-based 
classifier, we further propose a Discriminative Hierarchical 
K-Means Tree (D-HKTree) which takes advantages of both 
learning-based and NN-based methods. The computational 
complexity of the D-HKTree only grows sub-linearly with 
the number of image categories, while still achieves the state-
of-the-art accuracy on several challenge datasets [6, 10, 22]. 

II. DISCRIMINATIVE HIERARCHICAL K-MEANS TREE 
The proposed Discriminative Hierarchical K-Means Tree (D-
HKTree) extends the NN-based classification scheme to 
large-scale image classification. In this section, we describe 
the detailed theoretical derivations and computational 
procedures of the L-HKTree and the D-HKTree. 

A. Algorithm Overview 
Fig. 1(a) and 1(b) show the flowcharts of the D-HKTree 
framework during training and testing phases respectively. In 
the training step, we construct a Hierarchical K-Means Tree 
(HKTree) [19] from all the training feature vectors. Then we 
compute both label histogram and Discriminatively Learned 
(DL) histogram in parallel. The label histogram pre-computes 
the label statistics of the nearest neighbors of the query 
feature vectors. After the label histograms populate leaf 
nodes of the HKTree, we construct the L-HKTree. The DL 
histogram captures the weights of a linear classifier for each 
class. The DL histogram is stored in the non-leaf nodes of the 
HKTree at a selected level to form the D-HKTree. Feature 
vectors of a query image first find the leaf nodes of the D-
HKTree, and sum their label histograms. Based on the 
accumulated label histogram, we preselect the most confident 
categories of the image. Finally the query feature vectors 
propagate back to the non-leaf nodes of the D-HKTree, and 
sum DL histograms only over the preselected classes. The 

final class label is the most confident class label of the pre-
selected classes in the accumulated DL histogram. 

B. Labeled Hierarchical K-Means Tree 
The main structure of the D-HKTree is built upon the L-
HKTree. In this section, we describe the detailed procedures 
in deriving and building the L-HKTree. 

Same as in the NBNN algorithm, we make two 
assumptions, i.e., uniform prior over all class labels and the 
independence of the query feature vectors 𝑑𝑖 in a testing 
image 𝑄 [2]. The predicted label can be obtained by Eq. (1). 

𝐶̂ = argmax
𝐶

∑ log 𝑝(𝑑𝑖|𝐶)i  .                        (1) 

We explicitly model unbalanced data over class labels in 
the Parzen window estimator. The total number of training 
feature vectors in class 𝐶 is 𝐿𝐶 . 

log 𝑝(𝑑𝑖|𝐶) = 1
𝐿𝐶

 ∑ 𝐾(𝑑𝑖 − 𝑑𝑗𝐶)𝐿𝐶
𝑗=1  .                 (2) 

Instead of using the Gaussian kernel for 𝐾 as in the local 
NBNN, we use a uniform kernel with the bandwidth of 𝑟𝑖. 

𝐾�𝑑𝑖 − 𝑑𝑗𝐶� = 𝐵𝑓 𝑈 �1 −
�𝑑𝑖−𝑑𝑗

𝐶�

𝑟𝑖
�  ,               (3) 

where the bandwidth 𝑟𝑖 > 0. 𝐵𝑓 is a positive constant and 𝑈 
is a unit step function, which is 1 if the Euclidean distance 
between the training feature vector 𝑑𝑗𝐶 and the query feature 
vector 𝑑𝑖 is less than the bandwidth 𝑟𝑖. Otherwise the step 
function is 0. If substituting Eq. (3) to Eq. (2), we have 

log 𝑝(𝑑𝑖|𝐶) = 𝐵𝑓
𝐿𝐶

 ∑ 𝑈 �1 −
�𝑑𝑖−𝑑𝑗

𝐶�

𝑟𝑖
�𝐿𝐶

𝑗=1  .          (4) 

 The summation term in Eq. (4) denotes the total number 
of training feature vectors in class 𝐶, which have Euclidean 
distance smaller than 𝑟𝑖 away from the query feature vector 
𝑑𝑖 as illustrated in Fig. 3(a). The center of the circle is at the 
query feature vector 𝑑𝑖 with the radius equals to the 
bandwidth of 𝑟𝑖. The summation term in Eq. (4) for the 
triangle class is the total number of triangle training feature 
vectors falling within the circle, i.e., 2 in Fig. 3(a). Similarly, 

 
Figure 1: Overview of the D-HKTree for (a) training; (b) testing; 

 
Figure 2: (a) The construction of the Labeled Hierarchical K-means 
Tree (L-HKTree); (b) The prediction step of the D-HKTree for the 
image classification. 
 



Submitted to IEEE Trans. on Neural Networks and Learning Systems 
 

3 

the summation terms for the pentagon class and the star class 
are 3 and 1, respectively. As illustrated in Fig. 3(b), we 
further approximate the unit step function 𝑈 with the feature 
space boundary defined by the leaf node 𝑓𝑖, in which the 
query feature vector 𝑑𝑖 falls.  

𝑈 �1 −
�𝑑𝑖−𝑑𝑗

𝐶�

𝑟𝑖
� ≅ 𝛿 �𝑓𝑖, LEAF�𝑑𝑗𝐶��  ,            (5) 

where LEAF(𝑑𝑗𝐶) is the nearest neighboring leaf node of the 
training feature vector 𝑑𝑗𝐶; 𝛿 equals to 1 when feature vectors 
𝑑𝑖 and 𝑑𝑗𝐶 fall within the same feature space partition defined 
by the leaf node 𝑓𝑖. Otherwise, it is equal to 0. If we 
substitute Eq. (5) to Eq. (4), it becomes 

log 𝑝(𝑑𝑖|𝐶) = 𝐵𝑓
𝐿𝐶

 ∑ 𝛿 �𝑓𝑖, LEAF�𝑑𝑗𝐶��
𝐿𝐶
𝑗=1  .           (6) 

Note that the right-hand side of the Eq. (6) does not depend 
on the query feature vector 𝑑𝑖 except that 𝑓𝑖 is the leaf node 
of 𝑑𝑖. Therefore, we can pre-compute the right-hand side of 
Eq. (6) for each class label 𝐶, and store the results as the label 
histogram associated with the leaf node 𝑓𝑖, denoted as 
𝐿𝐿(𝑓𝑖, 𝐶). 

 The summation term in Eq. (6) is the number of training 
feature vectors from category 𝐶, which fall within the feature 
space partition of the leaf node 𝑓𝑖. 𝐿𝐶  corresponds to the total 
number of training feature vectors in category 𝐶. 𝐵𝑓 is a L1-
Norm constant. Substituting Eq. (6) to Eq. (1), we have the 
L-HKTree classification rule.   

𝐶̂ = argmax𝐶 ∑ �𝐵𝑓
𝐿𝐶
∑ δ �𝑓𝑖, LEAF�𝑑𝑗𝐶��
𝐿𝐶
𝑗=1 �i    

= argmax𝐶 ∑ 𝐿𝐿(LEAF(𝑑𝑖), 𝐶)𝑖  .                      (7) 

As demonstrated in the derivation of the L-HKTree, we do 
not need to compute the pair-wise distance of the query 
feature vector 𝑑𝑖 with each training feature vector 𝑑𝑗𝐶 online. 
Instead, we only employ the label histogram associated with 
the leaf node where 𝑑𝑖 falls within. The label histograms of 
the leaf nodes are summed up together to predict the class 
label of an image as shown in Eq. (7). Hence, L-HKTree does 
not retain any training feature vector. This translates to a 
significant saving in the memory, which allows us to extend 
this NN-based classifier to a large-scale classification task.  

Furthermore, the computational complexity of L-HKTree 
during testing is independent of the number of classes, which 
is a very attractive property for image classification on large-
scale datasets with large number of categories. The label 
histograms in the leaf nodes can be very sparse, since the 
number of leaf nodes in L-HKTree is exponentially 
increasing with the number of levels. 

To build the L-HKTree, we first construct a Hierarchical 
K-Means Tree (HKTree) [19] from training feature vectors. 
Fig. 2(a-1) illustrates a two-level HKTree with three 
branches. The corresponding feature space partition of each 
leaf node projected on the two-dimensional space is shown in 
Fig. 2(a-2). Training feature vectors are clustered at the first 
level by the K-Means with the number of centers equal to the 
tree branches K. Then at the successive levels, the HKTree 
will continue splitting feature vectors in each branch by the 

K-Means until reaching level L. 
We modify the original hierarchical K-Means tree to 

automatically reduce the number of branches of a non-leaf 
node if the average number of training feature vectors 
arriving at its children nodes is below a threshold 𝑁. 𝑁 is 
related to minimum number of nearest neighbor training 
feature vectors falling in leaf nodes, similar to the K nearest 
neighbors for the local NBNN [16]. Best performance is 
achieved in our experiments when N is set as 15. 

The leaf nodes in the L-HKTree have defined their 
corresponding feature space boundaries, as illustrated in Fig. 
2(a-2). Any feature vector arriving at a leaf node can be 
considered as a nearest neighbor of this leaf node. Fig. 2(a-3) 
illustrates that the “ear” feature vectors of dog and bear class 
arrive at the same leaf node of the L-HKTree. The label 
histogram associated with each leaf node summarizes the 
number of nearest neighbor training feature vectors over class 
labels. Fig. 2(a-4) illustrates the label histogram over dog and 
bear categories. Intuitively, the more nearest neighbor feature 
vectors are from the class label 𝐶 in the label histogram of 
the leaf node 𝑓, the smaller distance is between the leaf node 
𝑓 and the class label 𝐶. Therefore, we can have another 
interpretation of the label histogram as the inverse distance 
from leaf node 𝑓 to different classes. 

The max-pooling [13] used in the Bag of Words (BOW) 
framework achieves excellent performance by selecting 
feature vectors, which is the nearest neighbor feature vector 
of a visual word in the codebook. We also implement similar 
filtering techniques in the L-HKTree. The non-leaf nodes, 
which store the DL histograms in the D-HKTree, are used as 
filters. Only query feature vectors which are the nearest 
neighbors of one of the non-leaf nodes are allowed to 
continue down the L-HKTree and participate in the 
accumulation process of label histograms. 

C. Discriminative Hierarchical K-Means Tree 
We integrate a learning-based classifier into the L-HKTree 
framework to form the Discriminative Hierarchical K-Means 
Tree (D-HKTree). 
 The learning step of the D-HKTree involves the 
computation of the Discriminatively Learned (DL) 
histograms, which are stored in the non-leaf nodes at a 
selected level of the L-HKTree. The DL histograms H 
capture the weights (i.e., the normal vectors) of linear 
classifiers over different classes. We first compute the Bag of 
Words (BOW) representation [9] by treating the non-leaf 
nodes at the selected level as visual words. Then we train a 
linear classifier on the BOW for each class c. The value 𝑤𝑖𝑐 

 
Figure 3: Illustration of unit step function. (a) The circle 
illustrates the unit step function in Eq. (4); (b) Approximate the 
unit step function of the circle with the feature space partition by 
one of the leaf nodes in the HKTree. 
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of the normal vector for class c is stored in the DL histogram 
𝐻𝑐  at ith visual word (i.e., non-leaf node). We choose the one-
versus-all linear SVM as the linear classifier. 

Fig. 2(b) demonstrates the classification step of the 
proposed D-HKTree. Query feature vectors in a testing image 
arrive at their nearest neighbor leaf nodes of the L-HKTree. 
The corresponding label histograms are summed up into the 
accumulated label histogram, where top 𝑃 performance class 
labels are selected. After the L-HKTree process, query 
feature vectors propagate back to their parent non-leaf nodes 
at the selected level, e.g., the red nodes in Fig. 2 (b). The DL 
histograms are weighted with the distance from their parent 
non-leaf nodes. Then the weighted DL histograms over the 
selected 𝑃 class labels are summed up into the accumulated 
DL histogram at the top of the figure. Finally, we select the 
class label with the highest score from the accumulated DL 
histogram. Since the L-HKTree does not store any training 
data, the memory cost of the D-HKTree is dramatically 
reduced as compared with other NN-based methods [2, 16]. 

The number of the top candidate classes 𝑃 is automatically 
selected for different testing images by using a fixed 
cumulative confidence level (CCL). After we sort the 
accumulated label histogram over the classes in the 
descending order, P is determined as the minimum number of 
classes while the cumulative probability of the accumulated 
label histogram is greater than the specified CCL value. In 
our experiments, we set the value of CCL to 0.2, which 
achieves the best tradeoff between the computation 
complexity and accuracy. By only selecting the top 𝑃 classes 
in the forward L-HKTree process, the D-HKTree is able to 
achieve the computation complexity that grows sub-linearly 
with the number of classes, which is much better than the 
learning-based classifiers. 

III. EXPERIMENTS 
We evaluate our proposed frameworks on several object and 
scene recognition datasets including Caltech 101 [6], Caltech 
256 [10], and SUN datasets [22]. The proposed D-HKTree 
significantly outperforms all previous NN-based classifiers in 
terms of classification accuracy, computation cost, and 
memory requirement. The relative computational complexity 
of the D-HKTree is also significantly improved compared to 
the state-of-the-art learning-based classifiers. Experimental 
results demonstrate that the D-HKTree can scale very well to 
large-scale datasets with large numbers of categories. 

A. Experimental Setup 
We employ the dense SIFT feature vectors [14] augmented 
by 𝑥 and 𝑦 coordinates throughout our experiments, 
following the approach in the local NBNN [16].  The dense 
SIFT feature vectors are extracted by sampling every 3 
pixels at 3 scales, and removing low contrast points. The 
two spatial dimensions in the augmented feature vector are 
weighted by 1.6 in Caltech 101, 0.75 in Caltech 256 and 
SUN, as recommended in [16, 17].  

To achieve high accuracy, a large codebook size of visual 
words has been suggested for a linear classifier [3, 17]. We 
have experimentally verified that the best performances are 

achieved when the codebook size is 65K for the Caltech 101 
database and 130K for the Caltech 256 and SUN databases. 
To simplify the experiment, the L-HKTree has 2 levels. 

In order to facilitate a fair comparison, we follow the 
evaluation conventions, i.e., 30 images per category are used 
as training data and 15 images per category are used as 
testing data in the Caltech 101 and the Caltech 256 datasets. 
We repeat the experiments 10 times with random selection of 
non-overlapping training and testing data. The average 
accuracy with the standard deviation is reported in the paper. 
As for the SUN dataset, we use exactly the same training and 
testing splitting as in [22], i.e., 50 images for both training 
and testing sets.  

For the cited classification accuracies in this paper, most 
results on the Caltech 101 and the Caltech 256 are based on 
30 training images per class unless otherwise noted. For the 
SUN dataset, they are all based on 50 training images per 
class. Most of the cited results are based on the spatial 
variants of dense SIFT or Histogram of Gradient (HOG), 
even though some of them use multiple feature types. 

B. Comparisons to NN-based Classifiers 
In this paper, the “*” sign after a number indicates that the 
number is directly quoted from the original papers. The “-“ 
sign in the tables indicates that the data is not available. 

Table 1 shows the comparison of the D-HKTree with other 
NN-based classifiers on both classification accuracy and 
computation cost.  

The D-HKTree has achieved the highest classification 
accuracies, i.e., 77.6% and 45.5%, on the Caltech 101 and the 
Caltech 256 respectively, which are 5% higher than the state-
of-the-art NN-based method, i.e., local NBNN [16]. We have 
verified the reported local NBNN accuracy by running the 
source code provided by the paper [16] on the Caltech 101. 
Our proposed D-HKTree achieves 35.7% accuracy on the 
SUN dataset. To the best of our knowledge, this is the highest 
accuracy on this dataset using a single feature type. We also 
quote the classical 1-NN classifier results on the Caltech 256 
and the SUN datasets for the comparison in the Table 1.  The 
1-NN classifier is a correlation classifier in the feature space 
of pixel intensities of a resized image [10]. The 1-NN results 
reported in [22] are based on multiple feature types. If using a 
single feature type, the results may even worse. 

The testing speed of the D-HKTree is significantly faster 
than the conventional NN-based classifiers, especially on 
larger datasets. To evaluate the testing speed, we run the 
source code provided by [16] with the recommended 
parameters for the NBNN and the local NBNN methods. If 
we use 30 training images per category on the Caltech 256 
dataset, the testing speed of the D-HKTree is 30 times faster 
than the local NBNN, and 120 times faster than the NBNN. 

Table 1: Comparison to NN-based classifiers on accuracy and speed 
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As shown in Table 1, the local NBNN is 10 times faster than 
the NBNN on the Caltech 101 dataset, but only 4 times faster 
on the Caltech 256, which is different from the results 
reported in [16]. This is because that the training data in the 
Caltech 256 (~59 GB) have exceeded the memory capacity 
(~48 GB) of the computer we used. The test speed of the 
conventional NN-based classifiers on the SUN database is 
difficult to evaluate, because it requires approximately 100 
GB of memory to store all training data, which far exceed the 
memory capacity of our computers. On the other hand, the 
computation cost increment is significantly lower for the D-
HKTree as the dataset changes from the Caltech 101 to the 
Caltech 256. We observe that the computation cost of the 
SUN dataset is even lower than that of the Caltech 256, i.e., 
1.9 second per image versus 3.7 second per image. This is 
due to the structure difference of the L-HKTrees built for the 
two datasets, since the major computation costs of D-HKTree 
is from the pre-classification of L-HKTree.  

Fig. 4 compares the memory requirements of different NN-
based classifiers as the scale of dataset increases. Since the 
memory usage of the conventional NN-based classifiers is 
directly related to the size of training data, we can estimate 
their memory usages according to the training data size. As 
for the D-HKTree, the memory usage is estimated from the 
size of the L-HKTree. As shown in this figure, the memory 
usage of the D-HKTree is pretty stable and only increases 
slightly from the Caltech 101 to the Caltech 256, then the 
SUN dataset. However, the memory consumptions of the 
NBNN and the local NBNN grow significantly as the dataset 
scaling up. For example, the memory requirement is around 
100 GB for both the NBNN and the local NBNN in SUN 
dataset, while the memory usage of the D-HKTree is only 
6GB.  

C. Comparisons to Learning-based Classifiers 
 Table 2 demonstrates the comparisons of the classification 

accuracy between the D-HKTree and the state-of-the-art 
learning-based methods. The D-HKTree outperforms most 
learning-based methods and achieves comparable 

performance to the recently proposed Spatially Local Coding 
(SLC) [17] on the Caltech 101 and the Caltech 256. The SLC 
method uses the linear SVM classifier on the Bag of Words 
(BOW) feature representation. However, the SLC needs to 
evaluate all class classifiers. Hence, it cannot scale well on 
the large-scale dataset with large number of categories. 

As for the SUN dataset in Table 2(b), the D-HKTree 
significantly outperforms the current state-of-the-art with a 
single feature type by more than 8% in classification 
accuracy. Note that there are almost 400 image categories in 
the SUN dataset.  

  To further evaluate the scalability to large-scale image 
classification, we compare the D-HKTree with several 
hierarchical SVM-based classifiers [7, 10, 15] in Fig. 5. Note 
that 40 training images per class are used for the literature 
results reported in Fig. 5, while the D-HKTree only uses 30 
training images per class. All of these hierarchical SVM-
based classifiers attempt to improve the efficiency of one-
versus-all linear SVM classifier, so that the complexity can 
grow sub-linearly with the number of categories. However, 
these classifiers have to sacrifice classification accuracy for 
the improvement on speed. We adopt the relative 
computational complexity (RC) measure introduced in [7] for 
our evaluation. In the case of a linear kernel, the relative 
complexity is the ratio between the number of categories 
evaluated and the total number of categories in the dataset. 

The relative computational complexity of the D-HKTree 
can be tuned by varying the number of top selected class 
labels from the accumulated label histogram, or by the 
Cumulative Confidence Level (CCL). Although the 
computation cost of the L-HKTree is not reflected in this 
measure, this cost is independent of the number of categories. 
As demonstrated in Fig. 5, the D-HKTree dominates the 
classification accuracies on the Caltech 256 and the SUN 
datasets, especially when the relative computational 
complexity is low. For instance, at the relative computational 
complexity of 0.06 in Fig. 5(a), the D-HKTree achieves 35% 
on the SUN dataset, which is more than 10% higher than the 
best result reported in [7]. Similar results are shown on the 
Caltech 256 dataset in Fig. 5(b). We observe that the 
classification accuracy of the D-HKTree tends to saturate 
around the relative computational complexity of 0.1, which 
means that the D-HKTree is more effective to reduce the 
relative computational complexity and maintains a desirable 
accuracy.  

Table 2: Comparison of accuracy to learning based classifiers on 
(a) Caltech 101 and Caltech 256 datasets; (b) SUN dataset.  

      
                        (a)                                         (b) 
 

 
              (a)                    (b) 

Figure 5: Comparison of the tradeoff between accuracy and relative 
computational complexity to hierarchical SVM-based methods for 
large scale data, i.e., Gao [7], Griffin [11], Marszalek [15], on (a) 
SUN dataset; (b) Caltech 256 dataset; Note that the results for other 
three methods are directly estimated from the plots in the paper [7]. 

 

 
Figure 4: Comparison of the memory usage of different NN-
based classifiers as the scale of the dataset increases. 
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D. Comparisons to Hybrid Classifiers 
 There are very few work [20, 24] on combining the 

learning-based and the NN-based classifiers to take the 
advantages of both types of classifier. Table 3 compares the 
D-HKTree with two other methods that hybrid both classifier 
types, i.e., SVM-KNN [24] and NBNN Kernel [20]. As 
shown in this table, the D-HKTree significantly outperforms 
the SVM-KNN and the NBNN Kernel by 11% and 8% in 
accuracy respectively. Note that the NBNN Multi-Kernel is 
actually combining the NBNN Kernel with other kernels of 
different feature types instead of a single feature type. 
Nevertheless, the D-HKTree still obtains the highest accuracy 
as shown in Table 3.  

Finally, we evaluate the effect of the cumulative 
confidence level (CCL) on the performance of the D-HKTree 
including both relative computational complexities (RC) and 
accuracy. The experiment is conducted on the first set of 
training and testing data of the Caltech 101. The result is 
shown in Table 4. As the CCL increases, more classes are 
forwarded from the L-HKTree process to the discriminative 
classifiers stored in the DL histograms. Hence the RC 
increases as well as the classification accuracy. Based on 
Table 4, we observe that the CCL of 0.2 achieves a high 
accuracy while maintaining a low relative computational 
complexity of 0.11. Note that the RC is 0, when the CCL 
equals to 0.01. That indicates that the final class label is 
inferred by the L-HKTree only without propagating back to 
the non-leaf nodes, which stores the DL histograms. 

IV. CONCLUSION  
In this paper, we have proposed a novel classification 

scheme, i.e., D-HKTree, for large scale image classification. 
The D-HKTree combines the advantages of both learning-
based and NN-based methods. It extends the ability of the 
NN-based classifiers to handle large-scale image 
classification with much lower computation cost and memory 
requirement, and achieves the state-of-the-art classification 
accuracies. Compared to NN-based methods, the D-HKTree 
significantly outperforms the NBNN and the local NBNN in 
classification accuracy, computation and memory costs. 
Compared to the learning-based methods, the D-HKTree 
largely improves the accuracy of the hierarchical SVM-based 
methods at much lower relative computational complexity. 
The D-HKTree also achieves comparable accuracy with the 
SLC method. Compared to previous hybrid methods, the D-
HKTree obtains much better performance than the SVM-
KNN and the NBNN Kernel.  
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Table 4: The effect of cumulative confidence level (CCL) on the 
accuracy and the relative computational complexity (RC). 
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