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Abstract—We propose a camera-based assistive text reading 

framework to help blind persons read text labels and product 

packaging from hand-held objects in their daily lives. To isolate 

the object from cluttered backgrounds or other surrounding 

objects in the camera view, we first propose an efficient and 

effective motion-based method to define a region of interest (ROI) 

in the video by asking the user to shake the object. This method 

extracts moving object region by a mixture-of-Gaussians based 

background subtraction method. In the extracted ROI, text 

localization and recognition are conducted to acquire text 

information. To automatically localize the text regions from the 

object ROI, we propose a novel text localization algorithm by 

learning gradient features of stroke orientations and distributions 

of edge pixels in an Adaboost model. Text characters in the 

localized text regions are then binarized and recognized by 

off-the-shelf optical character recognition (OCR) software. The 

recognized text codes are output to blind users in speech. 

Performance of the proposed text localization algorithm is 

quantitatively evaluated on ICDAR-2003 and ICDAR-2011 

Robust Reading Datasets. Experimental results demonstrate that 

our algorithm achieves the state-of-the-arts. The proof-of-concept 

prototype is also evaluated on a dataset collected using 10 blind 

persons, to evaluate the effectiveness of the system’s hardware. 

We explore user interface issues, and assess robustness of the 

algorithm in extracting and reading text from different objects 

with complex backgrounds. 

 
Index Terms— blindness; assistive devices; text reading; 

hand-held objects, text region localization; stroke orientation; 

distribution of edge pixels; OCR;  

 

I. INTRODUCTION 

F the 314 million visually impaired people worldwide, 45 

million are blind [1]. Even in a developed country like the 

United States, the 2008 National Health Interview Survey 

(NHIS) reported that an estimated 25.2 million adult Americans 

(over 8%) are blind or visually impaired [2]. This number is 
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increasing rapidly as the baby boomer generation ages. Recent 

developments in computer vision, digital cameras, and portable 

computers make it feasible to assist these individuals by 

developing camera-based products that combine computer 

vision technology with other existing commercial products 

such OCR systems.  

Reading is obviously essential in today’s society. Printed 

text is everywhere in the form of reports, receipts, bank 

statements, restaurant menus, classroom handouts, product 

packages, instructions on medicine bottles, etc. And while 

optical aids, video magnifiers and screen readers can help blind 

users and those with low vision to access documents, there are 

few devices that can provide good access to common hand-held 

objects such as product packages, and objects printed with text 

such as prescription medication bottles. The ability of people 

who are blind or have significant visual impairments to read 

printed labels and product packages will enhance independent 

living, and foster economic and social self-sufficiency.  

Today there are already a few systems that have some 

promise for portable use, but they cannot handle product 

labeling. For example portable bar code readers designed to 

help blind people identify different products in an extensive 

product database can enable users who are blind to access 

information about these products [27] through speech and 

braille. But a big limitation is that it is very hard for blind users 

to find the position of the bar code and to correctly point the bar 

code reader at the bar code. Some reading-assistive systems 

such as pen scanners, might be employed in these and similar 

situations. Such systems integrate optical character recognition 

(OCR) software to offer the function of scanning and 

recognition of text and some have integrated voice output. 

However, these systems are generally designed for and perform 

best with document images with simple backgrounds, standard 

fonts, a small range of font sizes, and well-organized characters 

rather than commercial product boxes with multiple decorative 

patterns. Most state-of-the-art OCR software cannot directly 

handle scene images with complex backgrounds. 

A number of portable reading assistants have been designed 

specifically for the visually impaired [13, 20, 24, 29]. KReader 

Mobile runs on a cell phone and allows the user to read mail, 

receipts, fliers and many other documents [13]. However, the 

document to be read must be nearly flat, placed on a clear, dark 

surface (i.e., a non-cluttered background), and contain mostly 

text. Furthermore, KReader Mobile accurately reads black print 

on a white background, but has problems recognizing colored 

text or text on a colored background. It cannot read text with 

complex backgrounds, text printed on cylinders with warped or 
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incomplete images (such as soup cans or medicine bottles). 

Furthermore, these systems require a blind user to manually 

localize areas of interest and text regions on the objects in most 

cases. 

 
Fig. 1. Examples of printed text from hand-held objects with multiple colors, 
complex backgrounds, or non-flat surfaces. 

Although a number of reading assistants have been designed 

specifically for the visually impaired, to our knowledge, no 

existing reading assistant can read text from the kinds of 

challenging patterns and backgrounds found on many everyday 

commercial products. As shown in Fig. 1, such text information 

can appear in multiple scales, fonts, colors, and orientations. To 

assist blind persons to read text from these kinds of hand-held 

objects, we have conceived of a camera-based assistive text 

reading framework to track the object of interest within the 

camera view and extract print text information from the object. 

Our proposed algorithm can effectively handle complex 

background and multiple patterns, and extract text information 

from both hand-held objects and nearby signage, as shown in 

Fig. 2. 

In assistive reading systems for blind persons, it is very 

challenging for users to position the object of interest within the 

center of the camera’s view. As of now, there are still no 

acceptable solutions. We approach the problem in stages: 

To make sure the hand-held object appears in the camera 

view, we use a camera with sufficiently wide angle to 

accommodate users with only approximate aim. This may often 

result in other text objects appearing in the camera’s view (for 

example while shopping at a supermarket). To extract the 

hand-held object from the camera image, we develop a 

motion-based method to obtain a region of interest (ROI) of the 

object. Then we perform text recognition only in this ROI.  

 

Fig. 2. Two examples of text localization and recognition from 

camera-captured images. Top: a milk box; Bottom: a men bathroom signage. (a) 

camera-captured images; (b) localized text regions (marked in blue); (c) text 
regions cropped from image; (d) text codes recognized by OCR. The top-right 

portion of the bottom image that contains text is also shown in a magnified 
callout, for clarity. 

It is a challenging problem to automatically localize objects 

and text regions of interest from captured images with complex 

backgrounds, because text in captured images is most likely 

surrounded by various background outlier ‘noise’, and text 

characters usually appear in multiple scales, fonts, and colors. 

For the text orientations, this paper assumes that text strings in 

scene images keep approximately horizontal alignment. Many 

algorithms have been developed for localization of text regions 

in scene images. We divide them into two categories, 

rule-based and learning-based.  

Rule-based algorithms apply pixel level image processing to 

extract text information from predefined text features such as 

character size, aspect ratio, edge density, character structure, 

and color uniformity of text string, etc.  Phan et al. [23] 

analyzed edge pixel density with the Laplacian operator and 

employed maximum gradient differences to identify text 

regions. Shivakumara et al. [31] used gradient difference maps 

and performed global binarization to obtain text regions. 

Epshtein et al. [7] designed stroke width transforms to localize 

text characters. Nikolaou et al. [21] applied color reduction to 

extract text in uniform colors. In ref. [5], color based text 

segmentation is performed through a Gaussian mixture model 

for calculating a confidence value for text regions. This type of 

algorithm tries to define a universal feature descriptor of text.  

Learning-based algorithms, on the other hand, model text 

structure and extract representative text features to build text 

classifiers. Chen et al. [4] presented 5 types of Haar-based 

block patterns to train text classifiers in an Adaboost learning 

model. Kim et al. [12] considered text as a specific texture and 

analyzed the textural features of characters by a support vector 

machine (SVM) model. Kumar et al. [14] used Globally 

Matched Wavelet filter responses of text structure as features. 

Ma et al. [18] performed classification of text edges by using 

histograms of oriented gradients and local binary patterns as 

local features on the SVM model. Shi et al. [30] employed 

gradient and curvature features to model the gray scale curve 

for handwritten numeral recognition under a Bayesian 

discriminant function. In our research group, we have 

previously developed rule-based algorithms to extract text from 

scene images [38-40]. A survey paper about 

computer-vision-based assistive technologies to help people 

with visual impairments can be found in ref. [20].  

In solving the task at hand, to extract text information from 

complex backgrounds with multiple and variable text patterns, 

we here propose a text localization algorithm that combines 

rule-based layout analysis and learning-based text classifier 

training, which define novel feature maps based on stroke 

orientations and edge distributions. These in turn generate 

representative and discriminative text features to distinguish 

text characters from background outliers. 

II. FRAMEWORK AND ALGORITHM OVERVIEW 

This paper presents a prototype system of assistive text 

reading. As illustrated in Fig. 3, the system framework consists 

of three functional components: scene capture, data processing 

and audio output. The scene capture component collects scenes 

containing objects of interest in the form of images or video. In 

our prototype, it corresponds to a camera attached to a pair of 

sunglasses. The data processing component is used for 

deploying our proposed algorithms, including 1) 
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object-of-interest detection to selectively extract the image of 

the object held by the blind user from the cluttered background 

or other neutral objects in the camera view; and 2) text 

localization to obtain image regions containing text, and text 

recognition to transform image-based text information into 

readable codes. We use a min-laptop as the processing device in 

our current prototype system. The audio output component is to 

inform the blind user of recognized text codes. A Bluetooth 

earpiece with mini-microphone is employed for speech output. 

 

Fig. 3. A snapshot of our demo system, including three functional components 
for scene capture, data processing and audio output. 

This simple hardware configuration ensures the portability of 

the assistive text reading system. Fig. 4 depicts a work 

flowchart of the prototype system.  

A frame sequence   is captured by a camera worn by blind 

users, containing their hand-held objects and cluttered 

background. To extract text information from the objects, 

motion-based object detection is first applied to determine the 

user’s object of interest   by shaking the object while recording 

video.  

  
 

   
        

 
 (1) 

where    denotes the  -th frame in the captured sequence,     
denotes the number of frames,   denotes the estimated 

background from motion-based object detection, and   

represents the calculated foreground object at each frame. The 

object of interest is localized by the average of foreground 

masks (see details in Section III).  

Next, our novel proposed text localization algorithm is 

applied to the object of interest to extract text regions. At first, 

candidate text regions are generated by layout analysis of color 

uniformity and horizontal alignment. 

                 
(2) 

where      denotes the suitability responses of text layout and 

   denotes the candidate text regions from object of interest  . 

Then, a text classifier is generated from a Cascade-Adaboost 

learning model, by using stroke orientations and edge 

distributions of text characters as features (see details in Section 

IV). 

                         (3) 

where   denotes the Cascade-Adaboost classifier and   

denotes the localized text regions. 

After text region localization, off-the-shelf OCR is employed 

to perform text recognition in the localized text regions. The 

recognized words are transformed into speech for blind users. 

 

Fig. 4. Flowchart of the proposed framework to read text from hand-held 

objects for blind users. 

Our main contributions embodied in this prototype system 

are: (1) a novel motion-based algorithm to solve the aiming 

problem for blind users by their simply shaking the object of 

interest for a brief period; (2) a novel algorithm of automatic 

text localization to extract text regions from complex 

background and multiple text patterns; and (3) a portable 

camera-based assistive framework to aid blind persons reading 

text from hand-held objects. Algorithms of the proposed system 

are evaluated using images captured by blind users using the 

described techniques. 

III. OBJECT REGION DETECTION 

To ensure the hand-held object appears in the camera view, 

we employ a camera with a reasonably wide angle in our 

prototype system (since the blind user may not aim accurately). 

However, this may result in some other extraneous but perhaps 

texted objects appearing in the camera view for example, when 

a user is shopping at a supermarket). To extract the hand-held 

object of interest from other objects in the camera view, we ask 

users to shake the hand-held objects containing the text they 

wish to identify and then employ a motion-based method to 

localize the objects from cluttered background. Background 

subtraction (BGS) is a conventional and effective approach to 

detect moving objects for video surveillance systems with 

stationary cameras. To detect moving objects in a dynamic 

scene, many adaptive background subtraction techniques have 

been developed.  

Stauffer and Grimson [33] modeled each pixel as a mixture 

of Gaussians and used an approximation to update the model. A 

mixture of   Gaussians is applied for BGS, where   is from 3 

to 5. In this process, the prior weights of   Gaussians are online 

adjusted based on frame variations. Since background imagery 

is nearly constant in all frames, a Gaussian always compatible 

with its subsequent frame pixel distribution is more likely to be 

the background model. This Gaussian Mixture model-based 

method is robust to slow lighting changes, but cannot handle 

complex foregrounds and quick lighting changes. Tian et al. 

[34] further improved the multiple Gaussian mixtures based 

BGS method to better define foreground while remove 

background objects. First, texture information is employed to 
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remove false positive foreground areas. These areas should be 

background but are often determined as foreground because of 

sudden lighting changes. A texture similarity measure is 

defined to evaluate whether the detected foreground motion is 

caused by lighting change or moving object. Second, in 

addition to quick lighting changes, BGS is also influenced by 

shadows. Many systems use color information to remove the 

shadow, but this does not work on gray-scale videos. To solve 

this problem, the normalized cross-correlation (NCC) of the 

intensities is used for shadow removal. The gray-scale 

distribution of a shadow region is very similar to that of the 

corresponding background region, except is a little darker. 

Thus for a pixel in BGS-modeled foreground areas, we 

calculate the     between the current frame and the 

background frame to evaluate their similarity and remove the 

influence of shadow.  

As shown in Fig. 5, while capturing images of the hand-held 

object, the blind user first holds the object still, and then lightly 

shakes the object for one or two seconds. Here, we apply the 

efficient multiple Gaussian Mixtures-based BGS method to 

detect the object region while blind user shakes it. More details 

of the algorithm can be found in ref. [34]. Once the object of 

interest is extracted from the camera image, the system is ready 

to apply our automatic text extraction algorithm. 

 
Fig. 5. Localizing the image region of the hand-held object of interest.  (a) 

Capturing images by a camera mounted on a pair of sunglasses; (b) An example 
of a captured image; (c) detected moving areas in the image while the user 

shaking the object (region inside the bounding box); (d) Detected region of the 

hand-held object for further processing of text recognition. 

IV. AUTOMATIC TEXT EXTRACTION 

As shown in Fig. 6, we design a learning-based algorithm for 

automatic localization of text regions in image.  

 

Fig. 6. Diagram of the proposed Adaboost learning based text region 

localization algorithm by using stroke orientations and edge distributions.  

In order to handle complex backgrounds, we propose two novel 

feature maps to extracts text features based on stroke 

orientations and edge distributions respectively. Here stroke is 

defined as a uniform region with bounded width and significant 

extent. These feature maps are combined to build an 

Adaboost-based text classifier. 

A. Text Stroke Orientation 

Text characters consist of strokes with constant or variable 

orientation as the basic structure. Here, we propose a new type 

of feature, stroke orientation, to describe the local structure of 

text characters. From the pixel-level analysis, stroke orientation 

is perpendicular to the gradient orientations at pixels of stroke 

boundaries, as shown in Fig. 7. To model the text structure by 

stroke orientations, we propose a new operator to map a 

gradient feature of strokes to each pixel. It extends the local 

structure of a stroke boundary into its neighborhood by gradient 

of orientations. We use it to develop a feature map to analyze 

global structures of text characters. 

 

Fig. 7. A sample of text strokes showing relationships between stroke 

orientations and gradient orientations at pixels of stroke boundaries. Blue 

arrows denote the stroke orientations at the sections and red arrows denote the 
gradient orientations at pixels of stroke boundaries. 

Given an image patch  , Sobel operators in horizontal and 

vertical derivatives are used to calculate 2 gradient maps   and 

  respectively. The synthesized gradient map is calculated as 

     
    

  
   

. The Canny edge detector is applied on   

to calculate its binary edge map  . For a pixel   , we certify 

whether it is close to a character stroke by setting a circular 

range as                    , where      denotes 

Euclidean distance, and   = 36 is the threshold of the circular 

range to search for edge pixels. We set this threshold because 

the text patches in our experiments are all normalized into 

height 48 pixels and width 96 pixels, and the stroke width of 

text characters in these normalized patches mostly does not 

exceed 36. If the distance is greater than 36, pixel    would be 

located at background region far away from text character. In 

the range we select the edge pixel    with the minimum 

Euclidean distance from   . Then the pixel    is labeled with 

gradient orientation at pixel    from gradient maps by Eq. (4): 

          
   

        

                                 

(4) 

where                                The stroke 

orientation calculated from        will be in the range 

          . To distinguish the pixels labeled with stroke 

orientation 0 and the unlabeled pixels also with value 0,   shifts 
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the stroke orientations one period forward into the range 

           ， which removes the value 0 from the range of 

stroke orientations. A stroke orientation map      is output by 

assigning each pixel the gradient orientation at its nearest edge 

pixel, as shown in Fig. 8(a). The pixel values in stroke 

orientation map are then quantized into an N bin histogram in 

the range             (see Fig. 8(b)). In the feature 

extraction stage, strokes with identical or similar orientations 

are identified to describe the structure of text from one 

perspective. In the N bin histogram, we group the pixels at 

every b consecutive bins together to generate a multi-layer 

stroke orientation map, where strokes in different orientations 

are separated into different layers. Without considering the 

cyclic shifts of the bins, there are a total of       layers.  

The range of stroke orientations             is quantized 

into      bins, so each bin corresponds to              
and     consecutive bins will cover a range of       . This 

span value is compatible with most character strokes in scene 

images, because the stroke orientations are always vertical, 

horizontal or approximate         such as “W”, “X”, and arc 

components of “P”, “D” etc. Since   is set to be 3 and   is set 

to be 16, each sample generates 14 layers of stroke orientation 

maps, where text structure is described as gradient features of 

stroke orientations. We can extract structural features of text 

from such stroke orientation maps.  

 

Fig. 8. (a) An example of stroke orientation label. The pixels denoted by blue 

points are assigned the gradient orientations (red arrows) at their nearest edge 
pixels, denoted by the red points. (b) A 210 ×54 text patch and its 16-bin 

histogram of quantized stroke orientations. 

B. Distribution of Edge Pixels 

In an edge map, text characters appear in the form of stroke 

boundaries. The distribution of edge pixels in stroke boundaries 

also describes the characteristic structure of text. The most 

commonly used feature [39, 41] is edge density of text region. 

But the edge density measure does not give any spatial 

information of edge pixels. It is generally used for 

distinguishing text regions from relatively clean background 

regions. To model text structure by spatial distribution of edge 

pixels, we propose an operator to map each pixel of an image 

patch into the number of edge pixels in its cross neighborhood. 

At first, edge detection is performed to obtain an edge map, and 

the number of edge pixels in each row   and each column   is 

calculated as       and      . Then each pixel is labeled with 

the product value of the number of edge pixels in its located 

row and in its located column. Then a     smooth operator 

   is applied to obtain the edge distribution feature map, as Eq. 

(5). In this feature map, pixel value reflects edge density in its 

located region, and the smoothed map better represents the 

discriminative inner structure of text characters. 

                        

 

 (5) 

where         is neighboring pixel of       and    = 1/9 

denotes the weight value. 

C. Adaboost Learning of Text Features 

Based on the feature maps of gradient, stroke orientation and 

edge distribution, a text classifier is trained from an Adaboost 

learning model. Image patches with fixed size (height 48 pixels, 

width 96 pixels) are collected and resized from images taken 

from the ICDAR-2011 robust reading competition [11] to 

generate a training set for learning features of text. We generate 

positive training samples by scaling or slicing the ground truth 

text regions, according to the aspect ratio of width   to height 

 . To train a robust text classifier, we ensure  that most positive 

training samples will contain 2 to 4 text characters. We build a 

relationship between the width-to-height aspect ratio and the 

number of characters of ground-truth text regions. It shows that 

the ground-truth regions with 2 to 4 text characters have 

width-to-height ratios between 0.8 and 2.5, while the ones 

lower than 0.8 mostly have less than 2 characters and the ones 

higher than 2.5 mostly have more than 4 characters. Therefore, 

if the ratio is         with too few characters, the region is 

discarded. If the ratio         corresponding to more than 4 

text characters, we slice this ground truth region into 

overlapped patches with width-to-height ratio 2:1. If the ratio 

    falls in [        , we keep it unsliced and scale it to 

width-to-height ratio    . Then the samples are normalized 

into width 96 and height 48 pixels for training. The negative 

training samples are generated by extracting the image regions 

containing edge boundaries of non-text objects. These regions 

also have width-to-height ratio 2:1, and we similarly scale them 

into width 96 and height 48. In this training set, there are a total 

of 15301 positive samples each containing several text 

characters, and 35933 negative samples without containing any 

text information for learning features of background outliers.  

Some training examples are shown in Fig. 9. 

 

Fig. 9. Examples of training samples with width-to-height ratio 2:1. The first 

two rows are positive samples and the other two rows are negative samples. 

To train the classifier, we extract 3 gradient maps, 14 stroke 

orientation maps, and 1 edge distribution map for each training 

sample. We apply 6 block patterns [4] on these feature maps of 

training samples. As shown in Fig. 10, these block patterns are 

involved in the gradient distributions of text in horizontal and 

vertical directions. We normalize the block pattern into the 
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same size (height 48 pixels, width 96 pixels) as training 

samples and derive a feature response   of a training sample by 

calculating the absolute difference between the sum of pixel 

values in white regions and the sum of pixel values in black 

regions. For the block patterns with more than 2 sub-regions 

(see Fig. 10(a-d)), the other metric of feature response is the 

absolute difference between the mean of pixel values in white 

regions and the mean of pixel values in black regions. Thus we 

obtain            feature values through the 6 block 

patterns and 2 metrics from each feature map. The “integral 

image” algorithm is used in these calculations [35]. From the 18 

feature maps (3 gradient maps, 14 stroke orientation maps, and 

1 edge distribution map), a training sample can generate a 

feature vector of 180 dimensions as Eq. (6). We compute 

feature vectors for all the       samples in the training set. By 

using feature vector    of the i-th sample as the i-th column, a 

feature matrix   is obtained by Eq. (7). 

      
    

        
  

 
 (6) 

                         (7) 

The            feature matrix is used for learning a text 

classifier in a Cascade-Adaboost model. A row of the feature 

matrix records feature responses of a certain block pattern and a 

certain feature map on all training samples. In the process of 

Adaboost learning, weak classifier is defined as         . The 

three parameters denote the  -th row of feature matrix 

         , a threshold of the  -th row   , and polarity of 

the threshold         .  In each row  , linearly spaced 

threshold values are sampled in the domain of its feature values 

by Eq. (8).  

          
    

 

  

   
      

       (8) 

where    represents the number of thresholds,   
    and   

    

represent the minimum and maximum feature value of the  -th 

row, and   is an integer ranging from 1 to   . We set        

in the learning process. Thus there are in total       
           weak classifiers denoted as  . When a weak 

classifier          is applied to a sample with corresponding 

feature vector                   
 , if        , it is 

classified as a positive sample, otherwise it is classified as a 

negative sample. 

 

Fig. 10. Block patterns based on [4]. Features are obtained by the absolute 
value of mean pixel values in white regions minus those in black regions. 

The Cascade-Adaboost classifier has proved to be an 

effective machine learning algorithm in real-time face detection 

[35]. The training process is divided into several stages. In each 

stage, a stage-specific Adaboost classifier is learned from a 

training set, which consists of all positive samples and the 

negative samples incorrectly classified by previous Adaboost 

classifiers at this stage. We refer to this as a stage-Adaboost 

classifier in the following paragraphs. 

The learning process based on the Adaboost model [8] at 

each stage is as follows. 1) Given the set of   samples 

                          where      denotes feature 

vector and           denotes ground truth. Each sample   is 

assigned a weight   , which is initialized to be 1  . 2) In the 

t-th iteration, we select the optimized weak classifier    from 

the set of weak classifiers  , such that 

                      
 
   , and calculate    

                
 
    and                    . 3) 

Update the sample weights by                    . 4) 

Start the next iteration from step (2) until all the samples are 

correctly classified or the maximum number of iterations is 

reached. 5) The optimized weak classifiers are combined into a 

stage-Adaboost classifier as               . 

In the end, all the stage-Adaboost classifiers are cascaded 

into the final Cascade-Adaboost classifier. When a test image 

patch is input into the final classifier, it is classified as a text 

patch if all the cascaded stage-Adaboost classifiers determine it 

is a positive sample, and otherwise it is classified as a non-text 

patch.  In the learning process, each stage-Adaboost classifier 

ensures that 99.5% of positive samples are correctly classified 

while 50% of negative samples are correctly classified. Thus a 

testing sample with positive ground truth will have a          

chance of correct classification, where T represents the total 

number of stage-Adaboost classifiers. 

 

Fig. 11.  Adjacent characters are grouped to obtain fragments of text strings, 
where each fragment is marked by a colored rectangle. The extracted image 

patches will be processed and input into text classifier. 

D. Text Region Localization 

Text localization is then performed on the camera-captured 

image. The Cascade-Adaboost classifier cannot handle the 

whole image, so heuristic layout analysis is performed to 

extract candidate image patches prepared for text classification. 

Text information in the image usually appears in the form of 

horizontal text strings containing no less than three character 

members. Therefore adjacent character grouping [38] is used to 

calculate the image patches that contain fragments of text 

strings. These fragments consist of three or more neighboring 

edge boundaries that have approximately equal heights and stay 

in horizontal alignment, as shown in Fig. 11. But not all the 

satisfied neighboring edge boundaries are text string fragments. 

Thus the classifier is applied to the image patches to determine 
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whether they contain text or not. Finally, overlapped text 

patches are merged into the text region, which is the minimum 

rectangle area circumscribing the text patches. The text string 

fragments inside those patches are assembled into informative 

words. 

V. TEXT RECOGNITION AND AUDIO OUTPUT 

Text recognition is performed by off-the-shelf OCR prior to 

output of informative words from the localized text regions. A 

text region labels the minimum rectangular area for the 

accommodation of characters inside it, so the border of the text 

region contacts the edge boundary of the text character. 

However, our experiments show that OCR generates better 

performance if text regions are first assigned proper margin 

areas and binarized to segment text characters from 

background. Thus each localized text region is enlarged by 

enhancing the height and width by 10 pixels respectively, and 

then we use Otsu’s method [22] to perform binarization of text 

regions, where margin areas are always considered as 

background. We test both open- and closed-source solutions 

exist that have APIs that allow the final stage of conversion to 

letter codes (e.g. OmniPage, Tesseract, ABBYReader). 

The recognized text codes are recorded in script files. Then 

we employ the Microsoft Speech Software Development Kit 

(SDK) to load these files and display the audio output of text 

information. Blind users can adjust speech rate, volume and 

tone according to their preferences. 

VI. EXPERIMENTS 

A. Datasets 

Two datasets are used to evaluate our algorithm. First, the 

ICDAR Robust Reading Dataset [11, 17] is used to evaluate the 

proposed text localization algorithm. The ICDAR-2003 dataset 

contains 509 natural scene images in total. Most images contain 

indoor or outdoor text signage. The image resolutions range 

from 640×480 to 1600×1200. Since layout analysis based on 

adjacent character grouping can only handle text strings with 

three or more character members, we omit the images 

containing only ground truth text regions of less than 3 text 

characters. Thus 488 images are selected from this dataset as 

testing images to evaluate our localization algorithm.  

To further understand the performance of the prototype 

system and develop a user-friendly interface, following Human 

Subjects Institutional Review Board approval, we recruited 10 

blind persons to collect a dataset of reading text on hand-held 

objects. The hardware of the prototype system includes a 

Logitech web camera with autofocus, which is secured to the 

nose bridge of a pair of sunglasses. The camera is connected to 

an HP mini laptop by a USB connection. The laptop performs 

the processing and provides audio output. In order to avoid 

serious blocking or aural distraction, we would choose a 

wireless “open” style Bluetooth earpiece for presenting 

detection results as speech outputs to the blind travelers in a full 

prototype implementation.  

The blind user wore the camera/sunglasses to capture the 

image of the objects in his/her hand, as illustrated in Fig. 12. 

The resolution of the captured image is 960×720. There were 

14 testing objects for each person, including grocery boxes, 

medicine bottles, books, etc. They were required keep their 

head (where the camera is fixed) stationary for a few seconds 

and subsequently shake the object for an additional couple of 

seconds to detect the region of object of interest. Each object 

was then rotated by the user several times to ensure that 

surfaces with text captions are exposed and captured. We 

manually extracted 116 captured images and labeled 312 text 

regions of main titles. 

 

Fig. 12. Examples of blind persons are capturing images of the object in their 

hands. 

B. Evaluations of Text Region Localization 

Text classification based on the Cascade-Adaboost 

classifier plays an important role in text region localization. To 

evaluate the effectiveness of the text classifier, we first 

performed a group of experiments on the dataset of sample 

patches, in which the patches containing text are positive 

samples and those without text are negative samples. These 

patches are cropped from natural scene images in ICDAR-2003 

and ICDAR-2011 Robust Reading Datasets.  

Each patch was assigned a prediction score by the text 

classifier; a higher score indicates a higher probability of text 

information. We define the true positive rate as the ratio of 

correct positive predictions to the total number of positive 

samples. Similarly, the false positive rate is the ratio of  correct 

positive predictions to the total number of positive predictions. 

Fig.13 plots the variation of true positive against false positive 

rates. This curve indicates that our text classifier is biased 

toward negative (i.e. no text) responses because the false 

positive rate stays near zero until the true positive rate 

approximately rises to 0.7. This characteristic is compatible 

with the design of our blind-assistive framework, in which it is 

useful to filter out extraneous background outliers and keep a 

conservative standard for what constitutes text. 

 

 
Fig. 13. The curve of classification performance, where horizontal axis denotes 

false positive rate and vertical axis denotes true positive rate.  



IEEE/ASME Transactions on Mechatronics 

 

8 

Next, the text region localization algorithm was performed 

on the scene images of ICDAR-2003 Robust Reading Dataset 

to identify image regions containing text information. Fig. 14, 

Fig. 15 and Fig. 16(a) depict some results showing the 

localization of text regions, marked by blue rectangular boxes. 

To analyze the accuracy of the localized text regions, we 

compare them with ground truth text regions and characterize 

the results with measures we call precision, recall and 

f-measure. For a pair of text regions, match score is estimated 

by the ratio between the intersection area and the mean area of 

the union of the two regions. Each localized (ground truth) text 

region generates a maximum match score from its best matched 

ground truth (localized) text region. Precision is the ratio of 

total match score to the total number of localized regions. It 

estimates the false positive localized regions. Recall is the ratio 

between the total match score and the total number of ground 

truth regions. It estimates the missing text regions. The 

f-measure combines precision and recall as a harmonic sum 

and is defined by Eq. (9) where   represents the relative weight 

between the two metrics. According to the standard evaluation 

methods in ref. [17], we set      . 

    
 

 
 
     

 
   (9) 

TABLE I.  THE PERFORMANCE COMPARISON BETWEEN OUR ALGORITHM AND 

THE ALGORITHMS PRESENTED IN REF. [17] ON ROBUST READING DATASET. 
OUR (DS) INDICATES OUR METHOD APPLIED ON THE  DOWNSAMPLED IMAGES. 

Method precision recall f-measure 

Our 0.69 0.56 0.60 

HinnerkBeck

er 

0.62 0.67 0.62 

AlexChen 0.60 0.60 0.58 

Ashida 0.55 0.46 0.50 

HWDavid 0.44 0.46 0.45 

 

 
Fig. 14. Some example results of text localization on the ICDAR-2003 robust 
reading dataset, and the localized text regions are marked in blue.  It shows that 

our algorithm can localize multiple text labels in indoor and outdoor 

environments. 

The evaluation results are calculated from average measures 

on all testing images, which have precision 0.69, recall 0.56, 

and f-measure 0.60. To evaluate the proposed features of text 

based on stroke orientations and edge distributions, we can 

make a comparison with Alex Chen’s algorithm [4, 17] because 

it applies similar block patterns and a similar learning model, 

but with different feature maps, which are generated from 

intensities, gradients and joint histograms of intensity and 

gradient. The evaluation results of Chen’s algorithm on the 

same dataset are precision 0.60, recall 0.60, and f-measure 0.58 

(Table I). Thus our proposed feature maps of stroke orientation 

and edge distribution perform better on precision and 

f-measure.  

Our proposed text localization algorithm participated in the 

ICDAR-2011 Robust Reading Competition, and we won the 

2nd place (see Table II). In this competition, the same 

evaluation measures are employed to evaluate and compare the 

submitted detection results. Some examples of localized text 

regions are presented in Fig. 15 using blue boxes. To improve 

the performance of blind assistive technology applications, we 

adjusted the parameters of text layout analysis to adapt to the 

hand-held object images. 

 
TABLE II. THE RESULTS OF ICDAR-2011 ROBUST READING COMPETITION ON 

SCENE TEXT LOCALIZATION (%) [11]. OUR PROPOSED FRAMEWORK WON 2ND 

PLACE. 

Method precision recall f-measure 

Kim 62.47 82.98

71. 

71.28 

Yi (Our) 58.09 67.22 62.32 

TH-TextLoc 57.68 66.97 61.98 

Neumann 52.54 68.93 59.63 

TDM_IACS 53.52 63.52 58.09 

LIP6-Retin 50.07 62.97 55.78 

KAIST AIPR 44.57 59.67 51.03 

 

 
 
Fig. 15. Some example results of text localization on the ICDAR-2011 robust 

reading dataset, and the localized text regions are marked in blue. Our 

algorithm can localize multiple text labels in indoor and outdoor environments. 

C. Prototype System Evaluation 

The automatic ROI detection and text localization 

algorithms were independently evaluated as unit tests to ensure 

effectiveness and robustness of the whole system. We 

subsequently evaluated this prototype system of assistive text 

reading using images of hand-held objects captured by 10 blind 

users in person. 

Two calibrations were applied to prepare for the system test. 

First, we instructed blind users to place hand-held object within 

the camera view. Since it is difficult for blind users to aim their 

held objects, we employed a camera with a reasonably wide 

angle. In future systems, we will add finger point detection and 

tracking to adaptively instruct blind users to aim the object. 
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Second, in an applicable blind-assistive system, a text 

localization algorithm might prefer higher recall by sacrificing 

some precision. We adjusted the parameters of our text 

localization algorithm, and obtained another group of 

evaluation results, as precision 0.48, recall 0.72, f-measure 

0.51. The higher recall ensures a lower miss (false negative) 

rate. To filter out false positive localizations, we could further 

employ some post-process algorithm based on scene text 

recognition or lexical analysis. This work will be carried out in 

future work. 

Next, we evaluated the user-captured dataset of object text.  

The dataset was manually annotated by labeling the regions of 

the object of interests and the text regions inside the object of 

interest regions. In our algorithm evaluation, we defined a 

region as correctly detected if the ratio of the overlap area of a 

detected region and its ground truth region is no less than 3/4. 

Experiments showed that 225 of the 312 ground truth text 

regions were hit by our localization algorithm. By using the 

same evaluation measures as above experiments, we obtained 

precision 0.52, recall 0.62, and f-measure 0.52 on this dataset. 

The precision is lower than that on the Robust Reading Dataset. 

The images in the user-captured dataset have lower resolutions 

and more compact distribution of text information, so they 

generate low-quality edge maps and text boundaries, which 

result in improper spatial layouts and text structure features.  

 
Fig. 16. (a) Some results of text localization on the user-captured dataset, where 

localized text regions are marked in blue. (b) Two groups of enlarged text 
regions, binarized text regions, and word recognition results from top to down. 

 

OCR is applied to the localized text regions for character 

and word recognition. Fig. 16 shows some examples of text 

localization and recognition of our proposed framework. We 

note that the recognition algorithm might not correctly and 

completely output the words inside localized regions. 

Additional spelling correction is likely required to output 

accurate text information. Our text reading system spends 1.87 

seconds on average reading text from a camera-based image. 

The system efficiency can and will be improved by parallel 

processing of text extraction and device input/output, that is, 

speech output of recognized text and localization of text regions 

in the next image are performed simultaneously. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we have described a prototype system to read 

printed text on hand-held objects for assisting blind persons. In 

order to solve the common aiming problem for blind users, we 

have proposed a motion-based method to detect the object of 

interest while the blind user simply shakes the object for a 

couple of seconds. This method can effectively distinguish the 

object of interest from background or other objects in the 

camera view. To extract text regions from complex 

backgrounds, we have proposed a novel text localization 

algorithm based on models of stroke orientation and edge 

distributions. The corresponding feature maps estimate the 

global structural feature of text at every pixel. Block patterns 

are defined to project the proposed feature maps of an image 

patch into a feature vector. Adjacent character grouping is 

performed to calculate candidates of text patches prepared for 

text classification. An Adaboost learning model is employed to 

localize text in camera captured images. Off-the-shelf OCR is 

used to perform word recognition on the localized text regions 

and transform into audio output for blind users.  

Our future work will extend our localization algorithm to 

process text strings with characters fewer than 3 and to design 

more robust block patterns for text feature extraction. We will 

also extend our algorithm to handle non-horizontal text strings. 

Furthermore, we will address the significant human interface 

issues associated with reading text by blind users. 
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