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Abstract—Text instance provides valuable information for the under-
standing and interpretation of natural scenes. The rich, precise high level
semantics embodied in text could be beneficial for understanding the
world around us, and empower a wide range of real-world applications.
While most recent visual phrase grounding approaches focus on general
objects, this paper explores extracting designated texts and predicting
unambiguous scene text segmentation mask, i.e. scene text segmen-
tation from natural language descriptions (referring expressions) like or-
ange text on a little boy in black swinging a bat. The solution of this novel
problem enables accurate segmentation of scene text instances from
the complex background. In our proposed framework, a unified deep
network jointly models visual and linguistic information by encoding both
region-level and pixel-level visual features of natural scene images into
spatial feature maps, and then decode them into saliency response map
of text instances. To conduct quantitative evaluations, we establish a new
scene text referring expression segmentation dataset: COCO-CharRef.
Experimental results demonstrate the effectiveness of the proposed
framework on the text instance segmentation task. By combining image-
based visual features with language-based textual explanations, our
framework outperforms baselines that are derived from state-of-the-
art text localization and natural language object retrieval methods on
COCO-CharRef dataset.

Index Terms—Natural Language Description, Text Detection, Text Re-
trieval, Text Recognition, Deep Neural Network, Referring Expression

1 INTRODUCTION

S a category of self-described object entities, text in-
A stances such as characters, words, and sentences in a
scene image provide one of the most concise and accurate
cues to help people understand and interpret natural scenes.
Reading text information from scene natural images, namely
scene text extraction, could play an important role in image
search [1], [2], instant translation [3], robot navigation and
self-driving autonomous system [4], industrial automation
[5], augmented reality [6], and many other vision-language
applications.
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Characterness, a.k.a. scene text segmentation mask, as
a measure of scene text saliency in natural images first
introduced in [7], has been widely used similar to objectness
for object saliency detection. One main motivation for pre-
dicting characterness, a.k.a. scene text segmentation mask, is
the fact that text attracts human attention, even when amongst
a cluttered background [7]. This has been shown by a range
of authors including Judd et al. [8] and Cerf et al. [9] who
verified that humans tend to focus on text in natural scenes.
Also, as indicated in Bylinskii et al. [10] on the research of
saliency prediction and human eye fixations, text instances
are widely existing in the daily life and always attract much
human visual attention, and quantitatively accounts 29%
out of all under-predicted outdoor labels by DeepFix [11]
model in the CAT2000 dataset [12].

The referring expression-based text saliency and segmen-
tation has several significant benefits for a variety of scene
understanding tasks. Compared with a set of unordered text
bounding boxes predictions traditionally generated by scene
text detection approaches, a precise pixel-wise segmentation
of target text instances is more valuable because: 1) First, the
text bounding boxes of annotated text regions were usually
contaminated by background objects, especially for the text
instances in irregular shapes. 2) Second, a predicted text
bounding box did not completely match its text instance in
most cases, and many methods would add post processing
to adjust their positions and sizes. These defective text
regions would drastically affect the following text recog-
nition, transcription, and other associated tasks depending
on the accuracy of text regions. In contrast, segmentation-
based pixel-wise text extraction methods could generate
more accurate and useful text annotations. 3) Accurate pixel-
level text segmentation mask is also necessary for many ap-
plications such as scene text image inpainting/completion
and the automatic removal of image annotations or video
subtitles.

However, even though scene text segmentation could
provide a more comprehensive extraction output with re-
spect to scene text detection, not all text instances are equiv-
alently important in a scene image. The informativeness of
a text instance in the background context, and the allure of
the text instance on its own, can affect how long individual
observers fixate on it, and what proportion observers gaze
at [10]. Most previous approaches of scene text extraction
merely regarded text instances as one generic category of
objects, and attempted to exhaustively generate their lo-



Fig. 1: In this work we approach the novel problem of unambiguous scene text segmentation. Unlike traditional semantic
image segmentation and scene text detection/segmentation, the proposed framework jointly models visual features and
context descriptions to predict specific scene text segmentation mask, which results in unambiguous pixel-wise scene text
segmentation from natural language expressions. From left to right: 1) original image; 2) semantic image segmentation (on
category human); 3) region-level scene text detection represented with bounding boxes; 4) scene text segmentation mask
from referring expression query “orange text on a little boy in black swinging a bat”.

cation (spatial) and character sequence (literal) information
while ignoring higher level semantic and contextual infor-
mation. It means that text instances were treated the same
as other objects for scene understanding and description,
even though they are probably straightforward explanations
of surrounding context environment and semantically self-
described.

As we know, text information could help people un-
derstand surrounding environments only if the relationship
between text instances and the context environment were
perceived. It means that user-specific text instances could be
more valuable than a set of unorganized text instances from
scene images. Therefore, this paper addresses the following
problem: from an image containing scene text instances, and
a referring expression that describes specific text instances with
their context, how to predict the text regions corresponding to the
referring expression and further segment text instances in pixel
level (i.e., unambiguous scene text segmentation / characterness
prediction). For example, as shown in Figure 1, for the
query {orange text on a little boy in black swinging a bat}
our framework would predict a segmentation mask that
covers the orange word exactly on the target entity, but
not the others. This problem is related to but different from
recent work on natural language object retrieval/segmentation
[13], [14], referring expression comprehension [15], and phrase
grounding [16], [17], since the highly variant appearance,
scale, and density, and the style of self-description tell the
significant difference between text instances and generic ob-
jects. Besides, the recent semantic segmentation approaches
were not specifically designed for text instances which are
usually inconsistent, fragmental, and lack of well-defined
shape/boundary and amorphous regions, so they hardly
work well on text segmentation. Our proposed model out-
performs the state-of-the-art approach on the newly col-
lected benchmark dataset, named COCO-CharRef, for this
novel task.

High-quality and user-specific scene text segmentation
from referring expressions can underpin many vision-
language applications which rely on natural language inter-
faces, such as communicating with a grocery shopping aid
for blind or visually impaired users (e.g., Alexa, please read me
the price of non-fat CHOBANI Greek yogurt on the top shelf), or
interacting with video editing software (e.g., Premiere, please
transcribe/mosaic all the identity information if photo IDs or credit
cards appear in this video). In addition, it is a good testbed

for research in the area of vision and language systems on
scene text images. The proposed framework could also help
dramatically boost the efficiency of the whole scene text
reading system while avoiding the exhaustive search and
recognition of all text instances.
Contributions. The contributions of our work are three-fold.
ee We propose a new framework which accurately seg-
ments pixel-level text instances from context descrip-
tion by the prediction of unambiguous scene text seg-
mentation mask.

e The relationship between text instances and their con-
text are explored and modeled in this paper as {fext-
predicate-context} triplets, where the predicate can be spa-
tial, preposition, comparative, visual attributes or their com-
binations. While the number of such triplet relation-
ship phrases could grow combinatorially, the proposed
model tends to handle a large number of relations by
sharing parameters among them. For instance, a single
“on” classifier can be learned to recognize both {fext on
bags} and {text on dogs}, even when {text on dogs} has
never been seen in training.

e A new large-scale benchmark dataset is constructed to
evaluate the performance of the new task and other
text-based scene understanding approaches. And the
proposed approach achieves remarkable performance
improvement compared with several strong baseline
methods.

The remainder of this paper is organized as follows:
Sec. 2 reviews related work recently published. In Sec. 3,
the baseline methods and proposed model are described in
detail. The construction of new benchmark dataset, exper-
imental results, and analytic discussions are presented in
Sec. 4. We conclude our paper and describe future work in
Sec. 5.

2 RELATED WORK

Text detection and segmentation, word recognition, word
image retrieval, image captioning and description, vi-
sual question answering, generation and comprehension
of referring expressions, image-language alignment, phrase
grounding, and visual relation reasoning/modeling could
be considered as diverse subtasks of the supertask of sys-
tematic visual and linguistic interaction, which jointly mod-
els the natural language and scene image information. We
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Fig. 2: The Architecture of Our Proposed Model. Given an input image containing text instances, the model encodes the
image-based data along with the language-based query of referring expression into convolutional and recurrent features,
then decodes them into the saliency response map through a fully convolution classification network. After upscaling, the
final text segmentation masks are generated from the saliency response map.

discuss the related work with the proposed new task as
follows.

Text extraction in the wild. Text extraction from the nat-
ural scene has been increasingly popular in academic re-
search and practical applications. Most existing text extrac-
tion methods localize scene text instances with word-level
bounding box annotations, although they depend on mul-
tiple schemes, including sliding-window based [18], [19],
[20], connected components-based [21], [22], [23], or deep
neural network-based [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37]. However, bounding box-
based text regions generated by traditional text detection
approaches are usually not tight enough and contain many
background outliers (especially when text instances are in
irregular or curved shapes), which makes the following
scene text recognition difficult. In contrast, segmentation-
based pixel-wise text extraction methods could generate
more accurate and useful text annotations.

In our proposed framework, by modeling both visual
and linguistic information in context, text instances are able
to be segmented from the scene image with pixel-wise
labeling. Most conventional solutions of text segmentation
employed a bottom-up pipeline with heuristic features [23],
[38], [29] which were not robust and reliable. It results
in the high dependency of low-level image filtering. Even
though deep neural network could substantially improve
generic semantic object segmentation [40], [41], [42], text
segmentation from scene images with complex background
is still a problem to be addressed. The main challenge is that
text instances always reveal high variants of appearances,
scales, and structures that are difficult to model. Some recent
approaches [43], [44], [45], [46], [30], [34] based on deep
networks presented well-performed text segmentation of
zoomed-in views, but could not satisfyingly handle clut-
tered environments with large-scale and a wide variety of

context information from natural scenes. In our proposed
framework, text instances and their context are jointly mod-
eled. The relationship modeling of a text instance with
its surrounding objects further benefits the characterness
prediction and pixel-wise segmentation.

Fully convolutional networks for segmentation. Fully Con-
volutional Networks (FCNs) are deep neural networks con-
sisting of only convolutional (and pooling) layers. FCNs pi-
oneered the use of deep learning for semantic segmentation,
and are still one of the most commonly adopted backbone of
the state-of-the-art methods for semantic segmentation over
a pre-defined set of semantic categories [41], [47], [48]. One
advantage of FCNs is that spatial information is consistently
preserved, which makes this kind of networks suitable for
segmentation tasks that require spatial grid output. In our
framework, FCNs are used to extract features and generate
segmentation labels, with the purpose of handling image-
based text instances at both region and pixel levels.

Alignment of images with language. Learning correspon-
dences between sentence structure and image regions has
been explored with the visual-semantic alignment. This ar-
chitecture has been used for applications in image retrieval
and caption generation [49], [50]. With new datasets pro-
posed which provide bounding box-level natural language
annotations [15], recent work has also investigated region-
wise image captioning and description for the tasks of
natural language object retrieval [13], dense captioning [51],
scene graph parsing [52], and visual common sense reason-
ing [53]. Our proposed framework has a similar idea that
aligns a language triplet with regions of pixels in the image.
Typically, existing approaches do not explicitly represent
relations between noun phrases in a sentence to improve
visual-semantic alignment. We believe that understanding
these relations will lead to better scene understanding in-
cluding phrase grounding and comprehension, and scene



graph generation and reasoning.

Visual relation modeling. Triplet learning has been ad-
dressed in various tasks such as mining typical relations
(knowledge extraction) [54], reasoning [55], object detec-
tion [56], or image retrieval [57]. In this work, we address
the task of relationship modeling in scene text segmen-
tation from language based explanations. Early work on
human-object interactions [58] models the triplet in the form
(person, action, object). Recently, the work in [59] tried
to generalize the similar setting to non-human subjects by
developing a language model sharing knowledge among vi-
sual detections related with each other. Inspired by the idea
but different from these approaches, we restrict the subject
to be a text instance and cover a broader class of predicates
that include prepositions and comparatives. In our work this
combinatorial challenge can be addressed by developing a
new visual representation with better generalization into
unseen triplets {text-predicate-object} and without depending
on a strong language model.

Grounding visual explanations. Our proposed framework
is an innovative combination of the recent work on object
localization and segmentation from natural language de-
scriptions, i.e., referring expression comprehension. In those
work, the task is to localize/segment a target object in a
scene based on its natural language referring expression (by
drawing a bounding box over it, or pixel wisely assigning
the foreground label to it). The methods of [13] and [15]
are built upon image captioning frameworks such as LRCN
[60] or mRNN [61], and localize objects by selecting the
bounding box where the expression has the highest proba-
bility. The authors of [62] firstly proposed a natural language
based scene text extraction methods, but the framework
is not trained end-to-end and cannot output pixel-wise
text annotations. In [16], the authors proposed a model
to localize a textual phrase by attending to a region on
which the phrase can be best reconstructed. In [63], a joint
embedding space of visual features and words is learned
to localize target object by searching the closest region in
the joint embedding space. [14] proposes an end-to-end
training method for generating object segmentation mask
from natural language descriptions. The proposed model
encodes the given expression into a real-valued vector using
LSTM networks [64], and extracts a spatial feature map
from the image using a Convolutional Network. Then it
performs pixel-wise classification based on the encoded
referring expression and feature map to output an image
mask covering the visual entity described by the expression.
Liu et al. [65] further propose to learn the word-to-image
interaction instead of modeling image and sentence features
independently. The proposed method achieves top results
on general object segmentation with language explanations,
and also shows that the combination of visual and linguistic
features for scene text segmentation is worth exploring.

To the best of our knowledge, all previous methods of
natural language based detection and retrieval can only
return a bounding box or segmentation mask of the generic
objects, and no prior work has learned to directly segment
text instances given a natural language description as a
query. The most related approach with our work is the
recent unambiguous text localization and retrieval model
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(CRTR) proposed in [62], which pioneered the task of
natural language based scene text detection and retrieval.
However, CRTR is only capable of generating bounding
box level prediction, and relies on preceding results from
a sequential text detection model. Also, the framework
proposed in [62] are not end-to-end trainable (though being
end-to-end evaluated). In comparison, we construct strong
baselines with the foreground segmentation based on the
bounding boxes obtained by combining the state-of-the-art
text detection method [27] and natural language retrieval
method [13]. The CRTR model proposed in [62] is also
regarded as one start-of-the-art to compare with (see details
in Sec. 4).

3 PROPOSED MODEL

In this section, we first describe our proposed framework
in detail from Sec. 3.1 to Sec.3.3, including text image vi-
sual feature encoding, referring expression linguistic feature
encoding, fusion feature decoding, and saliency response
map upsampling. Then several effective baseline methods
are presented, which are derived from previous state-of-the-
art approaches in Sec. 3.4.

3.1 Spatial feature map extraction

As shown in Figure 3, given an image with scene text in-
stances, our proposed framework first computes an effective
feature representation that is able to encode visual appear-
ance of text characters and their relations with surrounding
objects. This feature representation should preserve the spa-
tial information to enable the correct spatial prediction of a
segmentation mask. This is accomplished by a fully convo-
lutional network model similar to FCN-32s [41], where the
image is fed through a series of convolutional (and pooling)
layers obtaining a feature map containing encoded spatial
information fused from different levels. In our framework,
the network is further modified to encode both region-wise
and pixel-wise information, resulting in a more effective
feature representation compatible with varieties of text in-
stances.

Given an input scene text image of size W x H, we
apply a convolutional network to the image and obtain a
W’ x H' spatial feature map, with each position on the
feature map containing D;,, channels (D;,, dimensional
local descriptors). At each position of the spatial feature
map, the D;,, dimensional local descriptor is further L2-
normalized in order to obtain a more robust feature rep-
resentation with respect to degradations. In this way, we
can extract a W’ x H' x D, spatial feature map as the
representation of each image.

To allow the model to reason about spatial relationships,
two extra channels are inserted into the feature maps: the =
and y coordinates of each spatial location. The top left corner
and the bottom right corner of a feature map are represented
as (—1,-1) and (4+1,41), respectively. In this way, we
obtain a w X h X (D;, +2) feature representation containing
both local image descriptors and spatial coordinates.

In our implementation, the VGG-16 architecture [66] is
adopted as a fully convolutional network by transforming
fully-connected layers £c6, fc7 and fc8 to convolutional



layers, which outputs D;,,, = 1000 dimensional local de-
scriptors. The resulting feature map size is W’ = W/s and
H' = H/s, where s = 32 is the pixel stride on fc8 layer
output. It means that a unit on the spatial feature map has a
large enough receptive field of 384 pixels, which aggregates
the information of context concepts for text instances from
neighboring regions. This design can help reason about
interaction between visual text entities and context concepts.

3.2 Encode referring expressions with LSTM

For the input natural language expression that describes
a scene text region, we model the query sequence into a
vector because it is more efficient to process fixed-length
vectors than variable-length sequences. In our encoder, for
the natural language expression in a sequence-to-sequence
manner [67], each word is first embedded into a vector
through a word embedding matrix, and then a recurrent
LSTM [64] network with D;.,; dimensional hidden state is
used to scan through the embedded word sequence. For a
text sequence S = (wy, ..., wr) with T words (where wy, is
the vector embedding for the ¢-th word), at each iteration
t, the LSTM network takes as input the embedded word
vector w; from the word embedding matrix. At the final
iteration ¢ = T when the LSTM network has seen the
whole text sequence, the hidden state A7 in LSTM network
is regarded as the encoded vector representation of the
expression. Similar to the encoding of spatial features in Sec.
3.1, we also L2-normalize the D;.,;; dimensions in hy and
set Dicyr = 1000 in our implementation.

Specifically, every word w; is one-hot encoded and
mapped to a word embedding w,. The entire sentence is
then encoded with an LSTM into a vector ht of size D;qyt,
where h; represents the hidden state of LSTM at time step
t.

LSTM : (wy,hy_1,ci—1) — (hy, cy), 1)
Ct:fQthl'Fi@g, (2)
h; = o ® tanh(c;), ©)]

where n is the size of the LSTM cell. c; is the memory states
at time step t. The vector hr is then concatenated with the
image features and spatial coordinates at all locations to
produce a W’ x H' X (Djp, + Dyegt + 8) tensor.

3.3 Spatial classification and upsampling

After extracting the spatial feature map from a scene image
in Sec. 3.1 and the encoded referring expression hr in Sec.
3.2, we need to determine whether a spatial location on the
feature map belongs to the foreground, which denotes the
text instances described by the natural language expression.
In our framework, this is accomplished by a fully convolu-
tional classifier over the local image descriptor and the en-
coded referring expression. We first tile and concatenate Az
to the local descriptor at each spatial location in the spatial
grid to obtain a W’ x H' x D* (where D* = D, + Dyeyy +2)
spatial map containing both visual and linguistic features.
Then, a two-layer classification network is trained with a
D5 dimensional hidden layer, which takes as input the D*
dimensional representation and outputs a score to indicate
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the probability that a spatial location belongs to the target
image region. We set D;; = 500 in our implementation.

This classification network contains two 1 X 1 convo-
lutional layers (with ReLU none linearity between them)
and is applied to the underlying W’ x H' feature map. The
fully convolutional classification network outputs a W’ x H'
coarse low-resolution scene text response map containing clas-
sification scores, which can be regarded as a low-resolution
segmentation of the text instances described by the referring
expression.

In order to obtain a segmentation mask with higher res-
olution, upsampling is further performed by deconvolution
(swapping the forward and backward pass of convolution
operation) [41], [48]. In our framework a 25 x 25 deconvolu-
tion filter is used with stride s = 32 for the VGG-16 network
architecture, similar to the FCN-32s [41]. The deconvolution
filter produces a W x H high resolution saliency response map
that has the same size as the input image, and the values on
this map represent the confidence of determining if a pixel
belongs to target object. We use the pixel-wise classification
results (i.e., whether or not a value on the response map is
greater than 0) as the final segmentation prediction.

In training phase, a training sample is a tuple (I, T, M),
where I is an scene text image, 1" is a natural language ex-
pression describing specific text region(s) within that image,
and M is a binary segmentation mask of the corresponding
text region(s). The training loss function is defined to be
average pixel-wise loss, as presented in the following equa-
tion.

| WA
Loss = 7o >N Livij, Myy) 4)

i=1j=1
where W and H are image width and height, v;; is the
response value (score) on the high resolution saliency re-
sponse map and M;; is the binary ground-truth label at
pixel (i,7). L is the per-pixel weighted logistic regression

loss as follows

arlog(l + exp(—v;;
L(viy, Myg) = {7 ( ( ) )
ap log(1 + exp(v;;))

if My; =1
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where oy and «y, are loss weights of foreground and back-
ground pixels respectively. In experiments, we observe that
training converges faster in the presence of higher loss
weights for foreground pixels, and we set ay = 3 and
ap = 1in L(Uij, M”)

All the parameters of the network are initially derived
from a VGG-16 network [66], which is pretrained on the
1000-class ILSVRC classification task [68], and fine-tuned on
newly collected COCO-CharRef dataset. The deconvolution
filter for upsampling is initialized from bilinear interpola-
tion. All the other parameters in our proposed framework,
including the word embedding matrix, the LSTM param-
eters and the classifier parameters, are randomly initial-
ized. The whole network is trained with standard back-
propagation using SGD with momentum.

3.4 Baseline methods

As far as we know, no previous work was able to directly
predict the pixel-wise segmentation of text instances based
on referring expression in natural language. To evaluate



our method, we construct several baseline methods of text
segmentation, and compare their performance with our
proposed text segmentation framework.

Classification over Characterness proposals. To re-
implement this baseline method, we first extract a set of text
segmentation proposals using the original Characterness
method [7], and then train a binary classifier to determine
whether or not a text segmentation proposal matches the
expression. First, the encoded query is concatenated with
visual features that are extracted from each proposal using
a VGG-16 [66] network pretrained on [68]. Then, the con-
catenated features are adopted to train a classifier to predict
a segmentation proposal to be foreground or background.
In contrast, our framework employs fully convolutional
network to perform pixel-wise classification in an end-to-
end way, without relying on the generation of candidate
text segmentations.

Foreground segmentation from text region proposals. To
re-implement this baseline method, a recent text localization
method (TextBoxes [27]) is employed to exhaustively obtain
all potential text bounding boxes, which are then scored and
ranked by the Spatial Context Recurrent ConvNet (SCRC)
[13] based on the given referring expression. The state-of-
the-art scene text detector “TextBoxes” [27] is derived from
the Single Shot Detector [69]. It achieves highly competitive
results on standard text detection benchmarks, for example,
f-measure 0.85 on ICDAR 2011/13 dataset. We select the
top 50 text region proposals from [27] and input them into
SCRC. Next, the foreground segmentation is extracted from
the top text bounding boxes using GrabCut [70]. SCRC lo-
calizes a referring expression by scoring/ranking candidate
bounding boxes based on an image captioning model. Our
framework takes from a testing image the top-ranked 50
candidate bounding boxes that best match the associated
testing referring expression, and performs two types of eval-
uations, either using the globally highest scoring bounding
box as the segmentation, or the foreground segmentation
resulted from GrabCut [70].

4 EXPERIMENTS
4.1 Dataset Construction

Although there are many datasets for the evaluations of
scene text segmentation, semantic object segmentation, and
image captioning respectively, no benchmark dataset is
available with both pixel-level scene text annotations and
corresponding natural language descriptions. The Referlt
dataset [71] has been widely used in image captioning
and natural language object retrieval. However, it does not
provide any image-based annotations or language-based
referring expressions for the scene text instances. The IC-
DAR dataset (Task 2 for Robust Reading Challenges 2013
and 2015) [72] contains real world images of text on sign
boards, books, posters and other objects with pixel-level
foreground/background annotations. However, most text
bounding boxes from these datasets are in extremely fo-
cused view and rarely contain useful context concept en-
tities. Therefore, to evaluate the performance of the baseline
methods (as described above in Sec. 3) and our proposed
framework in the way of unambiguous scene text segmen-
tation, we establish a new Characterness Referring Expression

6

dataset named as COCO-CharRef. Specifically, it is built on
the basis of several existing externally annotated datasets '
[73], [74], [75], all of which were further originated from MS

COCO [76]

MSCOCO dataset. MSCOCO [76] is an image recognition,
segmentation, and captioning dataset. It contains more than
300,000 images and 2 million instances across 80 object
categories. It serves as a fundamental data source for the
three datasets introduced below.

COCO-Text dataset. COCO-Text is a large-scale dataset for
text detection and recognition in natural images, based on
MSCOCO dataset. It contains more than 63,000 images and
173,000 text instances. However, it does not provide pixel-
level text segmentation annotations and natural language
descriptions. Also, there exist many annotated text instances
that are illegible for transcription and recognition, resulting
from too small text height or too much occlusion. Our
dataset ignores these kinds of illegible text samples.

RefCOCO dataset. RefCOCO [75] integrates four earlier
referring expression datasets (RefCOCOg, RefCOCO, Ref-
COCO+, and RefClef), and provides instance level natural
language referring expressions. Due to the compensation
between COCO-Text and RefCOCO datasets, we select the
overlapped part of them to establish half of the new COCO-
CharRef dataset. The ground truth pixel-level annotations
are generated from the ground truth word-level bounding
box annotations through GrabCut [70], and further filtered
with human assessment. The complete referring expressions
for text instances are generated by combining the detected
relationship between text instances and context concepts,
with the existing referring expressions for those context con-
cepts. The illegible text instances are treated as “Don’t Care”
regions, and cannot affect the final evaluation performance
[72]. In total we get 2, 427 legible text images for final dataset
construction.

COCO-Stuff dataset. COCO-Stuff [74] is a dataset which
augments the MSCOCO dataset with pixel-level stuff an-
notations. Besides the originally annotated 80 object classes,
COCO-Stuff provides 10, 000 complex images which are fur-
ther annotated with 91 stuff classes including both indoor-
stuff (e.g., floor, wall, ceiling) and outdoor-stuff (e.g., build-
ing, ground, sky). To enable the accurate pixel-level eval-
uation of text segmentation, we follow the text rendering
methods in [77] and generate synthetic text images. The
complete referring expressions are obtained from the inter-
section of synthetic COCO-5Stuff text images and RefCOCO
datasets, which are similar to those in COCO-Text. Since
scene text mostly appears at urban artificial environments,
in the generation of text images, we discard some categories
of outdoor objects that should not belong to those envi-
ronments. In total 2,573 text images are generated in the
established dataset.

New Created COCO-CharRef dataset. In summary, our
constructed COCO-CharRef benchmark dataset is built
on the COCO-Text, RefCOCO, and COCO-Stuff datasets.
Specifically, it contains 5,000 images (4,000 for training
and 1, 000 for evaluation), and 84, 112 referring expressions
annotated on 19,241 text regions. To date, the COCO-

1. http:/ /mscoco.org/external /
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original image semantic segmentation “black text on a person in a pink shirt” “white text above the horse”

original image “text with the larger brown and white cow” “largest text on the largest boat”

“white text on the red train in front”

“text on the person far behind”

original image “red text on the left human” “white and red text on the far left human”

original image “text on a large plane”

original image “text on the person in a grey t-shirt”

Fig. 3: Examples of unambiguous segmentation of text regions from the COCO-CharRef dataset. Text instances in not-
high resolutions are often embedded in complex background context and cluttered, but are still successfully segmented
accordingly.

CharRef dataset is the biggest available dataset that contains  evaluation code will be made available.
natural language expressions annotated on segmented scene
text regions as far as we know. The dataset and related



Method @0.5 @0.6 @0.7 @0.8 @0.9 overallloU
Whole image 0.0% 0.0% 0.0% 0.0% 0.0% 0.7%
Characterness classification [7] 3.5% 1.5% 04% 0.3% 0.0% 9.4%
SCRC [13] + TextBoxes [27] 53% 2.1% 07% 0.0% 0.0% 14.9%
SCRC [13] + TextBoxes [27] + GrabCut | 7.6% 3.7% 1.9% 0.4% 0.4% 18.2%
TextSeg [14] (retrained) 11.4% 5.1% 2.6% 0.7% 0.3% 20.5%
CRTR [62] + GrabCut 10.7% 5.8% 3.3% 1.8% 0.6% 25.4%
Proposed: low resolution 95% 42% 2.7% 13% 04% 24.7%
Proposed: high resolution 123% 6.9% 4.6% 21% 09% 28.1%

TABLE 1: The performance of our framework and baseline methods on the COCO-CharRef benchmark dataset under
precision metric and overall IoU metric. Numbers in bold indicate the best performance.

4.2 Evaluation on COCO-CharRef dataset

Metrics. On the newly-collected COCO-CharRef dataset,
we evaluate the performance of our framework and the
baseline methods. Two metrics are used for evaluation: the
overall intersection-over-union (overall IoU) metric and the
precision metric. In the experiments, the area of a region
is represented by the number of pixels at that region. The
overall IoU is the total intersection area divided by the total
union area (calculated pixel-wisely), where both intersection
area and union area are accumulated over all testing sam-
ples (notice that a testing sample is a pair of scene image
and referring expression as well). Although the overall
IoU metric is the standard metric used in PASCAL VOC
segmentation [13], our evaluation metric has to measure the
accuracy of segmenting foreground text instances specified
by the input referring expression from the background. The
precision metric goes along with 5 different IoU thresholds
from low to high: Precision@X (X € {0.5,0.6,0.7,0.8,0.9})
where Precision@X means the percentage of images with
IoU higher than X. Precisely, the precision metric is the
percentage of test samples where the IoU between predic-
tion and ground-truth passes the threshold. For example,
precision@0.5 is the percentage of expressions where the
predicted segmentation overlaps with the ground-truth text
region by at least 50% IoU.

Results. The evaluation results of our experiments are sum-
marized in Table 1. By simply returning the whole image,
the baseline method only achieves 0.7% overall IoU. This is
partially caused by the fact that COCO-CharRef dataset con-
tains some large context regions and the overall IoU metric
put more weights on large regions such as walls and build-
ings. Moreover, a reasonable overall IoU can be obtained
through per-word segmentation (Per-word). The prediction
of text bounding box as a whole from SCRC [13] (SCRC +
TextBoxes) obtains better performance than the prediction
of the referring expression-based segmentation proposal [7]
(“Characterness classification”). Also, it shows that GrabCut
[70] obtains better performance of foreground segmenta-
tion from SCRC-ranked TextBoxes (SCRC + TextBoxes +
GrabCut) than just (SCRC + TextBoxes).

As to the method of end-to-end object segmentation from
language descriptions proposed in [14], we retrain the seg-
mentation network on scene text datasets [72] and conduct

the evaluation on the COCO-CharRef dataset. The state-
of-the-art referring scene text localization method is also
combined with GrabCut with the performance presented. In
summary, [14] achieves decent precision on lower settings,
but does not perform well on higher settings (P@0.8 and
P@0.9). The combined {CRTR + GrabCut} model achieves
decent and consistent performance, but still inferior com-
pared with the high-resolution version of the proposed
model.

We believe that the Precision metric is more compatible
with the task of text instance segmentation from natural
language descriptions. In practical applications, user would
prefer the specified segmentation from their referring ex-
pression query, rather than the detection or segmentation
accuracy of all text instances.

As the evaluation results, our proposed framework out-
performs all the competing methods by a large margin un-
der both precision metric and overall IoU metric. In Table 1,
the second last row (“low resolution”) denotes the process of
bi-linear upsampling over the coarse response map obtained
from the coarse-level model in low-resolution space, and the
last row (“high resolution”) denotes the performance of the
full model in high-resolution space, and the effectiveness of
spatial upsampling at low-resolution space. In addition, it
demonstrates that the final high-resolution model achieves
both higher precision and higher overall IoU, compared
with the baseline methods. Some examples of text instance
segmentation are illustrated in Figure 3, where the top
row depicts different segmentation results from different
referring expressions on the same image. Images and other
rows present more unambiguous text segmentation results.

Figure 4 illustrates some failure cases on COCO-CharRef
dataset, where the IoU between prediction and ground-
truth segmentation is less than 50%. In some examples,
our framework fails to accurately segment the strokes of
text instances, but still produces reasonable text saliency
response maps covering the target regions specified by nat-
ural language referring expressions. Our framework could
be continuously fine-tuned by integrating more training
examples associated with the failure cases.

5 CONCLUSION

In this paper, we have addressed the challenging problem
of unambiguous scene text segmentation, i.e. segmenting



“largest text on the person in the center”

ground truth

original image

“text on the human swinging a bat”

ground truth

Fig. 4: Some failure cases where IoU < 50% between prediction and ground-truth, due to incorrect region-level prediction or

inaccurate pixel-level estimation of the corresponding models.

specific scene text instances described by the referring ex-
pressions from natural scenes. In our proposed framework,
spatial information and context descriptions of scene text
instances benefit from each other. Scene text instances could
provide pivotal and precise information for context descrip-
tions of the entire or a region of the scene image, while
context description could provide a more user-friendly way
to incorporate the extracted text information and its con-
text into practical applications. Experimental results on the
newly collected benchmark dataset demonstrate that our
framework outperforms baseline methods by a large mar-
gin. Our future work will focus on more comprehensively
modeling of the relationships between scene text instances
and their contexts.
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