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 

Abstract— Text characters and strings in natural scene can 

provide valuable information for many applications. 

Extracting text directly from natural scene images or 

videos is a challenging task because of diverse text patterns 

and variant background interferences. This paper proposes 

a method of scene text recognition from detected text 

regions. In text detection, our previously proposed 

algorithms are applied to obtain text regions from scene 

image. First, we design a discriminative character 

descriptor by combining several state-of-the-art feature 

detectors and descriptors. Second, we model character 

structure at each character class by designing stroke 

configuration maps. Our algorithm design is compatible 

with the application of scene text extraction in smart mobile 

devices. An Android-based demo system is developed to 

show the effectiveness of our proposed method on scene text 

information extraction from nearby objects. The demo 

system also provides us some insight into algorithm design 

and performance improvement of scene text extraction. 

The evaluation results on benchmark datasets demonstrate 

that our proposed scheme of text recognition is comparable 

with the best existing methods. 

 

Index Terms—Scene text detection; Scene text recognition; Mobile 

application; Character descriptor; Stroke configuration; Text 

understanding; Text retrieval; Mobile application; 

 

I. INTRODUCTION 

amera-based text information serves as effective tags or 
clues for many mobile applications associated with media 

analysis, content retrieval, scene understanding, and 

assistant navigation. In natural scene images and videos, text 
characters and strings usually appear in nearby sign boards and 

hand-held objects and provide significant knowledge of 

surrounding environment and objects. Text-based tags are 

much more applicable than barcode or quick response code [12, 

18], because the latter techniques contain limited information 

and require pre-installed marks. 
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To extract text information by mobile devices from natural 

scene, automatic and efficient scene text detection and 

recognition algorithms are essential. However, extracting scene 

text is a challenging task due to two main factors: 1) cluttered 

backgrounds with noise and non-text outliers, and 2) diverse 

text patterns such as character types, fonts, and sizes. The 
frequency of occurrence of text in natural scene is very low, and 

a limited number of text characters are embedded into complex 

non-text background outliers. Background textures, such as 
grid, window, and brick, even resemble text characters and 

strings. Although these challenging factors exist in face and car, 

many state-of-the-art algorithms [5, 24] have demonstrated 
effectiveness on those applications, because face and car, have 

relatively stable features. For example, a frontal face normally 

contains a mouth, a nose, two eyes, and two brows as prior 

knowledge. However, it is difficult to model the structure of 

text characters in scene images due to the lack of discriminative 

pixel-level appearance and structure features from non-text 
background outliers. Further, text consists of different words 

where each word may contain different characters in various 

fonts, styles, and sizes, resulting in large intra-variations of text 
patterns. To solve these challenging problems, scene text 

extraction is divided into two processes [32]: text detection and 

text recognition. Text detection is to localize image regions 
containing text characters and strings. It aims to remove most 

non-text background outliers. Text recognition is to transform 

pixel-based text into readable code. It aims to accurately 

distinguish different text characters and properly compose text 

words. This paper will focus on text recognition method. It 
involves 62 identity categories of text characters, including 10 

digits [0-9] and 26 English letters in upper case [A-Z] and lower 

case [a-z]. 
We propose effective algorithms of text recognition from 

detected text regions in scene image. In scene text detection 

process, we apply the methods presented in our previous work 
[29]. Pixel-based layout analysis is adopted to extract text 

regions and segment text characters in images, based on color 

uniformity and horizontal alignment of text characters. In text 

recognition process, we design two schemes of scene text 

recognition. The first one is training a character recognizer to 

predict the category of a character in an image patch. The 
second one is training a binary character classifier for each 

character category to predict the existence of this category in an 

image patch. The two schemes are compatible with two 
promising applications related to scene text, which are text 

understanding and text retrieval. Text understanding is to 

acquire text information from natural scene to understand 
surrounding environment and objects. Text retrieval is to verify 

whether a piece of text information exists in natural scene. 
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These two applications can be widely used in smart mobile 

device.  
The main contributions of this paper are associated with the 

proposed two recognition schemes. Firstly, a character 

descriptor is proposed to extract representative and 
discriminative features from character patches. It combines 

several feature detectors (Harris-Corner, Maximal Stable 

Extremal Regions (MSER), and dense sampling) and 
Histogram of Oriented Gradients (HOG) descriptors [5]. 

Secondly, to generate a binary classifier for each character class 

in text retrieval, we propose a novel stroke configuration from 
character boundary and skeleton to model character structure.  

The proposed method combines scene text detection and 

scene text recognition algorithms. Fig. 1 presents a flowchart of 
scene text extraction method. By the character recognizer, text 

understanding is able to provide surrounding text information 

for mobile applications, and by the character classifier of each 
character category, text retrieval is able to help search for 

expect objects from environment. Similar to other methods, 
our proposed feature representation is based on the 
state-of-the-art low-level feature descriptors and 
coding/pooling schemes. Different from other methods, 
our method combines the low-level feature descriptors 
with stroke configuration to model text character 
structure. Also, we present the respective concepts of text 
understanding and text retrieval and evaluate our 
proposed character feature representation based on the 
two schemes in our experiments. Besides, previous work 
rarely presents the mobile implementation of scene text 

extraction, and we transplant our method into an Android-based 

platform. 
 

 
 

Fig. 1. The flowchart of our designed scene text extraction method: 

text understanding and text retrieval. It includes scene text detection 

(Section III) and two scene text recognition schemes (Section IV). In 

recognition, character descriptor (Section IV.A.) and stroke 

configuration (Section IV.B.) are designed to model character 

structure and compute discriminative character features. 

 

II. RELATED WORK 

In this section, we present a general review of previous work 
on scene text recognition respectively. While text detection 

aims to localize text regions in images by filtering out non-text 

outliers from cluttered background [3, 7, 10, 16, 21, 28], text 

recognition is to transform image-based text information in the 
detected regions into readable text codes. 

Scene text recognition is still an open topic to be addressed. 

In the Robust Reading Competition of International Conference 
on Document Analysis and Recognition (ICDAR) 2011 [19], 

the best word recognition rate for scene images is only about 

41.2%. In general, scene text characters are composed of 
cross-cutting stroke components in uniform colors and multiple 

orientations, but they are usually influenced by some font 

distortions and background outliers.  We observe that text 
characters from different categories are distinguished by 
boundary shape and skeleton structure, which plays an 

important role in designing character recognition algorithm. 

Current optical character recognition (OCR) systems [2, 23] 
can achieve almost perfect recognition rate on printed text in 

scanned documents, but cannot accurately recognize text 

information directly from camera-captured scene images and 
videos, and are usually sensitive to font scale changes and 

background interference which widely exists in scene text. 

Although some OCR systems have started to support scene 
character recognition, the recognition performance is still much 

lower than the recognition for scanned documents.  Many 

algorithms were proposed to improve scene-image-based text 
character recognition. Weinman et al. [27] combined the 

Gabor-based appearance model, a language model related to 

simultaneity frequency and letter case, similarity model, and 
lexicon model to perform scene character recognition. 

Neumann et al.[17] proposed a real time scene text localization 

and recognition method based on extremal regions Smith et al. 
[22] built a similarity model of scene text characters based on 

SIFT, and maximized posterior probability of similarity 

constraints by integer programming. Mishra et al. [15] adopted 
conditional random field to combine bottom-up character 

recognition and top-down word-level recognition. Lu et al. [13] 

modeled the inner character structure by defining a dictionary 

of basic shape codes to perform character and word retrieval 

without OCR on scanned documents. Coates et al. [4] extracted 

local features of character patches from an unsupervised 
learning method associates with a variant of K-means 

clustering, and pooled them by cascading sub-patch features. In 

[31], a complete performance evaluation of scene text character 
recognition was carried out to design a discriminative feature 

representation of scene text character structure. In [20], a 

part-based tree structure model was designed to detect text 
characters under Latent-SVM [8], and recognize text words 

from text regions under conditional random field. In [33], Scale 

Invariant Feature Transform (SIFT) feature matching was 

adopted to recognize text characters in different languages, and 

a voting and geometric verification algorithm was presented to 

filter out false positive matches. In [25], generic object 
recognition method was imported to extract scene text 

information. A dictionary of words to be spot is built to 
improve the accuracy of detection and recognition. Character 

structure was modeled by HOG features and cross correlation 

analysis of character similarity for text recognition and 
detection. In [26], Random Ferns algorithm was used to 

perform character detection and constructed a system for 

query-based word detection in scene images. 
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III. LAYOUT-BASED SCENE TEXT DETECTION 

In natural scene, most text information is set for instruction 

or identifier. Text strings in print font are located at signage 

boards or object packages. They are normally composed of 
characters in uniform color and aligned arrangement, while 

non-text background outliers are in the form of disorganized 

layouts. Based on our previous work [29, 30], the color 
uniformity and horizontal alignment are employed to localize 

text regions in scene images. In our current work, scene text 

detection process is improved to be compatible with mobile 
applications. 

A. Layout Analysis of Color Decomposition 

According to our observations, the text on sign boards or 
print labels on nearby objects in general appear in uniform 

color. Thus we can group the pixels with similar color into the 

same layers, and separate text from background outliers in 
different colors.  

To decompose a scene image into several color-based layers, 

we have designed a boundary clustering algorithm based on 
bigram color uniformity in our previous work [30]. Text 

information is generally attached to a plane carrier as 

attachment surface with uniform colors respectively. We define 
the uniformity of their color difference as bigram color 

uniformity. Color difference is related to the character 

boundary, which serves as a border between text strokes and the 
attachment surfaces. We then model color difference by a 

vector of color pair, which is obtained by cascading the RGB 
colors of text and attachment surfaces. Each boundary can be 

described by a color-pair, and we cluster the boundaries with 

similar color-pairs into the sample layer. The boundaries of text 
characters are separated from those of background outliers, as 

shown in Fig. 2. 
 

 
 

Fig. 2. Color decomposition of scene image by boundary clustering 

algorithm. The top row presents original scene image and the edge 

image obtained from canny edge detector. The other rows present 

color layers obtained from bigram color uniformity. It shows that the 

text information in signage board is extracted from complex 

background in a color layer. 

B. Layout Analysis of Horizontal Alignment 

In each color layer, we analyze geometrical properties of the 

boundaries to detect the existence of text characters. According 

to our observation, text information generally appears in text 

strings composed of several character members in similar sizes 

rather than single character, and text strings are normally in 

approximately horizontal alignment. Thus we design an 

adjacent character grouping algorithm in our previous work [29] 

to search for image regions containing text strings.  

To model the boundary size and location of a text string, a 

bounding box is assigned to each boundary in a color layer. For 

each bounding box, we search for its siblings in similar size and 

vertical locations (horizontal alignment). If several sibling 

bounding boxes are obtained on its left and right, then we 

merge all these involved bounding boxes into a region. This 

region contains a fragment of text string. Then we repeat above 

method to calculate all text string fragments in this color layer, 

and merge the string fragments with intersections. Fig. 3 

depicts the process of adjacent character grouping. 

 

 
 

Fig. 3. The adjacent character grouping process. The red box denotes 

bounding box of a boundary in a color layer. The green regions in the 

bottom-left two figures represent two adjacent groups of consecutive 

neighboring bounding boxes in similar size and horizontal alignment. 

The blue regions in the bottom-right figure represent the text string 

fragments, obtained by merging the overlapping adjacent groups. 

 

 
 

Fig. 4. (a) Our proposed text layout analysis can still be adaptive to 

oriented text string within reasonable range. (b) The method can 

handle some challenging cases of font variations, such as newspaper 

titles. 
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In order to extract text strings in slightly non-horizontal 

orientations (see Fig. 4(a)), we search for possible characters of 

a text string within a reasonable range of horizontal orientation. 
When estimating horizontal alignment, we do not require all the 

characters exactly align in horizontal orientation, but allow 

some differences between neighboring characters that are 
assigned into the same string. In our system we set this range as 

     degrees relative to the horizontal line. This range could 
be set to be larger but it would bring in more false positive 

strings from background. In addition, our scene text detection 

algorithm can handle challenging font variations, as long as the 
text has enough resolutions, such as newspaper titles, as shown 

in Fig. 4(b). 

To be compatible with blind-assistant demo system, 
some technical details of our scene text detection 
algorithm are adjusted. At first the input image is 
down-sampled to improve the efficiency. Then in color 
decomposition, only the edge pixels from a boundary that 
satisfies specific geometrical constraints are adopted to 
build color layers. Also some parameters related to 
horizontal similarity and alignment are adjusted according 
to our evaluations in real environments. 

IV. STRUCTURE-BASED SCENE TEXT RECOGNITION 

From the detected text regions, character recognition is 

performed to extract text information. In current work, scene 

text characters include 10 digits [0-9] and 26 English letters in 
upper case [A-Z] and lower case [a-z], 62 character classes in 

total. Three public datasets are employed for training character 

recognizer and evaluating its performance, and these datasets 
contain image patches of complete and regular text characters 

cropped from scene images. We will provide detailed 

descriptions in Section VI. 
As mentioned in Section I, we design two character 

recognition schemes. In text understanding, character 

recognition is a multi-class classification problem. We train a 

character recognizer to classify the 62 classes of characters. In 

text retrieval, character recognition is a binary classification 

problem. For each of the 62 character classes, we train a binary 
classifier to distinguish a character class from the other classes 

or non-text outliers. For example, we train a binary classifier 

for character class ‘A’, then this classifier will predict a patch 
containing ‘A’ as positive, and predict a patch containing other 

character classes or non-text outliers as negative. The specified 

character classes are defined as queried characters. 
In both schemes, a robust character descriptor is required to 

extract structure features from character patches. In text 

retrieval, to better model character structure, we define stroke 

configuration for each character class based on specific 

partitions of character boundary and skeleton. 
 

A. Character Descriptor 

 
We propose a novel character descriptor to model character 

structure for effective character recognition. Fig. 5 depicts the 

flowchart of our proposed character descriptor.  
 

 
 

Fig. 5. Flowchart of our proposed character descriptor, which 

combines four keypoint detectors, and HOG features are extracted at 

keypoints. Then BOW and GMM are employed to respectively obtain 

visual word histogram and binary comparison histogram. 

 
It employs four types of keypoint detectors, Harris detector 

(HD) to extract keypoints from corners and junctions, MSER 

detector (MD) to extract keypoints from stroke components, 
Dense detector (DD) to uniformly extract keypoints, and 

Random detector (RD) to extract the preset number of 

keypoints in a random pattern. As shown in Fig. 6, four feature 
detectors are able to cover almost all representative keypoints 

related to the character structure. 

At each of the extracted keypoints, the HOG feature is 

calculated as an observed feature vector   in feature space. 
HOG is selected as local features descriptor because of its 

compatibility with all above keypoint detectors. Some other 

feature descriptors like SIFT and SURF are not employed in 
our method, because our experimental results show that their 

performance on character recognition is lower than HOG. It 

might be because SIFT (or SURF) descriptor relies on the 
keypoints obtained from SIFT (or SURF) detector of its own. 

 

 
 
Fig. 6. Keypoints extracted respectively by the four detectors from 

three character patches. (a) Keypoints detected by HD. (b) Keypoints 

detected by MD. (c) Keypoints detected by DD. (d) Keypoints 

detected by RD. 

 

Each character patch is normalized into size        , 

containing a complete character. In the process of feature 
quantization, the Bag-of-Words (BOW) Model and Gaussian 

Mixture Model (GMM) are employed to aggregate the 

extracted features. BOW is applied to keypoints from all the 
four detectors. GMM is applied to those only from DD and RD, 

because GMM-based feature representation requires fixed 

number and locations of the keypoint all character patch 
samples, while the numbers and locations of keypoints from 
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HD and MD depend on character structure in the character 

patches. In both models, character patch is mapped into 
characteristic histogram as feature representation. By the 

cascade of BOW-based and GMM-based feature 

representations, we derive the character descriptor with 
significant discriminative power for recognition.  

 

Bag-of-Words Model (BOW) 

The BOW model represents a character patch from the 

training set as a frequency histogram of visual words. The 

BOW representation is computationally efficient and resistant 

to intra-class variations. At first,  -means clustering is 
performed on HOG features extracted from training patches to 

build a vocabulary of visual words. Then feature coding and 

pooling are performed to map all HOG features from a 
character patch into a histogram of visual words. We adopt 

soft-assignment coding and average pooling schemes in the 

experiments. More other coding/pooling schemes will be tested 
in our future work. 

For each of the four feature detectors HD, MD, DD, and RD, 

we build a vocabulary of 256 visual words. This number of 

visual words is experimentally chosen to balance the 
performance of character recognition and the computation 
cost. At a character patch, the four detectors are applied to 
extract their respective keypoints, and then their corresponding 

HOG features are mapped into the respective vocabularies, 

obtaining four frequency histograms of visual words. Each 

histogram has 256 dimensions. Then we cascade the four 

histograms into BOW-based feature representation in     
       dimensions. 
 

Gaussian Mixture Model (GMM) 

In DD and RD, keypoints are extracted from each character 

patch according to predefined parameters rather than character 

structure. In our experiments, DD generates a uniform     

keypoint array and RD generates 64 keypoints randomly, but 

all character patches share the same random pattern. Therefore, 

the keypoints extracted by RD and DD are always located at the 

same positions in all character patches, as shown in Fig. 6. To 
describe the local feature distributions, we build a GMM over 

all character patches in training set. In our experiments, each 

GMM contains   Gaussian distributions. This parameter is 
selected from the best results of scene character recognition. 

In the process of building GMM,  -means clustering 

      is first applied to calculate   centers of the HOG 

descriptors, where the s-th         center is used as initial 

means    of the s-th Gaussian in GMM. Then the initial 

weights    and co-variances     are calculated from the means. 

Next, an EM algorithm is used to obtain maximum likelihood 

estimate of the three parameters, weights, means, and 
co-variances of all the Gaussian mixture distributions. A 

likelihood vector from all Gaussians is represented by Eq. (1). 
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where   denotes a HOG-based feature vector at a keypoint,    

denotes the likelihood vector of feature vector  , and 

            denotes the probability value of   at the s-th 

Gaussian. Since there is     Gaussians in a GMM, the 

likelihood vector    is   dimensions. 
At each keypoint extracted by DD or RD detectors, we can 

generate a corresponding likelihood vector. For likelihood 

vectors        , where                    
 

   
     and 

                   
 

   
 , we define a GMM-based feature 

representation by histogram of binary comparisons, as Eq. (2). 
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where   denotes the histogram of binary comparisons,      

denotes one element of the histogram,        if 

                           , and        if 

                           . Fig. 7 illustrates the process 
of calculating one element of histogram of binary comparisons. 

From 64 keypoints of a character patch, the histogram of binary 

comparison has  
  
 

       dimensions. In this process, to 

ensure consistent feature representation and feature dimension, 

the numbers and locations of keypoints from each patch should 
be identical, so GMM is only applied to the keypoints from DD 

and RD. The two histograms obtained respectively from DD 

and RD are cascaded into GMM-based feature representation. 
 

 

 

Fig. 7. A pair of likelihood vectors and the two corresponding 

keypoints from DD in a character patch. Red boxes indicate the results 

of binary comparisons in the form of binary value. Then it is 

transformed into a decimal value. 

 

For a character patch, we generate its visual word histogram 

as BOW-based feature representation, and binary comparison 
histogram as GMM-based feature representation. Then the two 

feature representations are cascaded into the character 

descriptor of the patch. It is used as a feature vector of character 
patch to train text character recognizer in SVM model. The 

combination of BOW-based and GMM-based feature 

representations improve the performance on scene character 
recognition, which is prepared for text understanding. The 

evaluation results will be presented in Section VI. 
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B. Character Stroke Configuration 

In text retrieval application, the query character class is 

considered as an object with fixed structure, and we generate its 

binary classifier according to structure modeling. Character 

structure consists of multiple oriented strokes, which serve as 

basic elements of a text character. From the pixel-level 

perspective, a stroke of printed text is defined as a region 

bounded by two parallel boundary segments. Their orientation 

is regarded as stroke orientation and the distance between them 

is regarded as stroke width. Stroke width consistency achieves 

outstanding performance on scene text detection [7]. In order to 

locate stroke accurately, stroke is redefined in our algorithm as 

skeleton points within character sections with consistent width 

and orientation. A character can be represented as a set of 

connected strokes with specific configuration which includes 

the number, locations, lengths and orientations of the strokes. 

Here, the structure map of strokes is defined as stroke 

configuration. In a character class, although the character 

instances appear in different fonts, styles, and sizes, the stroke 

configurations is always consistent. For example, character ‘B’ 

is always a vertical stroke with two arc strokes in any pattern. 

Therefore for each of the 62 character classes, we can estimate 

a stroke configuration from training patches to describe its 

basic structure. 

We estimate stroke configuration by synthesized characters 

generated from computer software rather than scene characters 
cropped from scene images, because synthesized characters can 

provide an accurate boundary and skeleton related to character 

structure. The Synthetic Font Training Dataset proposed by [27] 
is employed to obtain stroke configuration. This dataset 

contains about 67400 character patches of synthetic English 

letters and digits in various fonts and styles, and we select 
20000 patches to generate character patches. It covers all the 62 

classes of characters. Each character image is normalized into 

        pixels with no anti-aliasing. In estimating stroke 

configuration, character boundaries and skeletons are generated 
to extract stroke-related features, which are used to compose 

stroke configuration. The implementation contains three main 

steps as follows.  
Firstly, given a synthesized character patch from the training 

set, we obtain character boundary and character skeleton by 

applying discrete contour evolution (DCE) [11] and skeleton 
pruning on the basis of DCE [1]. The DCE simplifies characters 

into polygons of visual parts with a small number of vertices, 

and we define the polygon as a character boundary. Then 
skeleton pruning is performed to obtain a refined character 

skeleton, as shown in Fig. 8(b-c). Since DCE and skeleton 

pruning are invariant to deformation and scaling, they provide 
stable results of boundary and skeleton, which are used as a 

universal description of the structure of characters in the same 

category but with different fonts and sizes. However, 
DCE-based skeleton pruning can only obtain a coarse character 

skeleton by boundary analysis, but not predict its stroke 

configurations. Thus we further locate all the strokes that 
compose the character skeleton in the next two steps. 

Secondly, we estimate the stroke width and orientation on 

sample points of character boundary.   points are sampled 
evenly from the polygon character boundary, with the polygon 

vertices reserved. In our experiment, we set      . The 

number of points to be sampled on each side of the polygon 

boundary is proportional to its length. The sampled points of 
character boundary are shown in Fig. 8(b) in blue and orange, 

where the blue points are the reserved vertices, mostly located 

at the junctions and corners of the character.  
 

 
 

Fig. 8. (a) Character patch. (b) Polygon-based character boundary 

obtained from DCE, where blue points denote the polygon vertices. (c) 

Pruned skeleton based on the vertices. (d) Stroke orientations denoted 

by red line and stroke width denoted by red double arrows are 

calculated at the two boundary sample points    and    respectively, 

where    is approximately collinear with neighboring points and    

fits a quadratic curve (in blue) with neighboring points. 

 
Next, stroke width and orientation at each boundary sample 

point   is estimated. We take   and its two neighboring sample 
points to fit a line when they are approximately collinear or else 

a quadratic curve. Then the slope or tangent direction at   is 
used as stroke orientation. The stroke width is obtained from 

probing length along the normal vector at   until another 
boundary point is encountered (see Fig. 8(d)). From pixel-level 

perspective, the character boundary is a set of sampled 

boundary points as  . The character structure modeling is based 
on the boundary sample points. 

Thirdly, we calculate the skeleton-based stroke maps from 

the consistency of stroke width and stroke orientation. At each 
boundary sample point, values of stroke width and orientation 

are compared with its neighboring points. We define width 

consistency as a difference of stroke widths no larger than   
and orientation consistency as a difference of stroke 

orientations no larger than    . These parameters are 

compatible with the synthesized character patches with size 

       . The sample points satisfying the stroke-related 
features construct stroke sections of the character boundary, 

while the other sample points, around the intersections of 

neighboring strokes or the ends of strokes, compose junction 
sections of a character boundary, as shown in Fig. 9(a). The 

corresponding skeleton points at stroke sections are extracted to 

construct the stroke configuration, as illustrated by red lines in 
the Fig. 9(b). 

The characters from the same class always have similar 

stroke configurations, so the basic structure of a character class 
can be described by the mean value of all stroke configurations 

from character samples of the class. We use a stroke alignment 
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method to estimate a mean value of stroke configuration so that 

it is able to handle various fonts, styles and sizes. An objective 

function of stroke alignment is defined as Eq. (3). 

 

                       

 

 (3) 

 

                        

 

 (4) 

 
where   represents the distance between the stroke 

configurations of two character samples as Eq. (4), and    
represents mean value of the stroke configurations.    

represents the transformation applied on the strokes of the  -th 

stroke configuration   . This transformation consists of 
transition and scaling of the stroke configuration (not including 

rotation).       represents the amplitude of the transformations, 

which is used to suppress large transformations. This problem 
is solved on the basis of the alignment method in [9], to 

calculate a proper    to minimize   in Eq. (3). 
 

 
 

Fig. 9. For character samples 'A' in different fonts and styles. (a) Top 

row: boundary samples points in blue and orange, where the blue ones 

represent polygon vertices; Bottom row: stroke sections (pink points) 

and junction sections (green points) at the boundaries. (b) Stroke 

configurations of character 'A' in different styles and sizes are 

approximately consistent. The two large characters are from the first 

two small ones. 

 
For each of the 62 character classes, we align stroke 

configurations from all its character patches, and calculate the 

mean value. As illustrated in Fig. 10(a), stroke configurations 
of four character classes, including 'S', 'A', '4', and 'W', 

respectively describe their character structures. The intensity in 

stroke configuration indicates the frequency of occurrences of 
character strokes (e.g. darker indicates higher frequency). The 

mean values of stroke configurations are manually labeled as 

skeletons along the dark stroke components, as shown in Fig. 

10(b). These skeletons will be employed to analyze character 

structure. It shows that text characters in natural scene mostly 

appear in regular fonts, which is also one of our assumptions 
about scene text. Next, stroke configuration is divided into 

several partitions, and each partition is a sub-patch containing 2 

or 3 neighboring stroke components, as the cyan boxes in Fig. 
10(c). Thus we can generate a stroke configuration map of 

sub-patches for each character class. 

 

 
 
Fig. 10. (a) Stroke configuration of four character classes. (b) 

Extracted stroke points, where each segment represents a mean stroke 

of the basic character structure. (c) 7 partitions of character 'A' are 

marked in red, generating sub-patches on its stroke configuration. 

 

To determine that a given character patch belongs to a 
character class, it is first partitioned into sub-patches according 

to stroke configuration map of the character class. Then we 

calculate our proposed character descriptor from each 
sub-patch, and cascade all of them into feature vector of the 

character patch. This feature vector is used for training the 

binary character classifier. 
In the learning of character classifier for text retrieval, only 

the patches from queried character class are considered as 

positive samples, and the patches of character classes or 

non-text outliers are regarded as negative samples. Thus the 

number of negative samples is much larger than that of positive 

samples. To handle the imbalanced data, we adopt cascade 
Adaboost learning scheme [24] to train the binary character 

classifier for each character class. Whenever a queried word is 

input into text retrieval application, it is first divided into single 
queried characters. Then their corresponding character 

classifiers are invoked to confirm the character classes. If most 

of the queried characters exist, the text retrieval application will 
provide positive response, otherwise provide negative 

response. 

 

V. DEMO SYSTEM 

We have developed demo systems of scene text extraction in 

Android-Mobile platforms. We integrate the functional 

modules of scene text detection and text recognition. It is able 

to detect regions of text strings from cluttered background, and 

recognize characters in the text regions. 

Compared with a PC platform, the mobile platform is 

portable and more convenient to use. Scene text extraction will 

be more widely used in mobile applications, so it is 

indispensible to transplant demo system into the popular 
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Android mobile platform. However, two main challenges 

should be overcome in developing the scene text extraction 

application in mobile platform. First, our proposed method is 

implemented by C++ programming, while Android platform is 

based on Java engine. Fortunately, Android NDK is provided to 

compile C++ code into the Android platform. Second, due to 

the limitations of computing speed and memory allocation in 

mobile device, we attempt to make our implementations 

efficient enough for real applications. To improve the 

efficiency, we skip layout analysis of color decomposition in 

text detection, but directly apply the canny edge map for layout 

analysis of horizontal alignment. It lowers the accuracy of text 

detection, but is still reliable for text extraction from nearby 

object in enough resolutions. In addition, code optimization is 

performed. In our test, each frame spends about 1 second in 

completing the whole process of scene text extraction. One of 

demo systems runs on Samsung Galaxy II smart phone with 

Android 2.3 as shown in Fig. 11. It captures natural scene by 

the phone camera, and extract text information online from the 

captured scene images, which are frame-by-frame processed. 

 

 
 
Fig. 11. Our demo system of scene text extraction in Android platform. 

The text strings “GARMIN”, “FIRE”, “EXIT”, and “Cheerios” are 

extracted from complex background. Although some characters are 

incorrectly recognized in current demo, we will introduce lexicon 

analysis to improve the recognition performance.  

 

 

In blind-assistant application, the demo system has been used 

to assist blind or visually impaired people to recognize 

hand-held object. Another demo system consists of camera, 

processing device, and Bluetooth earplug. In this system, our 

proposed method is implemented and deployed into the 

processing device. Camera is used as input device for capturing 

natural scene, and Bluetooth earplug is used as output device 

for broadcasting the recognized text information. As shown in  

Fig. 12, this demo system reads the text labels in the 

hand-held objects and informs blind users of the extracted text 

codes. With the approval of Human Subjects Institutional 

Review Board, this prototype system has been evaluated by 10 

blind subjects.  Each blind person spent about 2 hours to 

evaluate the system and collected a dataset of 15 different 
hand-held objects. 

The demo system in mobile platform gives us some insight 

into algorithm design and performance improvement of scene 

text extraction. First, the assumptions of horizontal alignment 

in text layout analysis make sense in mobile applications. 

Although some text detection algorithms attempts to extract 

text strings in arbitrary orientations [28, 29], they usually bring 

in more false positive text regions and lower the efficiency. 

However, the user can rotate the lightweight mobile devices to 

adaptively fit the non-horizontal text strings. Second, the 

accuracy of scene text detection could be improved by using the 

intersections of extracted text regions from consecutive frames 

captured by the camera at an identical scene. 

 

 
 

Fig. 12. Demo system in a Window-PC platform assists blind user read 

text information from hand-held objects, including the detected text 

regions in cyan and the recognized text codes. 
 

VI. QUANTITATIVE EXPERIMENTAL ANALYSIS 

Scene text extraction consists of detection and recognition. 

However, the main technical contributions of this paper are the 

two scene character recognition schemes compatible with 
mobile applications. We perform experiments to evaluate the 

two schemes over benchmark datasets. 

 

A. Datasets 

To evaluate the proposed character descriptor and the 

character stroke configuration, we employ three public datasets 
of scene text characters, in which we conduct scene character 

recognition. The first one is Chars74K EnglishImg Dataset 

published in [6]. It contains all the 62 character classes with the 
approximately balanced number of samples. The samples in 

this dataset are divided into two categories, GoodImg and 

BadImg, according to the recognition difficulty. The second 
one is Sign Dataset published by Weinman et al. [27]. It 

captures 96 camera-based signs with 1209 scene characters. 

Most of the characters appear in regular font and style 

consistent with documents. The third one is ICDAR-2003 

Robust Reading Dataset. It contains about 11600 character 

samples which are cropped from text regions of natural scene 
images. ICDAR-2003 Dataset [14] is very challenging because 

large amounts of non-text background outliers interfere with 

the cropped character samples, and many character samples 
have a small size that does not have enough resolution for 

recognition. In Sign Dataset and ICDAR-2003 Dataset, the 

number of character samples from different categories is 
unbalanced. 
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B. Scene Character Recognition for Text Understanding 

In performance evaluations of text understanding, we use 
accuracy rate (AR) as evaluation measure, which is defined as 

the ratio between the number of correctly recognized text 

characters and the total number of text characters.  
Table I presents the AR of our proposed character descriptor 

in Chars74K dataset by integrating BOW-based and 

GMM-based feature representations. In this dataset, the fixed 
number of samples from each category is selected for 

evaluating character recognition performance. Each character 

category takes 15 character patches as training samples to learn 
the character recognizer, and another 15 characters as testing 

samples to evaluate the recognition performance. Each of the 

62 categories has 30 samples, which are used to evaluate 
character recognition performance in a cross validation process.  

Our method obtains better performance of scene character 

recognition than previous algorithms. In addition, we further 
evaluate the two feature representations of our character 

descriptor independently. BOW-based feature representation 

obtains 0.53 and GMM-based feature representation 0.47. This 
may be due to the fact that BOW-based representations cover 

keypoints from all four detectors, while GMM-based 

representations rely only on DD and RD keypoints. In DD and 
RD, it is unavoidable that some keypoints are not located on 

characters. 

 
TABLE I 

ACCURACY RATES OF SCENE CHARACTER RECOGNITION IN CHARS74K 

DATASET, COMPARED WITH PREVIOUSLY PUBLISHED RESULTS [6, 26] 

Chars74K Dataset AR 

Ours  0.60 
Ours (BOW-based representation only) 0.53 

Ours (GMM-based representation only) 0.47 

ABBYY 0.31 
HOG+NN 0.58 

SYNTH+FERNS 0.47 

NATIVE+FERNS 0.54 
MKL 0.55 

 

NN: Nearest neighbor; SYNTH: synchronic character patch for 

training for training; NATIVE: Nature scene characters for training; 

FERNS: Random ferns algorithm; MKL: Multiple-kernel learning 

 

 

Table II presents the AR of our proposed character descriptor 
in ICDAR-2003 dataset. This dataset provides the standard 

splits of training samples and testing samples, and we filter out 

the samples that do not belong to the 62 categories of English 

letters and digits or do not have enough resolution, and select 

the resting test samples for evaluating character recognition. In 

[26], the HOG features and Nearest Neighbor classification 
obtains the best performance in the ICDAR-2003 Dataset. 

Besides, synthetic images (SYNTH) and scene images 
(NATIVE) are respectively adopted as training samples, and 

the Random Ferns model is used to extract character structure 

features. The experimental results in Table II show that our 
proposed descriptor outperforms the SYNTH+FERNS and 

comparable with NATIVE+FERNS in [26]. 

Chars74K and ICDAR-2003 datasets provide enough 

character samples in each category to train character 

recognizer. But the third dataset, Sign Dataset, has a limited 
number of samples and imbalanced character categories, which 

cannot generate an effective character recognizer for 

performance evaluation of text understanding. Besides, the 
character recognizer obtained from other datasets cannot ensure 

fair performance comparison. Thus we skip the Sign Dataset in 

the performance evaluation of text understanding. 
 

 
TABLE II 

ACCURACY RATES OF SCENE CHARACTER RECOGNITION IN ICDAR-2003 

DATASET, COMPARED WITH PREVIOUSLY PUBLISHED RESULTS [26]. 

ICDAR-2003 Dataset AR 

Ours 0.628 

HOG+NN 0.515 

SYNTH+FERNS 0.520 

NATIVE+FERNS 0.640 

 

NN: Nearest neighbor; SYNTH: synchronic character patch for 

training for training; NATIVE: Nature scene characters for training; 

FERNS: Random ferns algorithm; MKL: Multiple-kernel learning 

 

C. Scene Character Recognition for Text Retrieval 

In character structure modeling, the proposed character 

descriptor is applied to extract structure features from stroke 
configuration of the characters to learn a binary classifier for 

each character class. We evaluate these binary classifiers by 

queried character classification in the above three datasets.  
In each character class, two measurements, accuracy rate 

(AR) and false positive rate (FPR), are calculated to evaluate 

the performance of queried character classification. FPR 
represents the ratio between the number of incorrectly 

predicted negative samples and the total number of negative 

samples. We obtain ARs and FPRs by querying each of the 62 
character classes, and then calculate the average as evaluation 

results. In Table III, a character classifier is trained for each 

character category by using Chars74K samples, which is then 
evaluated over the three datasets to obtain the results. 

 

 
TABLE III 

ACCURACY RATES (AR) AND FALSE POSITIVE RATES (FPR) OF QUERIED 

CHARACTER CLASSIFICATION IN THE THREE DATASETS 

Dataset AR FPR 

Chars74K 0.726 0.078 

Sign 0.868 0.075 

ICDAR-2003 0.536 0.180 

 

 
The character classes with more discriminative structure 

features obtain higher ARs and lower FPRs. Chars74K Dataset 

has the approximately balanced number of character samples 
among all the categories, so it can generate an applicable 

comparison of the robustness of the 62 binary classifiers. Fig. 

13 illustrates the ARs of all character classes in Chars74K 
Dataset. Some categories, such as “I” and “l”, do not have 
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discriminative structure model, resulting in lower classification 

ARs. Some categories like ‘A’, ‘E’ and ‘Y’ have relatively 
higher ARs because their structure model is more 

discriminative. 

 

 

Fig. 13. AR of query-based character recognition at all the 62 character 

classes of the Chars74K Dataset. 

 

 
ARs of all character classes in Sign Dataset are obtained as 

Fig. 14. In this dataset, there is large number difference between 

the numbers of character samples from different categories. 
The categories ‘7’, ‘8’, ‘Q’, ‘q’ and ‘x’ do not have samples at 

all, so their ARs are 0. Some categories have only 1 or 2 

samples, so their ARs are most either 100% or 0%. 
 

 

 

Fig. 14. AR of query-based character recognition at all the 62 character 

classes of the Sign Dataset. 

 

 

In ICDAR-2003 Dataset, the numbers of character samples in 
different classes are also unbalanced. Fig. 15 depicts the ARs of 

all character classes in this dataset. The categories with more 

samples mostly obtain larger ARs. It is because these characters 
are more probably cropped from nearby text signage with 

enough resolutions and less background interferences. 

 

 

 

Fig. 15. AR of query-based character recognition at all the 62 character 

classes of the ICDAR-2003 Dataset. 

 

VII. CONCLUSIONS 

We have presented a method of scene text recognition from 

detected text regions, which is compatible with mobile 

applications. It detects text regions from natural scene 

image/video, and recognizes text information from the detected 

text regions. In scene text detection, layout analysis of color 

decomposition and horizontal alignment is performed to search 

for image regions of text strings. In scene text recognition, two 

schemes, text understanding and text retrieval, are respectively 

proposed to extract text information from surrounding 

environment. Our proposed character descriptor is effective to 

extract representative and discriminative text features for both 

recognition schemes. To model text character structure for text 

retrieval scheme, we have designed a novel feature 

representation, stroke configuration map, based on boundary 

and skeleton. Quantitative experimental results demonstrate 

that our proposed method of scene text recognition outperforms 

most existing methods. We have also implemented the 

proposed method to a demo system of scene text extraction on 

mobile device. The demo system demonstrates the 

effectiveness of our proposed method in blind-assistant 

applications, and it also proves that the assumptions of color 

uniformity and aligned arrangement are suitable for the 

captured text information from natural scene. 

In future work, we will improve the accuracy rate of text 

detection, and add lexicon analysis to extend our system to 

word-level recognition. To improve the accuracy and 

practicality of scene text extraction, we will design more 

representative and discriminative features to model text 

structure. We will collect a database of specific scene text 

words as stronger training set, for example, a set of word 

patches “EXIT” or “SALE” cropped from scene images. In 

addition, we will combine scene text extraction with other 

techniques like content-based image retrieval to develop more 

useful vision-based assistant system. 
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