
 1

Abstract— Text characters and strings in natural scene can

provide valuable information for many applications.

Extracting text directly from natural scene images or

videos is a challenging task because of diverse text patterns

and variant background interferences. This paper proposes

a method of scene text recognition from detected text

regions. In text detection, our previously proposed

algorithms are applied to obtain text regions from scene

image. First, we design a discriminative character

descriptor by combining several state-of-the-art feature

detectors and descriptors. Second, we model character

structure at each character class by designing stroke

configuration maps. Our algorithm design is compatible

with the application of scene text extraction in smart mobile

devices. An Android-based demo system is developed to

show the effectiveness of our proposed method on scene text

information extraction from nearby objects. The demo

system also provides us some insight into algorithm design

and performance improvement of scene text extraction.

The evaluation results on benchmark datasets demonstrate

that our proposed scheme of text recognition is comparable

with the best existing methods.

Index Terms—Scene text detection; Scene text recognition; Mobile

application; Character descriptor; Stroke configuration; Text

understanding; Text retrieval; Mobile application;

I. INTRODUCTION

amera-based text information serves as effective tags or
clues for many mobile applications associated with media

analysis, content retrieval, scene understanding, and

assistant navigation. In natural scene images and videos, text
characters and strings usually appear in nearby sign boards and

hand-held objects and provide significant knowledge of

surrounding environment and objects. Text-based tags are

much more applicable than barcode or quick response code [12,

18], because the latter techniques contain limited information

and require pre-installed marks.

Manuscript received May 16th 2013, revised Oct. 2nd 2013, March 26,

2014. This work was supported in part by NSF grant EFRI-1137172,

IIP-1343402, FHWA grant DTFH61-12-H-00002, and ARO grant

W911NF-09-1-0565.

Chucai Yi is with the Graduate Center, the City University of New York,

New York, NY 10016 USA (e-mail: cyi@gc.cuny.edu).

YingLi Tian is with the City College and the Graduate Center, the City

University of New York, New York, NY 10031 USA (phone: 212-650-7046;

fax: 212-650-8249; e-mail: ytian@ccny.cuny.edu).

To extract text information by mobile devices from natural

scene, automatic and efficient scene text detection and

recognition algorithms are essential. However, extracting scene

text is a challenging task due to two main factors: 1) cluttered

backgrounds with noise and non-text outliers, and 2) diverse

text patterns such as character types, fonts, and sizes. The
frequency of occurrence of text in natural scene is very low, and

a limited number of text characters are embedded into complex

non-text background outliers. Background textures, such as
grid, window, and brick, even resemble text characters and

strings. Although these challenging factors exist in face and car,

many state-of-the-art algorithms [5, 24] have demonstrated
effectiveness on those applications, because face and car, have

relatively stable features. For example, a frontal face normally

contains a mouth, a nose, two eyes, and two brows as prior

knowledge. However, it is difficult to model the structure of

text characters in scene images due to the lack of discriminative

pixel-level appearance and structure features from non-text
background outliers. Further, text consists of different words

where each word may contain different characters in various

fonts, styles, and sizes, resulting in large intra-variations of text
patterns. To solve these challenging problems, scene text

extraction is divided into two processes [32]: text detection and

text recognition. Text detection is to localize image regions
containing text characters and strings. It aims to remove most

non-text background outliers. Text recognition is to transform

pixel-based text into readable code. It aims to accurately

distinguish different text characters and properly compose text

words. This paper will focus on text recognition method. It
involves 62 identity categories of text characters, including 10

digits [0-9] and 26 English letters in upper case [A-Z] and lower

case [a-z].
We propose effective algorithms of text recognition from

detected text regions in scene image. In scene text detection

process, we apply the methods presented in our previous work
[29]. Pixel-based layout analysis is adopted to extract text

regions and segment text characters in images, based on color

uniformity and horizontal alignment of text characters. In text

recognition process, we design two schemes of scene text

recognition. The first one is training a character recognizer to

predict the category of a character in an image patch. The
second one is training a binary character classifier for each

character category to predict the existence of this category in an

image patch. The two schemes are compatible with two
promising applications related to scene text, which are text

understanding and text retrieval. Text understanding is to

acquire text information from natural scene to understand
surrounding environment and objects. Text retrieval is to verify

whether a piece of text information exists in natural scene.

Scene Text Recognition in Mobile Applications by

Character Descriptor and Structure Configuration

Chucai Yi, Student Member, IEEE, and Yingli Tian, Senior Member, IEEE

C

 2

These two applications can be widely used in smart mobile

device.
The main contributions of this paper are associated with the

proposed two recognition schemes. Firstly, a character

descriptor is proposed to extract representative and
discriminative features from character patches. It combines

several feature detectors (Harris-Corner, Maximal Stable

Extremal Regions (MSER), and dense sampling) and
Histogram of Oriented Gradients (HOG) descriptors [5].

Secondly, to generate a binary classifier for each character class

in text retrieval, we propose a novel stroke configuration from
character boundary and skeleton to model character structure.

The proposed method combines scene text detection and

scene text recognition algorithms. Fig. 1 presents a flowchart of
scene text extraction method. By the character recognizer, text

understanding is able to provide surrounding text information

for mobile applications, and by the character classifier of each
character category, text retrieval is able to help search for

expect objects from environment. Similar to other methods,
our proposed feature representation is based on the
state-of-the-art low-level feature descriptors and
coding/pooling schemes. Different from other methods,
our method combines the low-level feature descriptors
with stroke configuration to model text character
structure. Also, we present the respective concepts of text
understanding and text retrieval and evaluate our
proposed character feature representation based on the
two schemes in our experiments. Besides, previous work
rarely presents the mobile implementation of scene text

extraction, and we transplant our method into an Android-based

platform.

Fig. 1. The flowchart of our designed scene text extraction method:

text understanding and text retrieval. It includes scene text detection

(Section III) and two scene text recognition schemes (Section IV). In

recognition, character descriptor (Section IV.A.) and stroke

configuration (Section IV.B.) are designed to model character

structure and compute discriminative character features.

II. RELATED WORK

In this section, we present a general review of previous work
on scene text recognition respectively. While text detection

aims to localize text regions in images by filtering out non-text

outliers from cluttered background [3, 7, 10, 16, 21, 28], text

recognition is to transform image-based text information in the
detected regions into readable text codes.

Scene text recognition is still an open topic to be addressed.

In the Robust Reading Competition of International Conference
on Document Analysis and Recognition (ICDAR) 2011 [19],

the best word recognition rate for scene images is only about

41.2%. In general, scene text characters are composed of
cross-cutting stroke components in uniform colors and multiple

orientations, but they are usually influenced by some font

distortions and background outliers. We observe that text
characters from different categories are distinguished by
boundary shape and skeleton structure, which plays an

important role in designing character recognition algorithm.

Current optical character recognition (OCR) systems [2, 23]
can achieve almost perfect recognition rate on printed text in

scanned documents, but cannot accurately recognize text

information directly from camera-captured scene images and
videos, and are usually sensitive to font scale changes and

background interference which widely exists in scene text.

Although some OCR systems have started to support scene
character recognition, the recognition performance is still much

lower than the recognition for scanned documents. Many

algorithms were proposed to improve scene-image-based text
character recognition. Weinman et al. [27] combined the

Gabor-based appearance model, a language model related to

simultaneity frequency and letter case, similarity model, and
lexicon model to perform scene character recognition.

Neumann et al.[17] proposed a real time scene text localization

and recognition method based on extremal regions Smith et al.
[22] built a similarity model of scene text characters based on

SIFT, and maximized posterior probability of similarity

constraints by integer programming. Mishra et al. [15] adopted
conditional random field to combine bottom-up character

recognition and top-down word-level recognition. Lu et al. [13]

modeled the inner character structure by defining a dictionary

of basic shape codes to perform character and word retrieval

without OCR on scanned documents. Coates et al. [4] extracted

local features of character patches from an unsupervised
learning method associates with a variant of K-means

clustering, and pooled them by cascading sub-patch features. In

[31], a complete performance evaluation of scene text character
recognition was carried out to design a discriminative feature

representation of scene text character structure. In [20], a

part-based tree structure model was designed to detect text
characters under Latent-SVM [8], and recognize text words

from text regions under conditional random field. In [33], Scale

Invariant Feature Transform (SIFT) feature matching was

adopted to recognize text characters in different languages, and

a voting and geometric verification algorithm was presented to

filter out false positive matches. In [25], generic object
recognition method was imported to extract scene text

information. A dictionary of words to be spot is built to
improve the accuracy of detection and recognition. Character

structure was modeled by HOG features and cross correlation

analysis of character similarity for text recognition and
detection. In [26], Random Ferns algorithm was used to

perform character detection and constructed a system for

query-based word detection in scene images.

 3

III. LAYOUT-BASED SCENE TEXT DETECTION

In natural scene, most text information is set for instruction

or identifier. Text strings in print font are located at signage

boards or object packages. They are normally composed of
characters in uniform color and aligned arrangement, while

non-text background outliers are in the form of disorganized

layouts. Based on our previous work [29, 30], the color
uniformity and horizontal alignment are employed to localize

text regions in scene images. In our current work, scene text

detection process is improved to be compatible with mobile
applications.

A. Layout Analysis of Color Decomposition

According to our observations, the text on sign boards or
print labels on nearby objects in general appear in uniform

color. Thus we can group the pixels with similar color into the

same layers, and separate text from background outliers in
different colors.

To decompose a scene image into several color-based layers,

we have designed a boundary clustering algorithm based on
bigram color uniformity in our previous work [30]. Text

information is generally attached to a plane carrier as

attachment surface with uniform colors respectively. We define
the uniformity of their color difference as bigram color

uniformity. Color difference is related to the character

boundary, which serves as a border between text strokes and the
attachment surfaces. We then model color difference by a

vector of color pair, which is obtained by cascading the RGB
colors of text and attachment surfaces. Each boundary can be

described by a color-pair, and we cluster the boundaries with

similar color-pairs into the sample layer. The boundaries of text
characters are separated from those of background outliers, as

shown in Fig. 2.

Fig. 2. Color decomposition of scene image by boundary clustering

algorithm. The top row presents original scene image and the edge

image obtained from canny edge detector. The other rows present

color layers obtained from bigram color uniformity. It shows that the

text information in signage board is extracted from complex

background in a color layer.

B. Layout Analysis of Horizontal Alignment

In each color layer, we analyze geometrical properties of the

boundaries to detect the existence of text characters. According

to our observation, text information generally appears in text

strings composed of several character members in similar sizes

rather than single character, and text strings are normally in

approximately horizontal alignment. Thus we design an

adjacent character grouping algorithm in our previous work [29]

to search for image regions containing text strings.

To model the boundary size and location of a text string, a

bounding box is assigned to each boundary in a color layer. For

each bounding box, we search for its siblings in similar size and

vertical locations (horizontal alignment). If several sibling

bounding boxes are obtained on its left and right, then we

merge all these involved bounding boxes into a region. This

region contains a fragment of text string. Then we repeat above

method to calculate all text string fragments in this color layer,

and merge the string fragments with intersections. Fig. 3

depicts the process of adjacent character grouping.

Fig. 3. The adjacent character grouping process. The red box denotes

bounding box of a boundary in a color layer. The green regions in the

bottom-left two figures represent two adjacent groups of consecutive

neighboring bounding boxes in similar size and horizontal alignment.

The blue regions in the bottom-right figure represent the text string

fragments, obtained by merging the overlapping adjacent groups.

Fig. 4. (a) Our proposed text layout analysis can still be adaptive to

oriented text string within reasonable range. (b) The method can

handle some challenging cases of font variations, such as newspaper

titles.

 4

In order to extract text strings in slightly non-horizontal

orientations (see Fig. 4(a)), we search for possible characters of

a text string within a reasonable range of horizontal orientation.
When estimating horizontal alignment, we do not require all the

characters exactly align in horizontal orientation, but allow

some differences between neighboring characters that are
assigned into the same string. In our system we set this range as

 degrees relative to the horizontal line. This range could
be set to be larger but it would bring in more false positive

strings from background. In addition, our scene text detection

algorithm can handle challenging font variations, as long as the
text has enough resolutions, such as newspaper titles, as shown

in Fig. 4(b).

To be compatible with blind-assistant demo system,
some technical details of our scene text detection
algorithm are adjusted. At first the input image is
down-sampled to improve the efficiency. Then in color
decomposition, only the edge pixels from a boundary that
satisfies specific geometrical constraints are adopted to
build color layers. Also some parameters related to
horizontal similarity and alignment are adjusted according
to our evaluations in real environments.

IV. STRUCTURE-BASED SCENE TEXT RECOGNITION

From the detected text regions, character recognition is

performed to extract text information. In current work, scene

text characters include 10 digits [0-9] and 26 English letters in
upper case [A-Z] and lower case [a-z], 62 character classes in

total. Three public datasets are employed for training character

recognizer and evaluating its performance, and these datasets
contain image patches of complete and regular text characters

cropped from scene images. We will provide detailed

descriptions in Section VI.
As mentioned in Section I, we design two character

recognition schemes. In text understanding, character

recognition is a multi-class classification problem. We train a

character recognizer to classify the 62 classes of characters. In

text retrieval, character recognition is a binary classification

problem. For each of the 62 character classes, we train a binary
classifier to distinguish a character class from the other classes

or non-text outliers. For example, we train a binary classifier

for character class ‘A’, then this classifier will predict a patch
containing ‘A’ as positive, and predict a patch containing other

character classes or non-text outliers as negative. The specified

character classes are defined as queried characters.
In both schemes, a robust character descriptor is required to

extract structure features from character patches. In text

retrieval, to better model character structure, we define stroke

configuration for each character class based on specific

partitions of character boundary and skeleton.

A. Character Descriptor

We propose a novel character descriptor to model character

structure for effective character recognition. Fig. 5 depicts the

flowchart of our proposed character descriptor.

Fig. 5. Flowchart of our proposed character descriptor, which

combines four keypoint detectors, and HOG features are extracted at

keypoints. Then BOW and GMM are employed to respectively obtain

visual word histogram and binary comparison histogram.

It employs four types of keypoint detectors, Harris detector

(HD) to extract keypoints from corners and junctions, MSER

detector (MD) to extract keypoints from stroke components,
Dense detector (DD) to uniformly extract keypoints, and

Random detector (RD) to extract the preset number of

keypoints in a random pattern. As shown in Fig. 6, four feature
detectors are able to cover almost all representative keypoints

related to the character structure.

At each of the extracted keypoints, the HOG feature is

calculated as an observed feature vector in feature space.
HOG is selected as local features descriptor because of its

compatibility with all above keypoint detectors. Some other

feature descriptors like SIFT and SURF are not employed in
our method, because our experimental results show that their

performance on character recognition is lower than HOG. It

might be because SIFT (or SURF) descriptor relies on the
keypoints obtained from SIFT (or SURF) detector of its own.

Fig. 6. Keypoints extracted respectively by the four detectors from

three character patches. (a) Keypoints detected by HD. (b) Keypoints

detected by MD. (c) Keypoints detected by DD. (d) Keypoints

detected by RD.

Each character patch is normalized into size ,

containing a complete character. In the process of feature
quantization, the Bag-of-Words (BOW) Model and Gaussian

Mixture Model (GMM) are employed to aggregate the

extracted features. BOW is applied to keypoints from all the
four detectors. GMM is applied to those only from DD and RD,

because GMM-based feature representation requires fixed

number and locations of the keypoint all character patch
samples, while the numbers and locations of keypoints from

 5

HD and MD depend on character structure in the character

patches. In both models, character patch is mapped into
characteristic histogram as feature representation. By the

cascade of BOW-based and GMM-based feature

representations, we derive the character descriptor with
significant discriminative power for recognition.

Bag-of-Words Model (BOW)

The BOW model represents a character patch from the

training set as a frequency histogram of visual words. The

BOW representation is computationally efficient and resistant

to intra-class variations. At first, -means clustering is
performed on HOG features extracted from training patches to

build a vocabulary of visual words. Then feature coding and

pooling are performed to map all HOG features from a
character patch into a histogram of visual words. We adopt

soft-assignment coding and average pooling schemes in the

experiments. More other coding/pooling schemes will be tested
in our future work.

For each of the four feature detectors HD, MD, DD, and RD,

we build a vocabulary of 256 visual words. This number of

visual words is experimentally chosen to balance the
performance of character recognition and the computation
cost. At a character patch, the four detectors are applied to
extract their respective keypoints, and then their corresponding

HOG features are mapped into the respective vocabularies,

obtaining four frequency histograms of visual words. Each

histogram has 256 dimensions. Then we cascade the four

histograms into BOW-based feature representation in
 dimensions.

Gaussian Mixture Model (GMM)

In DD and RD, keypoints are extracted from each character

patch according to predefined parameters rather than character

structure. In our experiments, DD generates a uniform

keypoint array and RD generates 64 keypoints randomly, but

all character patches share the same random pattern. Therefore,

the keypoints extracted by RD and DD are always located at the

same positions in all character patches, as shown in Fig. 6. To
describe the local feature distributions, we build a GMM over

all character patches in training set. In our experiments, each

GMM contains Gaussian distributions. This parameter is
selected from the best results of scene character recognition.

In the process of building GMM, -means clustering

 is first applied to calculate centers of the HOG

descriptors, where the s-th center is used as initial

means of the s-th Gaussian in GMM. Then the initial

weights and co-variances are calculated from the means.

Next, an EM algorithm is used to obtain maximum likelihood

estimate of the three parameters, weights, means, and
co-variances of all the Gaussian mixture distributions. A

likelihood vector from all Gaussians is represented by Eq. (1).

(1)

where denotes a HOG-based feature vector at a keypoint,

denotes the likelihood vector of feature vector , and

 denotes the probability value of at the s-th

Gaussian. Since there is Gaussians in a GMM, the

likelihood vector is dimensions.
At each keypoint extracted by DD or RD detectors, we can

generate a corresponding likelihood vector. For likelihood

vectors , where

 and

 , we define a GMM-based feature

representation by histogram of binary comparisons, as Eq. (2).

(2)

where denotes the histogram of binary comparisons,

denotes one element of the histogram, if

 , and if

 . Fig. 7 illustrates the process
of calculating one element of histogram of binary comparisons.

From 64 keypoints of a character patch, the histogram of binary

comparison has

 dimensions. In this process, to

ensure consistent feature representation and feature dimension,

the numbers and locations of keypoints from each patch should
be identical, so GMM is only applied to the keypoints from DD

and RD. The two histograms obtained respectively from DD

and RD are cascaded into GMM-based feature representation.

Fig. 7. A pair of likelihood vectors and the two corresponding

keypoints from DD in a character patch. Red boxes indicate the results

of binary comparisons in the form of binary value. Then it is

transformed into a decimal value.

For a character patch, we generate its visual word histogram

as BOW-based feature representation, and binary comparison
histogram as GMM-based feature representation. Then the two

feature representations are cascaded into the character

descriptor of the patch. It is used as a feature vector of character
patch to train text character recognizer in SVM model. The

combination of BOW-based and GMM-based feature

representations improve the performance on scene character
recognition, which is prepared for text understanding. The

evaluation results will be presented in Section VI.

 6

B. Character Stroke Configuration

In text retrieval application, the query character class is

considered as an object with fixed structure, and we generate its

binary classifier according to structure modeling. Character

structure consists of multiple oriented strokes, which serve as

basic elements of a text character. From the pixel-level

perspective, a stroke of printed text is defined as a region

bounded by two parallel boundary segments. Their orientation

is regarded as stroke orientation and the distance between them

is regarded as stroke width. Stroke width consistency achieves

outstanding performance on scene text detection [7]. In order to

locate stroke accurately, stroke is redefined in our algorithm as

skeleton points within character sections with consistent width

and orientation. A character can be represented as a set of

connected strokes with specific configuration which includes

the number, locations, lengths and orientations of the strokes.

Here, the structure map of strokes is defined as stroke

configuration. In a character class, although the character

instances appear in different fonts, styles, and sizes, the stroke

configurations is always consistent. For example, character ‘B’

is always a vertical stroke with two arc strokes in any pattern.

Therefore for each of the 62 character classes, we can estimate

a stroke configuration from training patches to describe its

basic structure.

We estimate stroke configuration by synthesized characters

generated from computer software rather than scene characters
cropped from scene images, because synthesized characters can

provide an accurate boundary and skeleton related to character

structure. The Synthetic Font Training Dataset proposed by [27]
is employed to obtain stroke configuration. This dataset

contains about 67400 character patches of synthetic English

letters and digits in various fonts and styles, and we select
20000 patches to generate character patches. It covers all the 62

classes of characters. Each character image is normalized into

 pixels with no anti-aliasing. In estimating stroke

configuration, character boundaries and skeletons are generated
to extract stroke-related features, which are used to compose

stroke configuration. The implementation contains three main

steps as follows.
Firstly, given a synthesized character patch from the training

set, we obtain character boundary and character skeleton by

applying discrete contour evolution (DCE) [11] and skeleton
pruning on the basis of DCE [1]. The DCE simplifies characters

into polygons of visual parts with a small number of vertices,

and we define the polygon as a character boundary. Then
skeleton pruning is performed to obtain a refined character

skeleton, as shown in Fig. 8(b-c). Since DCE and skeleton

pruning are invariant to deformation and scaling, they provide
stable results of boundary and skeleton, which are used as a

universal description of the structure of characters in the same

category but with different fonts and sizes. However,
DCE-based skeleton pruning can only obtain a coarse character

skeleton by boundary analysis, but not predict its stroke

configurations. Thus we further locate all the strokes that
compose the character skeleton in the next two steps.

Secondly, we estimate the stroke width and orientation on

sample points of character boundary. points are sampled
evenly from the polygon character boundary, with the polygon

vertices reserved. In our experiment, we set . The

number of points to be sampled on each side of the polygon

boundary is proportional to its length. The sampled points of
character boundary are shown in Fig. 8(b) in blue and orange,

where the blue points are the reserved vertices, mostly located

at the junctions and corners of the character.

Fig. 8. (a) Character patch. (b) Polygon-based character boundary

obtained from DCE, where blue points denote the polygon vertices. (c)

Pruned skeleton based on the vertices. (d) Stroke orientations denoted

by red line and stroke width denoted by red double arrows are

calculated at the two boundary sample points and respectively,

where is approximately collinear with neighboring points and

fits a quadratic curve (in blue) with neighboring points.

Next, stroke width and orientation at each boundary sample

point is estimated. We take and its two neighboring sample
points to fit a line when they are approximately collinear or else

a quadratic curve. Then the slope or tangent direction at is
used as stroke orientation. The stroke width is obtained from

probing length along the normal vector at until another
boundary point is encountered (see Fig. 8(d)). From pixel-level

perspective, the character boundary is a set of sampled

boundary points as . The character structure modeling is based
on the boundary sample points.

Thirdly, we calculate the skeleton-based stroke maps from

the consistency of stroke width and stroke orientation. At each
boundary sample point, values of stroke width and orientation

are compared with its neighboring points. We define width

consistency as a difference of stroke widths no larger than
and orientation consistency as a difference of stroke

orientations no larger than . These parameters are

compatible with the synthesized character patches with size

 . The sample points satisfying the stroke-related
features construct stroke sections of the character boundary,

while the other sample points, around the intersections of

neighboring strokes or the ends of strokes, compose junction
sections of a character boundary, as shown in Fig. 9(a). The

corresponding skeleton points at stroke sections are extracted to

construct the stroke configuration, as illustrated by red lines in
the Fig. 9(b).

The characters from the same class always have similar

stroke configurations, so the basic structure of a character class
can be described by the mean value of all stroke configurations

from character samples of the class. We use a stroke alignment

 7

method to estimate a mean value of stroke configuration so that

it is able to handle various fonts, styles and sizes. An objective

function of stroke alignment is defined as Eq. (3).

 (3)

 (4)

where represents the distance between the stroke

configurations of two character samples as Eq. (4), and
represents mean value of the stroke configurations.

represents the transformation applied on the strokes of the -th

stroke configuration . This transformation consists of
transition and scaling of the stroke configuration (not including

rotation). represents the amplitude of the transformations,

which is used to suppress large transformations. This problem
is solved on the basis of the alignment method in [9], to

calculate a proper to minimize in Eq. (3).

Fig. 9. For character samples 'A' in different fonts and styles. (a) Top

row: boundary samples points in blue and orange, where the blue ones

represent polygon vertices; Bottom row: stroke sections (pink points)

and junction sections (green points) at the boundaries. (b) Stroke

configurations of character 'A' in different styles and sizes are

approximately consistent. The two large characters are from the first

two small ones.

For each of the 62 character classes, we align stroke

configurations from all its character patches, and calculate the

mean value. As illustrated in Fig. 10(a), stroke configurations
of four character classes, including 'S', 'A', '4', and 'W',

respectively describe their character structures. The intensity in

stroke configuration indicates the frequency of occurrences of
character strokes (e.g. darker indicates higher frequency). The

mean values of stroke configurations are manually labeled as

skeletons along the dark stroke components, as shown in Fig.

10(b). These skeletons will be employed to analyze character

structure. It shows that text characters in natural scene mostly

appear in regular fonts, which is also one of our assumptions
about scene text. Next, stroke configuration is divided into

several partitions, and each partition is a sub-patch containing 2

or 3 neighboring stroke components, as the cyan boxes in Fig.
10(c). Thus we can generate a stroke configuration map of

sub-patches for each character class.

Fig. 10. (a) Stroke configuration of four character classes. (b)

Extracted stroke points, where each segment represents a mean stroke

of the basic character structure. (c) 7 partitions of character 'A' are

marked in red, generating sub-patches on its stroke configuration.

To determine that a given character patch belongs to a
character class, it is first partitioned into sub-patches according

to stroke configuration map of the character class. Then we

calculate our proposed character descriptor from each
sub-patch, and cascade all of them into feature vector of the

character patch. This feature vector is used for training the

binary character classifier.
In the learning of character classifier for text retrieval, only

the patches from queried character class are considered as

positive samples, and the patches of character classes or

non-text outliers are regarded as negative samples. Thus the

number of negative samples is much larger than that of positive

samples. To handle the imbalanced data, we adopt cascade
Adaboost learning scheme [24] to train the binary character

classifier for each character class. Whenever a queried word is

input into text retrieval application, it is first divided into single
queried characters. Then their corresponding character

classifiers are invoked to confirm the character classes. If most

of the queried characters exist, the text retrieval application will
provide positive response, otherwise provide negative

response.

V. DEMO SYSTEM

We have developed demo systems of scene text extraction in

Android-Mobile platforms. We integrate the functional

modules of scene text detection and text recognition. It is able

to detect regions of text strings from cluttered background, and

recognize characters in the text regions.

Compared with a PC platform, the mobile platform is

portable and more convenient to use. Scene text extraction will

be more widely used in mobile applications, so it is

indispensible to transplant demo system into the popular

 8

Android mobile platform. However, two main challenges

should be overcome in developing the scene text extraction

application in mobile platform. First, our proposed method is

implemented by C++ programming, while Android platform is

based on Java engine. Fortunately, Android NDK is provided to

compile C++ code into the Android platform. Second, due to

the limitations of computing speed and memory allocation in

mobile device, we attempt to make our implementations

efficient enough for real applications. To improve the

efficiency, we skip layout analysis of color decomposition in

text detection, but directly apply the canny edge map for layout

analysis of horizontal alignment. It lowers the accuracy of text

detection, but is still reliable for text extraction from nearby

object in enough resolutions. In addition, code optimization is

performed. In our test, each frame spends about 1 second in

completing the whole process of scene text extraction. One of

demo systems runs on Samsung Galaxy II smart phone with

Android 2.3 as shown in Fig. 11. It captures natural scene by

the phone camera, and extract text information online from the

captured scene images, which are frame-by-frame processed.

Fig. 11. Our demo system of scene text extraction in Android platform.

The text strings “GARMIN”, “FIRE”, “EXIT”, and “Cheerios” are

extracted from complex background. Although some characters are

incorrectly recognized in current demo, we will introduce lexicon

analysis to improve the recognition performance.

In blind-assistant application, the demo system has been used

to assist blind or visually impaired people to recognize

hand-held object. Another demo system consists of camera,

processing device, and Bluetooth earplug. In this system, our

proposed method is implemented and deployed into the

processing device. Camera is used as input device for capturing

natural scene, and Bluetooth earplug is used as output device

for broadcasting the recognized text information. As shown in

Fig. 12, this demo system reads the text labels in the

hand-held objects and informs blind users of the extracted text

codes. With the approval of Human Subjects Institutional

Review Board, this prototype system has been evaluated by 10

blind subjects. Each blind person spent about 2 hours to

evaluate the system and collected a dataset of 15 different
hand-held objects.

The demo system in mobile platform gives us some insight

into algorithm design and performance improvement of scene

text extraction. First, the assumptions of horizontal alignment

in text layout analysis make sense in mobile applications.

Although some text detection algorithms attempts to extract

text strings in arbitrary orientations [28, 29], they usually bring

in more false positive text regions and lower the efficiency.

However, the user can rotate the lightweight mobile devices to

adaptively fit the non-horizontal text strings. Second, the

accuracy of scene text detection could be improved by using the

intersections of extracted text regions from consecutive frames

captured by the camera at an identical scene.

Fig. 12. Demo system in a Window-PC platform assists blind user read

text information from hand-held objects, including the detected text

regions in cyan and the recognized text codes.

VI. QUANTITATIVE EXPERIMENTAL ANALYSIS

Scene text extraction consists of detection and recognition.

However, the main technical contributions of this paper are the

two scene character recognition schemes compatible with
mobile applications. We perform experiments to evaluate the

two schemes over benchmark datasets.

A. Datasets

To evaluate the proposed character descriptor and the

character stroke configuration, we employ three public datasets
of scene text characters, in which we conduct scene character

recognition. The first one is Chars74K EnglishImg Dataset

published in [6]. It contains all the 62 character classes with the
approximately balanced number of samples. The samples in

this dataset are divided into two categories, GoodImg and

BadImg, according to the recognition difficulty. The second
one is Sign Dataset published by Weinman et al. [27]. It

captures 96 camera-based signs with 1209 scene characters.

Most of the characters appear in regular font and style

consistent with documents. The third one is ICDAR-2003

Robust Reading Dataset. It contains about 11600 character

samples which are cropped from text regions of natural scene
images. ICDAR-2003 Dataset [14] is very challenging because

large amounts of non-text background outliers interfere with

the cropped character samples, and many character samples
have a small size that does not have enough resolution for

recognition. In Sign Dataset and ICDAR-2003 Dataset, the

number of character samples from different categories is
unbalanced.

 9

B. Scene Character Recognition for Text Understanding

In performance evaluations of text understanding, we use
accuracy rate (AR) as evaluation measure, which is defined as

the ratio between the number of correctly recognized text

characters and the total number of text characters.
Table I presents the AR of our proposed character descriptor

in Chars74K dataset by integrating BOW-based and

GMM-based feature representations. In this dataset, the fixed
number of samples from each category is selected for

evaluating character recognition performance. Each character

category takes 15 character patches as training samples to learn
the character recognizer, and another 15 characters as testing

samples to evaluate the recognition performance. Each of the

62 categories has 30 samples, which are used to evaluate
character recognition performance in a cross validation process.

Our method obtains better performance of scene character

recognition than previous algorithms. In addition, we further
evaluate the two feature representations of our character

descriptor independently. BOW-based feature representation

obtains 0.53 and GMM-based feature representation 0.47. This
may be due to the fact that BOW-based representations cover

keypoints from all four detectors, while GMM-based

representations rely only on DD and RD keypoints. In DD and
RD, it is unavoidable that some keypoints are not located on

characters.

TABLE I

ACCURACY RATES OF SCENE CHARACTER RECOGNITION IN CHARS74K

DATASET, COMPARED WITH PREVIOUSLY PUBLISHED RESULTS [6, 26]

Chars74K Dataset AR

Ours 0.60
Ours (BOW-based representation only) 0.53

Ours (GMM-based representation only) 0.47

ABBYY 0.31
HOG+NN 0.58

SYNTH+FERNS 0.47

NATIVE+FERNS 0.54
MKL 0.55

NN: Nearest neighbor; SYNTH: synchronic character patch for

training for training; NATIVE: Nature scene characters for training;

FERNS: Random ferns algorithm; MKL: Multiple-kernel learning

Table II presents the AR of our proposed character descriptor
in ICDAR-2003 dataset. This dataset provides the standard

splits of training samples and testing samples, and we filter out

the samples that do not belong to the 62 categories of English

letters and digits or do not have enough resolution, and select

the resting test samples for evaluating character recognition. In

[26], the HOG features and Nearest Neighbor classification
obtains the best performance in the ICDAR-2003 Dataset.

Besides, synthetic images (SYNTH) and scene images
(NATIVE) are respectively adopted as training samples, and

the Random Ferns model is used to extract character structure

features. The experimental results in Table II show that our
proposed descriptor outperforms the SYNTH+FERNS and

comparable with NATIVE+FERNS in [26].

Chars74K and ICDAR-2003 datasets provide enough

character samples in each category to train character

recognizer. But the third dataset, Sign Dataset, has a limited
number of samples and imbalanced character categories, which

cannot generate an effective character recognizer for

performance evaluation of text understanding. Besides, the
character recognizer obtained from other datasets cannot ensure

fair performance comparison. Thus we skip the Sign Dataset in

the performance evaluation of text understanding.

TABLE II

ACCURACY RATES OF SCENE CHARACTER RECOGNITION IN ICDAR-2003

DATASET, COMPARED WITH PREVIOUSLY PUBLISHED RESULTS [26].

ICDAR-2003 Dataset AR

Ours 0.628

HOG+NN 0.515

SYNTH+FERNS 0.520

NATIVE+FERNS 0.640

NN: Nearest neighbor; SYNTH: synchronic character patch for

training for training; NATIVE: Nature scene characters for training;

FERNS: Random ferns algorithm; MKL: Multiple-kernel learning

C. Scene Character Recognition for Text Retrieval

In character structure modeling, the proposed character

descriptor is applied to extract structure features from stroke
configuration of the characters to learn a binary classifier for

each character class. We evaluate these binary classifiers by

queried character classification in the above three datasets.
In each character class, two measurements, accuracy rate

(AR) and false positive rate (FPR), are calculated to evaluate

the performance of queried character classification. FPR
represents the ratio between the number of incorrectly

predicted negative samples and the total number of negative

samples. We obtain ARs and FPRs by querying each of the 62
character classes, and then calculate the average as evaluation

results. In Table III, a character classifier is trained for each

character category by using Chars74K samples, which is then
evaluated over the three datasets to obtain the results.

TABLE III

ACCURACY RATES (AR) AND FALSE POSITIVE RATES (FPR) OF QUERIED

CHARACTER CLASSIFICATION IN THE THREE DATASETS

Dataset AR FPR

Chars74K 0.726 0.078

Sign 0.868 0.075

ICDAR-2003 0.536 0.180

The character classes with more discriminative structure

features obtain higher ARs and lower FPRs. Chars74K Dataset

has the approximately balanced number of character samples
among all the categories, so it can generate an applicable

comparison of the robustness of the 62 binary classifiers. Fig.

13 illustrates the ARs of all character classes in Chars74K
Dataset. Some categories, such as “I” and “l”, do not have

 10

discriminative structure model, resulting in lower classification

ARs. Some categories like ‘A’, ‘E’ and ‘Y’ have relatively
higher ARs because their structure model is more

discriminative.

Fig. 13. AR of query-based character recognition at all the 62 character

classes of the Chars74K Dataset.

ARs of all character classes in Sign Dataset are obtained as

Fig. 14. In this dataset, there is large number difference between

the numbers of character samples from different categories.
The categories ‘7’, ‘8’, ‘Q’, ‘q’ and ‘x’ do not have samples at

all, so their ARs are 0. Some categories have only 1 or 2

samples, so their ARs are most either 100% or 0%.

Fig. 14. AR of query-based character recognition at all the 62 character

classes of the Sign Dataset.

In ICDAR-2003 Dataset, the numbers of character samples in
different classes are also unbalanced. Fig. 15 depicts the ARs of

all character classes in this dataset. The categories with more

samples mostly obtain larger ARs. It is because these characters
are more probably cropped from nearby text signage with

enough resolutions and less background interferences.

Fig. 15. AR of query-based character recognition at all the 62 character

classes of the ICDAR-2003 Dataset.

VII. CONCLUSIONS

We have presented a method of scene text recognition from

detected text regions, which is compatible with mobile

applications. It detects text regions from natural scene

image/video, and recognizes text information from the detected

text regions. In scene text detection, layout analysis of color

decomposition and horizontal alignment is performed to search

for image regions of text strings. In scene text recognition, two

schemes, text understanding and text retrieval, are respectively

proposed to extract text information from surrounding

environment. Our proposed character descriptor is effective to

extract representative and discriminative text features for both

recognition schemes. To model text character structure for text

retrieval scheme, we have designed a novel feature

representation, stroke configuration map, based on boundary

and skeleton. Quantitative experimental results demonstrate

that our proposed method of scene text recognition outperforms

most existing methods. We have also implemented the

proposed method to a demo system of scene text extraction on

mobile device. The demo system demonstrates the

effectiveness of our proposed method in blind-assistant

applications, and it also proves that the assumptions of color

uniformity and aligned arrangement are suitable for the

captured text information from natural scene.

In future work, we will improve the accuracy rate of text

detection, and add lexicon analysis to extend our system to

word-level recognition. To improve the accuracy and

practicality of scene text extraction, we will design more

representative and discriminative features to model text

structure. We will collect a database of specific scene text

words as stronger training set, for example, a set of word

patches “EXIT” or “SALE” cropped from scene images. In

addition, we will combine scene text extraction with other

techniques like content-based image retrieval to develop more

useful vision-based assistant system.

 11

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for

their constructive comments and insightful suggestions that

improved the quality of this manuscript.

REFERENCES

[1] X. Bai, L. Latecki, and W. Liu, "Skeleton prunning by contour

partitioning with discrete curve evolution," IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2007.

[2] R. Beaufort, and C. Mancas-Thillou, "A weighted finite-state framework

for correcting errors in natural scene OCR," Proceedings of International

Conference on Document Analysis and Recognition, 2007.

[3] X. Chen, J. Yang, J. Zhang, and A. Waibel, "Automatic Detection and

Recognition of Signs From Natural Scenes," IEEE Transactions on

Image Processing, vol. 13, no. 1, pp. 87-99, 2004.

[4] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang, D.

Wu, and A. Ng, "Text detection and character recognition in scene

images with unsupervised feature learning, " ICDAR 2011.

[5] N. Dalal, and B. Triggs, "Histograms of Oriented Gradients for Human

Detection," Proceeding of IEEE Conference on Computer Vision and

Pattern Recognition, 2005.

[6] T. de-Campos, B. Babu, and M. Varma, "Character recognition in

natural images," VISAPP, 2009.

[7] B. Epshtein, E. Ofek, and Y. Wexler, "Detecting text in natural scenes

with stroke width transform," CVPR, 2010.

[8] P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, "Object

Detection with Discriminatively Trained Part Based Models," IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No.

9, Sep. 2010.

[9] T. Jiang, F. Jurie, C. Schmid, "Learning shape prior models for objects

matching," CVPR, 2009.

[10] S. Kumar, R. Gupta, N. Khanna, S. Chaudhury, and S. Johsi, "Text

Extraction and Document Image Segmentation Using Matched Wavelets

and MRF Model," IEEE Transactions on Image Processing, 2007.

[11] L. Latecki, and R. Lakamper, "Convexity rule for shape decomposition

based on discrete contour evolution," Computer Vision and Image

Understanding, 1999.

[12] Y. Liu, J. Yang, and M. Liu, "Recognition of QR code with mobile

phones, " Control and Decision Conference, pp. 203-206, 2008.

[13] S. Lu, L. Li, and C. Tan, "Document image retrieval through word shape

coding," IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2008.

[14] S. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and R. Young,

"ICDAR 2003 Robust Reading competitions," Proceedings of

International Conference on Document Analysis and Recognition, 2003.

[15] A. Mishra, K. Alahari, and C. Jawahar, "Top-down and bottom-up cues

for scene text recognition, " IEEE Conference on Computer Vision and

Pattern Recognition, 2011.

[16] N. Nikolaou, and N. Papamarkos, "Color Reduction for Complex

Document Images," International Journal of Imaging Systems and

Technology, 2009.

[17] L. Neumann and J. Matas, “Real-time scene text localization and

recognition,” Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, 2012.

[18] E. Ohbuchi, H. Hanaizumi, and L. Hock, "Barcode reader using the

camera device in mobile phones," International Conference on

Cyberworlds, pp. 260-265, 2004.

[19] A. Shahab, F. Shafait, and A. Dengel, "ICDAR 2011 Robust Reading

Competition Challenge 2," Proceedings of International Conference on

Document Analysis and Recognition, 2011.

[20] C. Shi, C. Wang, B. Xiao, Y. Zhang, S. Gao, and Z. Zhang, "Scene Text

Recognition using Part-based Tree-structured Character Detection,"

CVPR 2013.

[21] P. Shivakumara, W. Huang, and C. Tan, "An Efficient Edge based

Technique for Text Detection in Video Frames," IAPR Workshop on

Document Analysis Systems, 2008.

[22] D. Smith, J. Feild, and E. Learned-Miller, "Enforcing Similarity

Constraints with Integer Programming," Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2011.

[23] R. Smith, "An Overview of the Tesseract OCR Engine," Proceedings of

International Conference on Document Analysis and Recognition, 2007.

[24] P. Viola, and M. Jones, "Robust real-time face detection," International

Journal of Computer Vision, 2004.

[25] K. Wang, and S. Belongie, "Word spotting in the wild," Proceedings of

European Conference on Computer Vision, 2010.

[26] K. Wang, B. Bbenko, and S. Belongie, "End-to-End scene text

recognition," Proceedings of International Conference on Computer

Vision, 2011.

[27] J. Weinman, E. Learned-Miller, and A. Hanson, "Scene text recognition

using similarity and a lexicon with sparse belief propagation," IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2009.

[28] C. Yao, X. Bai, W. Liu, Y. Ma, and Z. Tu, "Detecting Texts of Arbitrary

Orientations in Natural Images," Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 2012.

[29] C. Yi, and Y. Tian, "Text string detection from natural scenes by

structure-based partition and grouping," IEEE Transactions on Image

Processing, 2011.

[30] C. Yi and Y. Tian, "Localizing Text in Scene Images by Boundary

Clustering, Stroke Segmentation, and String Fragment Classification, "

In IEEE Transactions on Image Processing, Vol. 21, No. 9, 2012.

[31] C. Yi, X. Yang and Y. Tian, "Feature Representations for Scene Text

Character Recognition: A Comparative Study," ICDAR 2013.

[32] J. Zhang, and R. Kasturi, "Extraction of Text Objects in Video

Documents: Recent Progress," In the Eighth IAPR Workshop on

Document Analysis Systems (DAS), 2008.

[33] Q. Zheng, K. Chen, Y. Zhou, G. Cong, H. Guan, “Text localization and

recognition in complex scenes using local features,” ACCV 2010

Chucai Yi (S’12) received his B.S. and the M.S.

degrees in Department of Electronic and

Information Engineering from Huazhong

University of Science and Technology, Wuhan,

China, in 2007 and 2009, respectively. From

2009 he is a Ph.D. graduate student in Computer

Science at the Graduate Center, the City

University of New York, New York, NY, USA.

His research focuses on text detection and

recognition in natural scene images. His research

interests include object recognition, image

processing, and machine learning. His current work is to develop computer

vision algorithms and systems to help people with severe vision impairment to

independently find doors, rooms, elevators, stairs, bathrooms, and other

building amenities in unfamiliar indoor environments.

YingLi Tian (M’99–SM’01) received her BS and

MS from TianJin University, China in 1987 and

1990 and her PhD from the Chinese University of

Hong Kong, Hong Kong, in 1996. After holding a

faculty position at National Laboratory of Pattern

Recognition, Chinese Academy of Sciences,

Beijing, she joined Carnegie Mellon University in

1998, where she was a postdoctoral fellow of the

Robotics Institute. Then she worked as a research

staff member in IBM T. J. Watson Research

Center from 2001 to 2008. She is currently a

professor in Department of Electrical Engineering at the City College of New

York and Department of Computer Science at the Graduate Center, the City

University of New York. Her current research focuses on a wide range of

computer vision problems from motion detection and analysis, assistive

technology, to human identification, facial expression analysis, and video

surveillance. She is a senior member of IEEE.

