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Abstract—In this paper, we propose a novel framework to 

extract text regions from scene images with complex backgrounds 

and multiple text appearances. This framework consists of 3 main 

steps: boundary clustering, stroke segmentation, and string 

fragment classification. In boundary clustering, we propose a new 

bigram color uniformity based method to model both text and 

attachment surface, and cluster edge pixels based on color-pairs 

and spatial positions into boundary layers. Then, stroke 

segmentation is performed at each boundary layer by color 

assignment to extract character candidates. We propose two 

algorithms to combine structural analysis of text stroke with color 

assignment and filter out background interferences. Further, we 

design a robust string fragment classification based on 

Gabor-based text features. The features are obtained from feature 

maps of gradient, stroke distribution and stroke width. The 

proposed framework of text localization is evaluated on scene 

images, born-digital images, broadcast video images, and images 

of hand-held objects captured by blind persons. Experimental 

results on respective datasets demonstrate that the framework 

outperforms state-of-the-art localization algorithms. 

 
Index Terms—Text localization; Bigram color uniformity; 

Boundary clustering; Color assignment; Stroke segmentation; 

Gabor-based text features; String fragment classification;  

 

I. INTRODUCTION 

Image-based text information serves as an important 

indicator in many applications. It provides instructions and 

presentations for navigation, assistive reading, geocoding, and 

content-based image retrieval etc. It is a challenging task to 

detect and recognize text from camera-captured images due to 

two main issues: 1) variety of text patterns (sizes, fonts, colors, 

and orientations etc.); and 2) existence of background outliers 

resembling text characters, such as windows, bricks, and 

character-like texture. Most optical character recognition 

(OCR) systems are designed to transform text images to 

readable text codes [2, 25], but perform poorly when text is 
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embedded into complex background because of background 

interferences and low frequency of occurrence of text. As we 

know, most voice pens for blind assistance require manual 

localization of text lines in documents and objects in hand. 

However in camera-based scene images, manual text 

localization is impractical especially for blind people. 

Therefore, algorithms of automatic text localization are 

required to filter out background outliers and localize the 

regions containing text characters or strings in images for 

further process of text segmentation and recognition.  

Natural scene images with text information have two 

categories according to the complexity of background. For the 

first category, text characters and strings are in high resolution 

with relatively simple background. This category of scene 

images generally records the close-up shots of specific objects, 

such as book covers, notice signage, and wrapper (see Fig. 

1(a)). Most images of born-digital documents and hand-held 

objects captured by blind persons belong to this category, and 

we will introduce more details in Section V. The second 

category embeds text into more complex backgrounds with 

various natural objects, such as buildings, trees, lawn, roads, 

etc. (Fig. 1(b)). In both categories, text characters and strings 

mostly appear in print patterns with regular structure.  

 
Fig. 1. Examples of text in natural scene images. (a)  Text with high resolution 

and relatively simple background; (b) text with complex background. 

 

We observe that characters and strings in natural scene are 

printed in same color for almost all cases. Many previous text 

localization algorithms applied color-based clustering to group 

the pixels in similar colors into respective color layers. Thus 

text characters and strings could be separated from background 

objects in different colors. Nikolaou et al. [20] proposed an 

algorithm of color reduction based on color histogram and 

mean-shift algorithm. It initialized color centers randomly and 

projected each pixel to the nearest color center. Then 

mean-shift algorithm was applied to fix the color centers into 

the mean positions as final color layers. Chen et al. [5] 

established Gaussian mixture model in five color channels 

(Red, Green, Blue, Hue, Intensity) to analyze the distributions 
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of text pixels and background pixels. The parameters of these 

characteristic distributions were then used to label candidate 

text regions. Cosine similarity [19] and K-means clustering 

[26] were respectively applied to RGB channels to segment text 

characters in uniform color. In these algorithms, color 

clustering is a single-variable function that maps each pixel to 

the nearest color center. From the high-level perspective, it 

maps each text string in uniform color to the most compatible 

color layer. However, these algorithms ignore that text string is 

attached in the neighboring surface in uniform color in most 

cases. Based on this feature, we design the algorithm of 

boundary clustering which will be presented in Section II. 

Another significant property of text is stroke width 

consistency. As the basic element of text, stroke is defined as a 

connected region in the form of a band of approximately 

constant width [7]. Compared to character height and width, 

stroke width reflects the text size from the perspective of 

character structure. Due to the stroke width consistency of 

characters and strings, a regional stroke width distribution can 

be employed to verify whether the localized areas contain text 

or not. In [6, 27], stroke width is calculated by using horizontal 

scan line to record the intensity variations around the edge 

pixels, usually a pair of impulses on the strokes with equal 

magnitudes and opposite directions. But a character consists of 

strokes in multiple orientations, while the horizontal scan line 

can only derive the width of vertical strokes. Epshtein et al. [7] 

proposed a more robust stroke width operator for text region 

localization, named as stroke width transform. In stroke-based 

algorithms, stroke width consistency is used to extract the 

pixels inside body of strokes. The connected stroke pixels can 

be grouped into connected components as candidate text 

characters for further analysis in text localization. 

In natural scene images, text information is usually printed as 

a text string, which is a group of characters, rather than a single 

character, and the character members of a string are most likely 

with similar size, consistent color, and aligned arrangement. 

Based on these features, layout analysis can be performed to 

extract text strings without character recognition [4, 7, 30, 31]. 

In addition to color uniformity, stroke width consistency and 

character alignment, boundary-based and gradient-based 

structural analysis also plays an important role in text 

localization [1, 11, 12, 15, 18, 23, 28]. Text features, such as 

edge distribution, gradient variation, closed component 

boundary, and edge-based filter response, were obtained from 

boundary maps and gradient maps of scene images to detect 

and verify text regions. They were related to geometrical 

structure of text. 

In above algorithms, multiple pixel-based features were 

employed to distinguish text characters and strings from 

background outliers. But most of the processes were based on 

subjective selection of features and hard assignment of 

parameters. For example, it defined that aspect ratio of text 

characters should not exceed 5 and stroke width should be no 

larger than 50. But these estimates cannot accurately model the 

inner structure of text characters. They fail to filter out the 

background objects that are also composed of strokes in 

uniform color and consistent width, such as windows, bricks, 

and stripe texture. Thus the three common features are not 

enough for accurate text model. In this case, some localization 

algorithms employed Haar-like features or wavelet analysis to 

train text classifier in machine learning model. Chen et al. [4] 

applied block patterns to gradient based maps and histograms to 

train text classifier in Adaboost model. Hanif et al. [8] extracted 

mean difference, standard deviation, and HOG features of text 

characters to generate text detector under a Complexity 

Adaboost model. In [13], the responses of globally matched 

wavelet filters from text regions are used as features to train text 

classifier based on Support Vector Machines (SVM) model and 

Fisher model. Pan et al. [22] used steerable Gabor filters to 

extract rotation-invariant features of multiple scripts. Shi et al. 

[24] adopted gradient based curvatures to perform structural 

analysis of handwritten digits under a Bayes discriminant 

model. Jung et al. [10] proposed an algorithm of text line 

refinement by analyzing SVM score of text regions. Inspired by 

these algorithms, we design Gabor-based features from a set of 

block patterns and feature maps to model inner structure of text 

and classify string fragments (see Section IV). 

In this paper, we propose a novel framework of automatic 

text localization to calculate text regions in natural scene 

images by using features at 3 levels. At the pixel level, 

assuming that text characters and strings in scene images 

mostly appear in uniform color, the edge pixels are clustered 

into several layers to separate the boundaries of text strokes 

from those of background outliers with different color-pair. At 

the character level, assuming that each text character is 

composed of a single stroke, the pixels inside the body of 

strokes are segmented from each boundary layer to extract 

candidate characters in the form of connected components. At 

the string level, assuming that scene text is mostly in the form 

of approximately horizontal strings, layout analysis is first 

performed to group the horizontally aligned connected 

components into candidate fragments of text strings, and then a 

text classifier is learned from training set to predict whether an 

image patch of candidate string fragment contains text or not. 

We propose novel algorithms to extract more robust features 

for text localization. Fig. 2 depicts the flowchart of our 

framework. The main contributions include three aspects.  

1. We design a color-pair clustering algorithm based on 

Gaussian mixture model (GMM) and EM algorithm to 

group the boundary pixels with bigram color uniformity on 

the border of text and attachment surface.  

2. We combine structural analysis of stroke boundary with 

color assignment for extracting the pixels inside the body 

of strokes on each boundary layer.  

3. To classify the string fragments, we model text features by 

applying block patterns to feature points of gradient maps, 

stroke distribution maps, and stroke width maps. The 

feature points are derived from maximum responses of 

Gabor filters. 

 
 

Fig. 2.  The flowchart of our framework for text localization in natural scene 

images with complex background. 

The rest paper is organized as following: Section II 

describes the proposed boundary clustering based on bigram 
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color uniformity. Section III presents two new algorithms of 

stroke segmentation combining structural analysis and color 

assignment. Section IV describes the Gabor-based text features 

for training a SVM-based classifier of string fragments. We 

evaluate the framework and discuss the results according to 

experiments on benchmark datasets in Section V. The paper 

and future research directions are summarized in Section VI. 

II. BOUNDARY CLUSTERING 

Boundary plays an important in role in the structural analysis 

and geometrical model of text. In scene images, object 

boundary is derived from color difference of two uniform 

regions: object and its surrounding backgrounds. Thus color 

uniformity and spatial positions are employed to analyze the 

boundaries of text characters, and we propose a clustering 

algorithm to separate them from the boundaries of background 

outliers. 

A. Bigram Color Uniformity and Spatial Position 

Camera-based scene images usually have complex 

background filled with non-text objects in multiple shapes and 

colors. In these images, text strokes, characters, and strings 

keep conspicuous by consistent colors. Thus many color-based 

clustering algorithms of text localization and text segmentation 

are designed [5, 19, 20]. However, these clustering algorithms 

ignore the color difference of neighboring pixels around the 

object boundaries. Compared to absolute color values, color 

difference is more suitable for the analysis of object shape and 

texture because it produces more accurate local texture measure 

and is more robust to lighting changes [14]. 

We observe that text information is generally attached to a 

plane carrier as attachment surface. The attachment surface 

consists of pixels with uniform color near the character 

boundaries but outside the character strokes, as shown in Fig. 3. 

We define the color uniformity of both text and attachment 

surface as bigram color uniformity, modeled by a color-pair 

composed of their colors. For text and attachment surface, the 

color-pair reflects their respective color uniformity as well as 

color difference between them. Text boundaries on the border 

of text and its attachment surface are described by characteristic 

color-pairs, and we are able to extract text by distinguishing 

boundaries of characters and strings from those of background 

outliers based on color-pairs (see Fig. 3(c)). Here, we design an 

algorithm to group object boundaries with similar color–pairs 

into respective maps, which are called boundary layers. The 

next section will present detailed descriptions of the clustering 

algorithm. 
 

 
 

Fig. 3.  (a) A scene image. (b) Attachment surface of text. (c) Two examples of 

color-pairs corresponding to the boundaries at the signage board and window 

grid respectively. 

 

To reduce mutual interferences between text strings, text 

boundaries in different positions should be assigned into 

different boundary layers as possible, even though they have 

uniform color values and similar color differences. But most 

previous color-based clustering algorithms did not take into 

account the spatial positions of text. Our clustering algorithm 

employs the spatial positions of edge pixels at object 

boundaries as additional features 

B. EM-based Boundary clustering 

In natural scene images, an initial map of object boundary is 

calculated from Canny detection [3]. Edge pixels at boundaries 

are obtained from either large neighboring color differences 

that are greater than a threshold of Canny detector or the 

8-neighborhood connection to an existing edge pixel. We 

describe the edge pixels by characteristic color-pairs. In      

neighborhood     of an edge pixel   , we find out the two 

pixels with maximum color difference among all pairs of 

pixels. Their color values are used as observation of the 

color-pair across two sides of the boundary where the edge 

pixel is located. We denote the color with lower intensity 

component by      and the other one by     (see Fig. 3(c)). In 

RGB space, color values     and     both have three 

dimensions. If the boundary belongs to a text character or 

string, the     and     represent colors of text and attachment 

surface respectively. Moreover, the coordinates     and     of 

the edge pixel    are used as observation of spatial positions. 

Then an observation vector   of the edge pixel can be defined 

by cascading the color values of the two pixels with maximum 

color difference in neighborhood and the spatial coordinates of 

the central edge pixel. To normalize the dimensions of 

color-pair and spatial position observation, the coordinates     

and    are extended into three dimensions as     

              and                  . Thus edge pixel    

is described by an observation vector                    , 

which is a 12-dimesnional point in observation space. 

To extract text boundaries from scene images, we cluster 

the observation points of edge pixels into several groups such 

that edge pixels with similar color-pairs and spatial positions 

are assigned into identical boundary layer. In this process, 

GMM is employed to analyze the distributions of observation 

points of edge pixels. At first,  -means clustering is applied to 

calculate   centers of observation points, which are used as 

initial means            of the Gaussian mixture 

distributions. Then the corresponding   variances         
   are calculated from the means of observation points. Thus 

we can initialize a group of Gaussian distributions. By labeling 

each of them with a weight, the expectation of GMM is 

represented by (1). 

                       

 

   

 (1) 

where   represents observation points,    represents the 

weights of the i-th Gaussian distribution in the mixture set, and 

   and    represent mean and variance of the i-th Gaussian 
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distribution. Next, over the observation points of edge pixels, 

EM algorithm is applied to obtain maximum likelihood 

estimate of the GMM parameters, including weights, means, 

and variances of the   Gaussian distributions. In EM process, 

the GMM parameters are iteratively updated by (2) from their 

initial values derived by  -means clustering. 

 

  
    

 

 
         

    
  

 

   

 

  
    

         
    

    
 
   

         
    

   
   

 

  
    

         
    

        
      

   

         
    

   
   

 

(2) 

 

where N is the number of observation points and   denotes the 

 -th iteration. This iterative update is performed until the log 

likelihood              
 
    is convergent. Then boundary 

layer is built from each of the   Gaussian distributions under 

the parameters derived by EM. For an edge pixel, if it generates 

maximum likelihood in the i-th Gaussian distribution, it will be 

assigned into the i-th boundary layer    by (3).  

 

                                             

 

       
          

          
  

(3) 

Furthermore, the expected value    of the i-th Gaussian 

distribution provides a mean color-pair     
     

   to label all 

edge pixels at the layer   .  
Fig. 4(a) illustrates three examples of boundary layers after 

EM-based clustering. Fig. 4(b) presents the corresponding 

results of regular color reduction. As shown in the first two 

examples, color reduction fails to completely extract text from 

background outliers, leaving the boundaries of tree and plane 

on the boundary layer of text. It is because color reduction does 

not employ the spatial position difference between text and 

background outlier. In the third example, color reduction fails 

to extract the words “TESCO” and “LIFE”, but fuses them into 

attachment surface in similar color. Color reduction quantizes 

the dominant colors through statistics of absolute color values, 

so neighboring objects with color difference lower than some 

threshold are very probably regarded as a complete object. 

However, our proposed clustering algorithm quantizes the 

color-pairs around edge pixels instead of absolute color values 

at all pixels. A color-pair can be successfully extracted as long 

as it covers enough edge pixels to compose its boundary layer, 

even though the difference between the pair of colors is small. 

Since all the involved text strings in our experiments are 

horizontal, the spatial positions of text boundaries can be 

estimated only in y-coordinates. Thus the dimension of an 

observation point is reduced to 9 as                . In our 

experiments on scene images, the number of Gaussian mixtures 

is    , which generates the best results of boundary 

clustering. If   is too small, text boundary cannot be 

effectively extracted from complex background. If   is too 

large, the algorithm will lose the tolerance to color variation 

within a character or string. In that case, text boundary is 

probably broken into several fragments and assigned into 

different boundary layers. 
 

 
 

Fig. 4. (a) Examples of boundary layers from scene images; edge pixels with 

similar color-pairs and spatial positions are grouped into the same layer. 

Boundaries at different veridical positions are assigned into different boundary 

layers because of y-coordinate spatial information in clustering process. (b) 

Results of color reduction based on clustering of absolute color values, where 

white region represents background, and color region consists of the pixels that 

are grouped to the layer. 

III. STROKE SEGMENTATION 

Text boundaries provide preliminary clues of string 

locations and character structure. In [11], character boundaries, 

as a set of connected edge pixels, are directly used for structural 

analysis and text segmentation. However, due to the 

background interferences in scene images, text boundaries are 

probably broken into tiny segments or connected into the 

boundary of a non-text background object. To localize text 

accurately, we use the mean color-pair in each boundary layer 

to label a set of connected components as candidate text 

characters by color assignment. The process of character 

labeling uses stroke as basic unit because character is composed 

of strokes with similar width and different orientations.  
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Here we define a stroke as a connected image region with 

uniform color and half-closed boundary, which keeps 

consistent distance in one direction while stays extensible in the 

perpendicular direction. As shown in Fig. 5(b), this consistent 

distance is defined as stroke width and the extensible direction 

is defined as stroke orientation. We apply color assignment and 

structural analysis to obtain the strokes of text characters and 

organize them into aligned connected components. 

 

 
 

Fig. 5. (a) An image patch of text character; (b) a stroke is marked by red 

character boundary, and the red arrow denotes stroke orientations and blue 

arrow indicates the stroke width; (c) color assignment based on the mean 

color-pair           in current boundary layer. 

 

Color assignment assigns each pixel to the closer color 

value of the mean color-pair           on a boundary layer by 

(4), where   denotes the original color of a pixel in RGB space. 
 

    
                  

                  
  (4) 

 

In color assignment, the pixels at strokes and those at 

attachment surfaces should be assigned different colors from 

the mean color-pair (see Fig. 5(c)). Thus text characters 

composed of strokes can be segmented in the form of connected 

components. However, attachment surfaces and background 

outliers are also segmented out during color assignment. To 

eliminate the background interferences, we combine color 

assignment with structural analysis of stroke boundary and 

propose two algorithms of color assignment. 

A. Direct Color Assignment 

The pixels far from object boundaries should be skipped 

during color assignment, because they are neither text nor 

attachment surface. To predict whether a pixel   is located at 

the neighborhoods of object boundaries, we define a constraint 

based on a pair of neighboring windows at   in (5).  
 

          

  

     

            

  

     

    (5) 

 

where   represents a boundary layer in which edge pixel is set 

as value 1 and background pixel is set as value 0, and   and   

represent coordinates of a central pixel   at boundary layer  . 

A horizontal window           and a vertical window 

          are respectively generated at  , as shown in Fig. 

6(c), where   is denoted by the red points. If   satisfies the 

constraint in (5), no edge pixel falls into its two neighboring 

windows. Thus   will be regarded as background pixel and be 

skipped during color assignment. In our experiments, we set 

     and     . 

This algorithm is effective on extracting text from simple 

background without many natural objects, that is, the first 

category of scene images as introduced in Section I. The two 

sliding windows generate valid regions for color assignment in 

each boundary layer. Within the valid regions, the pixel belongs 

to either text stroke or attachment surface. Thus both them can 

be extracted as foreground connected components by the binary 

labeling of color-pairs directly, as shown in Fig. 6. The task of 

distinguishing text from attachment surface will be finished by 

layout analysis (see Section IV.A.). 
 

 
 

Fig. 6. (a) A scene image. (b) One of boundary layers of the scene image. (c) 

Some examples of neighboring windows, where the red points denote the 

central pixels. (d) The resulting map of direct color assignment, where pixels 

inside the strokes and the attachment surfaces are labeled by the mean 

color-pair of current boundary layer, and the skipped background pixels are 

black. (e) Segmented strokes. (f) Segmented attachment surfaces. Both (e) and 

(f) are binary maps obtained from binarization of (d). 

B. Inferred Color Assignment 

In the scene images where text characters and non-text 

objects are not isolated apart from each other, it is difficult to 

derive a valid region without any boundaries of background 

outliers. In this case, naive binarization based on only the 

color-pair cannot segment strokes and attachment surfaces, 

because direct color assignment usually fails to completely 

separate text boundaries from nearby background interferences 

in similar colors. As shown in Fig. 7(b) and Fig. 8(a), the 

boundaries of text “HFC” are connected to boundaries of 

background objects due to the interference of lamp shadow on 

the attachment surface. To skip these unexpected pixels, we 

propose an algorithm of inferred color assignment, in which the 

gradient cohesion and width consistency of character strokes 

are employed to localize pixels inside body of strokes. 

We extract a set of pixels to compose the stroke central lines, 

points of reference (POR). We use horizontal and vertical probe 

to detect the PORs at each boundary layer. For a pixel  , two 

horizontal rays are generated to probe toward left and right 

respectively, until edge pixels    and    are encountered 

within a range. Pixel   will be labeled as a POR if    and    

satisfy the following constraints, 1) gradients at    and    have 

approximately equal magnitude and opposite orientations; 2) 

length difference between the two line segments     and     

does not exceed 2 pixels, which ensures the approximate 
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lengths of the two line segments and the proper number and 

distribution of PORs for further feature extraction. Then the 

length sum of the two line segments is used as the width of the 

stroke where   is located. If   is not a POR under the 

horizontal probe, two vertical rays will be generated to repeat 

the above process toward up and down, and we employ the 

same constraints in the vertical probe. 
 

 

Fig. 7. (a) Original scene image. (b) A boundary layer of the image. (c) PORs 

marked in red displays the preliminary stroke localization in boundary layer. 

 

Each POR is assigned the closer color value of the color-pair 

by (4). As shown in Fig. 7(c), PORs are distributed at the body 

of strokes or the gap of neighboring stroke. Rare PORs exist in 

background because most interference boundaries are not 

satisfied with stroke features. Next, color assignment is 

performed for all the other pixels according to their spatial 

relationships with the PORs. For a pixel   , we find out its 

nearest POR   . If the length of a line segment      is less than 

stroke width marked by   , the    is considered as a pixel 

within the same stroke as   , and we paint it the color of   . 

After the color assignment, the segmentation results of strokes 

and attachment surfaces are generated by labeling the two color 

values of color-pair as foreground respectively, as shown in 

Fig. 8(b). Then connected components are obtained from the 

two resulting binary maps according to PORs. 
 

 
Fig. 8. Binary maps of segmented strokes in the top and segmented attachment 

surfaces in the bottom, resulted from direct color assignment in (a) and inferred 

color assignment in (b). 

Compared to the direct color assignment, some background 

outliers that are incompatible with stroke width based text 

features can be removed in the process of inferred color 

assignment, as shown in Fig. 8. In our experiments, the 

framework is respectively equipped with direct color 

assignment (DCA) and inferred color assignment (ICA) for 

performance evaluation. 

IV. STRING FRAGMENT CLASSIFICATION 

In the process of stroke segmentation, text and attachment 

surface are extracted as foreground connected components. 

Layout analysis and string fragment classification are further 

performed to verify text among the connected components. The 

attachment surface usually appears as background board, and 

text usually appears in the form of text string, which is a group 

of aligned character members with similar size and distance 

between them. We find out the groups of connected 

components that probably compose text strings. Each group is 

considered as a fragment of a text string, defined as a string 

fragment. Then we propose Gabor-based text features to train a 

SVM-based classifier of string fragments to determine whether 

a candidate string fragment is text patch or not. 

A. Layout Analysis 

Layout analysis based on text string focuses on the 

relationships between characters and their neighboring siblings. 

We use connected components obtained from stroke 

segmentation as the basic element to extract the string 

fragments. Different algorithms of layout analysis are adopted 

according to the character size. We use character height 12 as 

threshold to distinguish large size and small size characters. 

For the large size characters that are distant from neighboring 

siblings, we apply adjacent character grouping [30] to combine 

sibling connected components based on structural analysis of 

sibling characters for layout analysis. This algorithm is 

applicable to text strings with small number of characters and 

high resolutions. Adjacent character grouping is designed to 

extract the string fragments with no less than 3 characters. To 

ensure the robustness of our framework, we extend the 

algorithm by grouping two neighboring connected components 

under specific conditions. Compared to the adjacent grouping 

based on three or more characters, two-component grouping is 

more likely to obtain false positive string fragments from 

background outliers. Thus we set more rigorous conditions for 

two-component grouping as follows. First, the centroid of a 

connected component should be inside the horizontal range of 

the other connected component. If    is the y-coordinate of the 

centroid of one connected component, and   ,    are the upper 

side and bottom side of the bounding box of the other connected 

component, they should satisfy                 and 

               . It ensures that the two connected 

components stay in horizontal alignment Second, the height 

ratio of the two connected components should be greater than 

0.83 and less than 1.2. The width ratio of the two connected 

components should be greater than 0.5 and less than 2. It 

ensures that they have similar sizes. Third, the distance between 

the two connected components should not exceed twice of the 
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width of the wider one, and also it should not be less than 12. 

The satisfied connected components are grouped together to 

obtain string fragments, as shown in Fig. 9. 
 

 
 

Fig. 9. Some examples of adjacent character grouping, where string fragments 

are obtained from grouping adjacent characters marked by red boxes. 

For small size characters, stroke segmentation usually fails to 

separate them since they might be integrated into a single 

connected component, and we have no access to the details of 

character structure. In this case, a single connected component 

is considered as a string fragment directly if its height is less 

than 12 and width-to-height ratio is greater than 4. But this 

method will bring in more background interferences because it 

omits the certification of character alignment. In our 

experiments, this method is only used in the process of text 

localization in born-digital images, which will be described in 

detail in Section V.C. 

String fragment is an image patch with compatible size to 

accommodate all its candidate character members. To prepare 

for classification of the candidate string fragments, we 

normalize the image patches into a fixed size 48×96. In this 

process, the large size string fragments obtained from adjacent 

character grouping are directly scaled into image patches with 

width 96 pixels and height 48 pixels, and the small size string 

fragment from a single connected component should be sliced 

vertically into overlapped partitions with width-to-height ratio 

2:1 and then scaled into image patches with width 96 pixels and 

height 48 pixels. 

B. Training set 

This section will describe the establishment of a training set 

for learning the string fragment classifier. First, we perform 

adjacent character grouping [30] on scene images with text 

information to obtain a set of image patches, in which string 

fragments are taken as positive samples and non-text outliers 

are taken as negative samples. Besides the image patches 

generated from scene images, we also generate synthetic text 

characters and string fragments to produce additional positive 

samples. Also we add image patches of non-text objects and 

textures that resemble text characters as additional negative 

samples. We collect about 2000 positive samples and 2000 

negative samples respectively for training. Next, all these 

image patches are adjusted to the standard size for training the 

string fragment classifier. For each patch, if the width-to-height 

ratio is greater than 1:1 but less than 3:1, it is normalized into 

width 96 pixels and height 48 pixels. If the width-to-height ratio 

is greater than 3:1, it is sliced vertically into overlapped patches 

with width-to-height ratio 2:1, and then normalized into width 

96 and height 48. If the width-to-height ratio of an image patch 

is less than 1:1, we splice its three copies in vertical to generate 

a new image patch, width 96 and height 48.  

Based on the training set, Gabor-based text features are 

extracted to train a classifier of string fragment in a SVM 

model. To ensure maximum Gabor responses at stroke 

components, stroke pixel intensity is higher than background 

pixel intensity in positive samples. Detailed description will be 

given in Section IV.C.  Fig. 10 presents examples of both 

positive samples and negative samples from the training set. 
 

 
 
Fig. 10. Examples of positive samples (top row) and negative samples (bottom 

row) in the training set of string fragments. 

C. Gabor-based Features 

To eliminate the false positive string fragments, we employ 

Gabor-based features to model the inner structure of text. In 

previous literatures of text segmentation and text recognition 

[9, 28, 29], Gabor filter was applied to model text appearances 

by finding maximum responses on stroke components. Gabor 

filter can be used to analyze the combinations and distributions 

of stroke components, which are related to structural features of 

text. In this framework, we employ Gabor filter responses to 

detect out pixels of interest (POI) for text feature extraction. 

To model the stroke width and stroke orientation from 

pixel-based perspective, Gabor filter is adaptively generated at 

each pixel of the string fragment for maximum Gabor 

responses. First, we calculate the edge map and distance 

transform (DT) map of string fragments. For a pixel  , the DT 

map can indicate its nearest edge pixel    and their distance   . 

If   is located inside a stroke, the line     should be 

perpendicular to the stroke orientation. Next, we adopt the 

model of Gabor filter by (6) to calculate  a compatible Gabor 

filter at each pixel, in which the wavelength   is set as the 

distance from nearest edge pixel    and the orientation   is set 

as the stroke orientation corresponding to perpendicular 

direction to the line     (see Fig. 11(b-c)). The other 

parameters keep constant as        and    . The pixel P is 

called source pixel of the Gabor filter. The compatible Gabor 

filter is expected to produce the maximum Gabor response on 

the stroke of its source pixel, because it is generated along the 

stroke orientation without crossing the stroke boundaries. 

              
         

   
        

  

 
    

 

               

                

(6) 

 

We rotate the compatible Gabor filter by     at each pixel to 

obtain an anti-compatible Gabor filter and corresponding 

Gabor response map. The anti-compatible Gabor filter 

perpendicular to stroke orientation stretches across the stroke 

width segment into background region. On the contrary to 
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compatible Gabor filter, it is expected to provide minimum 

filter response at the pixel, as shown in Fig. 12. We calculate 

the absolute difference between the two Gabor response maps, 

where the local maximum pixels at the map of absolute 

difference are extracted as POI, as shown in Fig. 11(d). POI can 

be considered as sample point of the stroke. Feature extraction 

focuses only on the POIs in the feature maps of gradient, stroke 

distribution, and stroke width. Thus the extracted feature is 

named as Gabor-based text feature. 

 

 
Fig. 11. (a) Image patch of a string fragment. (b) Two compatible Gabor filters 

(marked in blue) are generated at the two red points according to the stroke 

orientation and the distance to the nearest edge pixel. Two anti-compatible 

Gabor filters are obtained by π/2 rotation marked in green. (c) The two 

compatible Gabor filters. (d) Extracted feature points marked in red, which are 

distributed inside the body of strokes and in the gap of neighboring strokes. 

 

 
 

Fig. 12. (a) Image patch of string fragment with a red pixel A. (b) Compatible 

Gabor filter at pixel A with corresponding Gabor response and binary threshold 

map. (c) Anti-compatible Gabor filter with corresponding Gabor response and 

binary threshold map. 

 

The POIs model the inner structure of text by positions and 

orientations of the strokes where they are located. We make 

statistics of stroke orientations based on the POIs in the 

collected training set of string fragments. A block pattern is 

employed to divide the image patches of both positive samples 

and negative samples into three horizontal partition regions. By 

quantizing stroke orientations into 8 bins within the range 

  –          ,  we count the number of POIs at each stroke 

orientation to obtain POI histograms, as shown in Fig. 13. This 

figure shows that in positive samples of text string fragments, 

the dominant stroke orientation is    , that is, vertical stroke 

has the largest frequency of occurrences in text characters and 

strings. Also the stroke orientations in positive samples are 

approximately symmetrical with respect to the vertical 

direction, because most characters in print patterns are 

composed of closed and symmetrical strokes. In contrast, the 

distribution of stroke orientations in negative samples is more 

uniform without dominant orientation. Furthermore, in positive 

samples, statistical results vary among different partition 

regions. We can see the vertical stroke is the most dominant in 

middle partition regions.  However, negative samples generate 

similar patterns of histograms in the three partition regions. The 

pattern of histograms proves that the POI and block pattern can 

generate structural features to distinguish text string fragments 

from non-text outliers. 
 

 
 

Fig. 13. (a) Block pattern used in the statistics of stroke orientations. (b) The 

histograms of stroke orientations from partition regions of positive samples (top 

row) and negative samples (bottom row), where the first column denotes 

statistical results of the whole image patches without block pattern partition. 

 

To extract Gabor-based text features for string fragment 

classification, we employ 6 block patterns [4] to provide the 

maps of image patch partition, including the one presented in 

Fig. 14. These block patterns are related to the intensity and 

gradient distributions in image patches of string fragments. 

They model inner structure of string fragments by 

proportionally dividing the image patches into multiple 

partition regions along horizontal and vertical directions. 
 

 
 

Fig. 14. The 6 block patterns used for extracting text features, where the side 

length of partition region is given by the percentage of the block side. 

 

The feature values are calculated by the absolute difference 

between the measurement of POIs in white partition regions 

and that in gray partition regions. To balance the feature values, 

a weight is assigned to each partition region. We design two 

methods of weight assignment. The first method assigns the 

same weights to all partition regions of the block patterns. This 

method is applied to all the 6 block patterns. The second 

method first ensures the same weight sum for gray partition 

regions and white partition regions. Then each partition region 

in the respective group is assigned a weight inversely 

proportional to its area. Taking the 3rd block pattern in the top 

row of Fig. 14 for example, the three gray partition regions are 

assigned weight      , and the two white partition regions are 

assigned weight      . This method is not applied to the 2 

block patterns with less than three partition regions, because it 

provides the same results as the first method. Taking the 

weights into account, 10 types of block patterns are employed 

to extract text features from feature maps. For each partition 

region of a block pattern, the measurement consists of 2 
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calculation metrics, which are sum and mean of all the pixel 

values within this partition region. The 10 block patterns and 2 

calculation metrics are applied to extract text features from the 

POI-based maps of gradient, stroke width, and stroke 

distribution. Each feature map can generate 10 × 2 = 20 values 

to compose a feature vector. 
 

Gradient 

POIs are distributed within the body or gap of strokes, where 

the gradient magnitudes decrease but gradient orientations are 

the same as stroke boundaries. The gradient variations should 

keep consistent at all partition regions of block patterns, if they 

are obtained from text characters with identical font and size. 

Horizontal and vertical Sobel operators are applied on the POIs 

to calculate the gradient values in the two directions. Then we 

transform them into two feature maps, gradient magnitude and 

gradient orientation. By using the block patterns and 

calculation metrics, we generate feature vector in         

dimensions on the gradient feature maps of a string fragment. 
 

Stroke Width 

We propose a ray-probing algorithm to estimate stroke width 

at each POI. At first, we obtain stroke orientation at a POI   

from its compatible Gabor filter. Then, two rays starting from   

probe along two directions that are perpendicular to   ’s stroke 

orientation until they reach edge pixels    and    respectively, 

as shown in Fig. 15. The segment length between the two 

encountered edge pixels is considered as stroke width across   . 

We calculate stroke width across each POI to produce a feature 

map. Next, the block patterns and calculation metrics are 

applied on the stroke width map to obtain a feature vector of 20 

dimensions. Furthermore, to measure the stroke width 

consistency, Gaussian distribution       is generated from the 

maximum likelihood of the estimated stroke width at POIs. The 

coefficient of variance in the form       is used as feature 

value of stroke width consistency. To keep consistent feature 

dimensions with gradient-based features, we extend the 

single-value variance measure into a vector of 20 dimensions.  
 

 
 

Fig. 15. (a) Probe rays along opposite orientations to search for edge pixels. (b) 

The two encountered edge pixels    and    are used to estimate the stroke 

width of character ‘S’ where feature point   is located. 

 

Stroke Distribution 

When the image patch of string fragment is partitioned by 

horizontal section lines, the strokes of text characters are 

regularly organized in the line spaces. For example, the 

handwriting worksheet uses a four-line block pattern to assist 

novices in tracing the character structure. According to this 

characteristic, we model the character structure by stroke 

distribution of 18 partition regions from the 6 types of block 

patterns. First, an image patch of string fragment is binarized by 

Otsu’s method [21]. Then we calculate the ratio between the 

number of foreground pixels and the total number of pixels in 

each of the partition regions. The ratio is used as feature value 

of stroke distribution (see Fig. 16), and an 18-dimesional 

feature vector is derived from each string fragment. 
 

 
 
Fig. 16. Stroke distribution estimates by one of the block patterns, and the right 

values denote the ratio of foreground pixels at corresponding partition regions. 

 

By cascading the vectors obtained from feature maps of 

gradient, stroke width and stroke distribution, a 98-dimensional 

feature vector is generated for each candidate string fragment, 

which can be considered as a point in feature space. We 

calculate feature vectors of all the samples in training set and 

normalize the feature values in each dimension into the range 

     . Then linear SVM model is applied to generate a classifier 

of string fragment. 

V. EXPERIMENTS 

We carry out experiments to evaluate the performance of the 

Gabor-based features in string fragment classification and the 

performance of our framework in text localization on scene 

images. In addition, we localize text regions on born-digital 

images, broadcast video images, and images of hand-held 

objects captured by blind persons to show the robustness of our 

framework in dealing with multiple background outliers. 

A. Evaluation of Gabor-based Features  

Gabor-based features are evaluated to train a robust classifier 

of string fragments. The five features of string fragment include 

gradient magnitude, gradient orientation, stroke width, stroke 

distribution, and stroke width consistency measure. We 

estimate the performance of each feature in the SVM model, 

and obtain the most robust classifier of string fragments.  

Experiments are performed on two groups of image patches. 

First, the feature is evaluated within the collected training set of 

string fragments. The 2000 positive samples and 2000 negative 

samples are equally divided into two subsets respectively, one 

of which is used for classifier training and the other is used for 

evaluation. Next, the classifier is learned from the whole 

training set, and then evaluated on about 18,000 image patches, 

which are obtained from layout analysis on the scene images of 

ICDAR 2003 robust reading dataset. We have manually labeled 

the text patches and non-text patches for classifier evaluation.  

Fig. 17 and Fig. 18 illustrate the evaluation results of the two 

experiments respectively, where hit rate represents the ratio of 

correctly classified samples in positive set, and false positive 

rate represents the ratio of incorrectly classified samples in 

negative set.The two figures demonstrate that stroke width 

consistency is more robust than the other features of text. 

Gradient magnitude and stroke width achieve comparable 

performance with stroke distribution and gradient orientation in 

the first experiment, but they become inferior in the second 
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experiment. It is inferred that gradient orientations and stroke 

distributions are normalized into the ranges        and       
respectively, so they are more robust to the variations of large 

number of samples in the second experiments. In our 

framework, all the features are combined to model string 

fragments, because both figures show that the best performance 

of string fragment classification is achieved when combining 

all the features. 
 

 

Fig. 17.  The evaluation results of the 5 Gabor-based features on the collected 

train set of string fragments. Here hit rate is the ratio of correctly classified 

samples in positive set, and false positive rate is the ratio of incorrectly 

classified samples in negative set. 

 

 

Fig. 18.  The evaluation results of the 5 Gabor-based features on image patches 

obtained from ICDAR 2003 robust reading dataset of scene images. Hit rate is 

the ratio of correctly classified samples in positive set, and false positive rate is 

the ratio of incorrectly classified samples in negative set. 

B. Evaluation of Text Localization on Scene Images 

We evaluate the performance of our proposed framework on 

two benchmark datasets of scene images, ICDAR 2003 Robust 

Reading Dataset [32] and ICDAR 2011 Robust Reading 

Dataset [33]. Both of them were collected for robust reading 

competitions, and annotated text regions. ICDAR 2003 robust 

reading dataset contains about 500 scene images and 2258 

ground truth text regions in total. In our experiments, the scene 

images contain non-text or only a single character are excluded. 

Thus 487 scene images are used for performance evaluation. 

The involved image sizes range from 640×480 to 1600×1200. 

ICDAR 2011 robust reading dataset contains 229 scene images 

with 848 ground truth text regions in total. We evaluate the 

framework on 228 images containing text strings with no less 

than two character members. The image size ranges from 

422×102 to 3888×2592. The proposed framework is applied on 

the above datasets for text localization. The localization 

processes are carried out in each scene image and its inverse 

image, and the results are combined to calculate the localized 

text regions. In all our experiments on text localization, the 

involved scene image is normalized into longer side 640 and 

shorter side 480 (640×480) when length ratio of the longer side 

and the shorter side is less than 2, and it is normalized into 

640×240 when the length ratio is greater than or equal to 2. 

Evaluation results are obtained from the comparisons between 

a group of localized text regions and ground truth text regions. 

We denote their overlaps as the hit regions which are the 

correctly extracted text regions. We define the area of a text 

region as the number of pixels in the region. Based on these 

measures, Precision is defined as the ratio between the area of 

hit regions and the area of the detected regions, and Recall is 

defined as the ratio between the area of hit regions and the area 

of the ground truth regions. Then they are combined by 

harmonic mean to obtain  f-measure as (7). 

  
                  

                
 (7) 

We perform two rounds of text localization by using DCA 

and ICA in the step of stroke segmentation respectively. The 

results are presented in Table I. The ICA framework achieves 

better recall but lower precision. ICA algorithm filters out the 

boundaries unsatisfied with stroke structure, but cannot 

eliminate the background outliers completely. More text 

characters are separated from background interferences by 

structural analysis of stroke boundary in ICA, so the recall is 

improved. However, stroke structure also exists in non-text 

object, and the survived boundaries and corresponding 

connected components in ICA usually possess similar 

appearance and alignment. Thus more false positive string 

fragments from layout analysis lower the precision.  

 

 
 

Fig. 19. Example results of text localization in the ICDAR 2003 Robust 

Reading Dataset, where the text regions are marked by cyan boxes. 
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Fig. 19 illustrates some example of text localization where 

the text regions are marked in cyan boxes. Table I presents the 

performance comparisons between our framework and the 

localization algorithms involved in ICDAR robust reading 

competition [16, 17]. It shows that the proposed framework 

outperforms most previous localization algorithms. 
 

TABLE I 

THE COMPARISON BETWEEN OUR FRAMEWORK AND THE TEXT LOCALIZATION 

ALGORITHMS PRESENTED IN [7, 16, 17, 30] ON THE ROBUST READING DATASET. 
 

 Precision Recall f-measure 

Ours(DCA) 0.73 0.67 0.66 

B. Epshtein 0.73 0.60 0.66 

Ours(ICA) 0.65 0.74 0.64 

H. Becker 0.62 0.67 0.62 

C. Yi 0.71 0.62 0.62 

A. Chen 0.60 0.60 0.58 

Ashida 0.55 0.46 0.50 

HWDavid 0.44 0.46 0.45 

Wolf 0.30 0.44 0.35 

Q. Zhu 0.33 0.40 0.33 

 

Same experimental process is performed on the ICDAR 2011 

robust reading dataset to evaluate our framework with DCA 

and ICA respectively. The results are obtained by using the 

same evaluation measures, as presented in Table II. Some 

detected text regions are presented in Fig. 20 with cyan boxes. 
 

 
 

Fig. 20. Some example results of text localization in the ICDAR 2011 Robust 

Reading Dataset, where the text regions are marked by cyan boxes. 

 

Furthermore, we evaluate the performance of boundary 

clustering (BC) and string fragment classification (SFC) 

respectively on this dataset. First, adjacent character grouping 

(ACG) [30] is evaluated independently on the edge images to 

localize aligned connected components or boundaries with 

similar sizes and generate string fragments by grouping. Then 

we apply boundary clustering and string fragment classification 

as pre-processing and post-processing of ACG respectively. 

Boundary clustering categorizes boundaries with similar 

color-pairs to filter out false combination of adjacent 

components in ACG, and string fragment classification filters 

out the false positive string fragments generated by ACG. The 

evaluation results are shown in Table II. Many background 

interferences are filtered out in boundary clustering and string 

fragment classification, so they improve the precision. 

However, some text characters with non-regular patterns or 

incomplete boundaries might be also removed. Thus the recall 

has a little decline. 
 

TABLE II 

RESULTS OF TEXT LOCALIZATION ON THE ICDAR 2011 ROBUST READING 

DATASET OF SCENE IMAGES. 

 

 Precision Recall f-measure 

Ours(DCA) 0.81 0.72 0.71 

Ours(ICA) 0.67 0.80 0.68 

ACG 0.63 0.79 0.64 

BC 

+ ACG 
0.66 0.78 0.66 

ACG 

+ SFC 
0.72 0.77 0.69 

 

C. Evaluation on born-digital and broadcast video images 

We further evaluate our framework to extract text 

information from born-digital images and broadcast video 

images. Born-digital images are electrical documents with 

colorful captions and illustrations. Mostly they exist in web 

pages, book covers, and posters. In born-digital images, text 

characters and strings are more colorful, so the initial number of 

Gaussian mixtures in boundary clustering is set as    . 

Besides, born-digital image has higher frequency of 

occurrences of text and smaller character sizes than scene 

image. Thus in layout analysis we consider some connected 

components directly as string fragments and slice the 

corresponding image patches vertically to overlapped partitions 

with width-to-height ratio 2:1.  

A dataset of born-digital images is released for ICDAR 2011 

robust reading competition [34]. It contains 420 born-digital 

images with ground truth text regions. The average image size 

is about 352×200. We evaluate our framework by using the 

same measures on this dataset. The framework with DCA 

generates precision 0.64, recall 0.67 and f-measure 0.61, and 

the framework with ICA generates precision 0.55, recall 0.70 

and f-measure 0.56. Fig. 21 presents some examples of 

localized text regions in born-digital images. 

 

 
 

Fig. 21.  Example results of text localization in the born-digital images. 

 

Moreover, our framework is evaluated on broadcast video 

images. In most video images, text serves as titles and captions 

to introduce the content of television program. It is distributed 

on the top or bottom of the screen. The characters and strings 

also have the features of bigram color uniformity, stroke width 

consistency, and character alignment. Different from scene 

images, most text information in broadcast video image is 
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subsequently added for audience reading, so they generally 

encounter fewer background interferences and pattern 

variations. Fig. 22 depicts some results of localization in 

broadcast video images.  
 

 
 

Fig. 22.  Example results of text localization in broadcast video images. 
 

D. Evaluation on scene images of blind-captured objects 

The proposed framework can be applied to produce 

reading-assistant devices to help blind people to distinguish 

objects in their hands. Most reading-assistant devices, e.g. 

voice reading pen, require manual localization of text regions in 

documents or books because the integrated OCR cannot find 

out text regions without background outliers automatically. 

Thus our framework can be employed to carry out the 

challenging task. 

To evaluate the performance on blind assistance, we 

collected a dataset of text captions on objects in hands. 10 blind 

persons are recruited to test 13 objects (grocery boxes, medical 

bottles, book covers, etc.) by wearing a camera attached in a 

pair of sunglasses to capture the hand-held objects. We total 

collected 112 blind-captured images with 324 ground truth text 

regions. These labeled text regions only cover the headings or 

sub-headings in the objects since they provide sufficient 

information to blind people what the objects in their hands are. 

Some examples of localized text regions by the proposed 

framework are shown in Fig. 23.  
 

 
 

Fig. 23. Example results of localized text regions in cyan from the 

blind-captured images of text captions. 

 

By using the same evaluation measures as above 

experiments, we obtain precision 0.52, recall 0.62, and 

f-measure 0.52 on this dataset. Furthermore, we define that a 

ground truth text region is hit if three-quarter of its area is 

localized and a localized text region is hit if half of its area is 

within the ground truth. In this experiment, our framework hits 

164 of the 311 localized regions and 195 of the 324 ground 

truth regions. The text regions are then input into an OCR 

system for recognition. The recognized text codes are displayed 

to blind users as audio outputs. From the above experimental 

results, we find that the precisions of text localization in 

born-digital images and blind-captured object images are lower 

than that in scene images. A reason is that the two types of 

images usually have lower image resolutions and more 

compact distributions of text and background objects. 

E. Some Limitations of the Proposed Framework 

The proposed framework is based on color uniformity and 

horizontal alignment of text strings with more than 2 

characters, so it cannot handle a text string with non-uniform 

colors, single character, or text string whose angle with the 

horizontal is larger than 20 degrees. In addition, the framework 

requires enough resolution of the text to be localized. The 

characters and strings cannot be too small or too blurred. Fig. 

24 depicts some challenging scene images in which the 

framework fails to localize text regions accurately.  
 

 
 

Fig. 24. Scene images where our framework fails to localize text regions. (a) 

Multi-colored character and non-horizontal string. (b) Text string composed of 

single character. (c) Low resolution. (d) Non-horizontal string. 

 

In our proposed framework, the involved constraints, 

assumptions and parameters are all designed for general text 

appearance and structure in most natural scenes. We would 

make the framework be more adaptive to those specific and 

challenging situations. 

VI. CONCLUSION 

In this paper, we have designed a novel framework to 

localize text regions under complex background and multiple 

text patterns. To eliminate background outliers and model text 

structure, three steps are involved in the localization process, 

which are boundary clustering, stroke segmentation, and string 

fragment classification. Text in scene images is modeled by 

pixel-level bigram color uniformity, character-level stroke 

structure, and string-level text layout. In each step, we present 

novel algorithms to extend and integrate the common features 

related to outer appearance and inner structure of text. 

Traditional color based pixel clustering is transformed into 

color-pair based boundary clustering and group the character 

boundaries of text string in similar color into identical boundary 

layers. Two algorithms are designed for structural analysis of 

stroke component to extract character candidates in each 

boundary layer. Then we perform layout analysis on the 

candidate characters to calculate the fragments of text strings. 

A SVM-based classifier of string fragments is learned from 

Gabor-based features to filter out the false positive string 

fragments obtained from layout analysis. The experiments 

show that the proposed framework is able to localize text 

regions among various background outliers and text patterns, 

including scene images, born-digital image, broadcast video 

images and blind-captured object images. In performance 
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evaluation on benchmark dataset, the framework outperforms 

state-of-the-art localization algorithms in precision and recall. 

In the future work, we will design more sophisticated 

algorithm to model the structure of text characters and strings. 

We will also extend the framework to localize non-horizontal 

text strings in deformed surfaces, and design word recognition 

algorithm to read text information from text regions. 

REFERENCES 

[1] H. Anoual, S. Elfkihi, A. Jilbab, “Features extraction for text detection 

and localization,” 5th International symposium on I/V communications 

and mobile network (ISVC), pp. 1-4, 2010. 
[2] T. M. Breuel, “The OCRopus open source OCR system,” Proceedings 

IS&T/SPIE 20th Annual Symposium, pp. 0F1–0F15, 2008. 

[3] J. Canny, “A Computational Approach To Edge Detection,” IEEE Trans. 

Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986. 

[4] X. Chen and A. Yuille, “Detecting and Reading Text in Natural Scenes,” 

Proceedings of IEEE conferences on computer vision and pattern 
recognition, Vol.2, pp. 366-373, 2004. 

[5] X. Chen, J. Yang, J. Zhang, and A. Waibel, “Automatic Detection and 

Recognition of Signs From Natural Scenes,” IEEE Transactions on 
Image Processing, Vol. 13, No. 1, pp. 87-99, 2004. 

[6] V. Dinh, S. Chun, S. Cha, H. Ryu, S. Sull "An Efficient Method for Text 

Detection in Video Based on Stroke Width Similarity", Proceedings of 
Asian conference on computer vision, pp. 200-209, 2007. 

[7] B. Epshtein, E. Ofek, and Y. Wexler, “Detecting Text in Nature Scenes 

with Stroke Width Transform,” IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 2963-2970, 2010. 

[8] S. M. Hanif, L. Prevost, “Text detection and localization in complex 

scene images using constrained AdaBoost algorithm,” Proceedings of 
10th international conference on document analysis and recognition, 

ISSN: 1520-5363, pp. 1-5, 2009. 

[9] A. K. Jain and S. Bhattacharjee, “Text segmentation using Gabor filters 
for automatic document processing,” Machine Vision and Applications, 

Vol. 5, Issue 3, pp. 169-184, 1992. 

[10] C. Jung, Q. Liu, and J. Kim, “Accurate text localization in images based 
on SVM output scores,” Image and vision computing, Vol.27, Issue 9, pp. 

1295-1301, 2008. 

[11] T. Kasar, J. Kumar and A. Ramakrishnan, “Font and Background Color 
Independent Text Binarization,” Second International Workshop on 

Camera-Based Document Analysis and Recognition, pp.3-9, 2007. 

[12] W. Kim, and C. Kim, “A new approach for overlay text detection and 
extraction from complex video scene,” IEEE transactions on image 

processing, Vol. 18, Issue 2, pp. 401-411, 2009. 

[13] S. Kumar, R. Gupta, N. Khanna, S. Chaudhury, and S. D. Joshi, “Text 
Extraction and Document Image Segmentation Using Matched Wavelets 

and MRF Model,” IEEE Transactions on Image Processing, Vol. 16, No. 

8, pp. 2117-2128, 2007. 
[14] L. Li and M.K.H. Leung, “Integrating Intensity and Texture Differences 

for Robust Change Detection”, IEEE Transactions on Image Processing, 

Vol. 11, No. 2, pp. 105-112, 2002. 
[15] C. Liu, C. Wang, R. Dai, “Text detection in images based on unsupervised 

classification of edge-based features,” Proc. of International conference 

on document analysis and recognition, Vol. 2, pp. 610-614, 2005. 
[16] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S.Wong and R. Young, 

“ICDAR 2003 Robust Reading Competitions,” Proceedings of the 

International Conference on Document Analysis and Recognition, pp. 
682-687, 2003. 

[17] S. M. Lucas, “ICDAR 2005 text locating competition results,” In 
Proceedings of the International Conference on Document Analysis and 

Recognition, Vol. 1, pp 80–84, 2005. 

[18] M. Lyu, J. Song, and M. Cai, “A Comprehensive Method for Multilingual 
Video Text Detection, Localization, and Extraction,” IEEE Trans. on 

Circuits and Systems for Video Technology, Vol.15, No. 2, pp. 243-255, 

2005. 
[19] C. Mancas-Thillou, and B. Gosselin, “Spatial and Color Spaces 

Combination for Natural Scene Text Extraction,” IEEE Conference on 

Image Processing (ICIP), pp. 985-988, 2006. 
[20] N. Nikolaou and N. Papamarkos, “Color Reduction for Complex 

Document Images,” International Journal of Imaging Systems and 

Technology, Vol.19, pp.14-26, 2009. 

[21] N. Otsu. “A threshold selection method from gray-level histograms,” 

IEEE Transactions on Systems, Man., Cybernetics, pp. 62–66. 

DOI:10.1109/TSMC, 1979. 

[22] W. Pan, C. Suen and T. Bui, “Script Identification Using Steerable Gabor 

Filters,” Proc. of International Conferences on document analysis and 
recognition, Vol. 2, pp. 883-887, 2005. 

[23] T. Phan, P. Shivakumara and C. L. Tan, “A Laplacian Method for Video 

Text Detection,” 10th International Conference on Document Analysis 
and Recognition, pp.66-70, 2009. 

[24] M. Shi, Y. Fujisawab, T. Wakabayashia and F. Kimura, “Handwritten 

numeral recognition using gradient and curvature of gray scale image,” 
Pattern Recognition, Vol. 35, No. 10, pp. 2051-2059, 2002. 

[25] R. Smith, “An Overview of the Tesseract OCR Engine,” Proceedings of 

International conference on document analysis and recognition, ISSN: 
1520-5363, pp. 629-633, 2007. 

[26] Y. Song, A. Liu, L. Pang, S. Lin, Y. Zhang, and S. Tang, “A Novel Image 

Text Extraction Method Based on K-means Clustering,” Seventh 
International Conference on Computer and Information Science, pp. 

185-190, 2008. 

[27] K. Subramanian, P. Natarajan, M. Decerbo, D. Castanon, 
"Character-Stroke Detection for Text-Localization and Extraction", 

Proceedings of International Conference on Document Analysis and 

Recognition (ICDAR), pp. 33-37, 2005. 
[28] M. Wan,   F. Zhang,   H. Cheng, and Q. Liu, “Text localization in spam 

image using edge features,” International Conference on 

Communications, Circuits and Systems (ICCCAS), DOI: 
10.1109/ICCCAS.2008.4657900, pp. 838-842, 2008. 

[29] J. Weinman, E. Leanred-Miller, A. Hanson, “Scene text recognition using 
similarity and a lexicon with sparse belief propagation,” IEEE 

Transactions on pattern analysis and machine intelligence, Vol. 31, No. 

10, pp. 1733-1746, 2009. 
[30] C. Yi, and Y. Tian, “Text string detection from natural scenes by 

structure-based partition and grouping,” IEEE Transactions on Image 

Processing, Vol. 20, No. 9, 2011. 

[31] Y. Zheng, H. Li, and D. Doermann, “A parallel-line detection algorithm 

based on HMM decoding,” IEEE Transactions on pattern analysis and 

machine intelligence, Vol. 27, No. 5, pp. 777-792, 2005. 
[32] http://algoval.essex.ac.uk/icdar/Datasets.html. 

[33] http://robustreading.opendfki.de/wiki/SceneText. 

[34] http://www.cvc.uab.es/icdar2011competition/. 
 

Chucai Yi (S’12) received his B.S. and the M.S. 

degrees in Department of Electronic and 
Information Engineering from Huazhong 

University of Science and Technology, Wuhan, 

China, in 2007 and 2009, respectively. From 
2009 he is a Ph.D. graduate student in Computer 

Science at the Graduate Center, the City 

University of New York, New York, NY, USA. 
His research focuses on text detection and 

recognition in natural scene images. His research 

interests include object recognition, image 
processing, and machine learning. 

 

YingLi Tian (M’99–SM’01) received her BS and 
MS from TianJin University, China  in 1987 and 

1990 and her PhD from the Chinese University of 

Hong Kong, Hong Kong, in 1996. After holding a 
faculty position at National Laboratory of Pattern 

Recognition, Chinese Academy of Sciences, 

Beijing, she joined Carnegie Mellon University in 
1998, where she was a postdoctoral fellow of the 

Robotics Institute. Then she worked as a research 

staff member in IBM T. J. Watson Research 
Center from 2001 to 2008. She is currently an 

associate professor in Department of Electrical Engineering at the City College 

of New York and Department of Computer Science at the Graduate Center, the 
City University of New York. Her current research focuses on a wide range of 

computer vision problems from motion detection and analysis, assistive 

technology, to human identification, facial expression analysis, and video 
surveillance. She is a senior member of IEEE. 


