
1

Coarse-to-fine Semantic Segmentation from
Image-level Labels

Longlong Jing*, Yucheng Chen*, and Yingli Tian†, Fellow, IEEE

Abstract—Deep neural network-based semantic segmentation
generally requires large-scale cost extensive annotations for
training to obtain better performance. To avoid pixel-wise
segmentation annotations which are needed for most methods,
recently some researchers attempted to use object-level labels (e.g.
bounding boxes) or image-level labels (e.g. image categories). In
this paper, we propose a novel recursive coarse-to-fine semantic
segmentation framework based on only image-level category
labels. For each image, an initial coarse mask is first generated by
a convolutional neural network-based unsupervised foreground
segmentation model and then is enhanced by a graph model.
The enhanced coarse mask is fed to a fully convolutional neural
network to be recursively refined. Unlike existing image-level
label-based semantic segmentation methods which require to la-
bel all categories for images contain multiple types of objects, our
framework only needs one label for each image and can handle
images contains multi-category objects. With only trained on
ImageNet, our framework achieves comparable performance on
PASCAL VOC dataset as other image-level label-based state-of-
the-arts of semantic segmentation. Furthermore, our framework
can be easily extended to foreground object segmentation task
and achieves comparable performance with the state-of-the-art
supervised methods on the Internet Object dataset.

Index Terms—Weakly Supervised Learning, Semantic Segmen-
tation, Foreground Object Segmentation, Convolutional Neural
Network, Deep Learning

I. INTRODUCTION

SEMANTIC segmentation, the task of assigning semantic
labels to each pixel in images, is of great importance

in many computer vision applications such as autonomous
driving, human-machine interaction, and image search en-
gines. The community has recently made promising progress
by applying Convolutional Neural Network (CNN) due to
its powerful ability to learn image representations. Various
networks such as FCN [1], DeepLab [2], PSPNet [3], SegNet
[4] and datasets such as PASCAL VOC [5], CityScape [6],
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CamVid [7], ADE20K [8] have been proposed for semantic
segmentation.

The performance of deep neural network (DNN) greatly
depends on the capability of the network and the amount
of training data. Different kinds of network architectures
were developed to increase the capacity of the models, and
larger and larger datasets were keeping proposed these days.
However, even though several datasets have been annotated
for semantic segmentation, the amount of training data for
semantic segmentation is still relatively small compared to
the datasets for other tasks such as ImageNet [9] and YouTube
Bounding Box [10]. Semantic segmentation generally requires
pixel-wise semantic annotation which makes the cost of an-
notation process time-consuming and expensive.

To mitigate the limitation of the annotations, weakly su-
pervised and semi-supervised semantic segmentation meth-
ods were proposed [11], [12], [13], [14], [15]. By utilizing
annotations that cheaper than pixel-wise annotation such as
object-level labels including bounding boxes, scribbles, spots,
or image-level labels to train the semantic segmentation mod-
els greatly reduce the cost of data annotation. Furthermore,
these annotations can be easily obtained to produce large
weakly supervised datasets. Trained with the weak labels,
these models achieve promising performance and the gap
between the weakly supervised and supervised methods in
performance are getting smaller. However, these methods still
need cumbersome labors such as accurate bounding boxes
[13], [16], [17] and scribbles [15], [18]. For example, in
the model trained with the bounding boxes, all the interested
category of objects must be annotated with accurate bounding
boxes.

In this paper, we propose a novel semantic segmentation
framework to be trained with images directly retrieved from a
subset of the ImageNet dataset while only the image category
labels are available. The cost of obtaining image-level labels
is much lower than object-level annotations such as bounding
boxes, spots, and scribbles. Unlike other weakly supervised
methods, it is worth mentioning that the category information
of the images in our training dataset is very simple and
inaccurate. In others’ work such as [11], [12], [14] [19],
one image usually has multiple labels of the interested object
categories appeared in the image, however, one image has been
labeled only one category in ImageNet even when the image
contains objects of multiple categories. Even though trained on
the dataset with simple and inaccurate labels, our model can
generate semantic segmentation masks for images containing
multi-category objects.

Our goal is to train the segmentation network only with
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Fig. 1. Two sets of images and their corresponding refinement masks of different training rounds. Trained with simple image category labels and coarse
masks, our framework can finally predict fine segmentation masks for the input images.

image-level labels. Specifically, we train the model with
images directly from the ImageNet dataset [9], which is
collected and labeled for image classification task. Some
example images and the corresponding coarse-to-fine masks
generated by our framework are illustrated in Fig. 1. Firstly,
the student network is employed to generate a coarse mask
for each image which was proposed for unsupervised learning
foreground segmentation in images by Croitoru et al. [20].
Since the coarse masks generally are very rough and have
many holes and their locations are inconsistent with the object
locations, a graphical model is employed to enhance the coarse
masks. Then, the enhanced masks, the input images, and the
category labels of the images are used to recursively train the
semantic segmentation network which is a fully convolutional
network. Trained with only category information, the network
can finally generate pixel-wise semantic masks for the input
images.

In summary, our main contributions are:
• We propose a new weakly supervised framework for

semantic segmentation only depends on image category
level annotations.

• Trained with images that each has only one category
label, the proposed framework can automatically learn to
generate final pixel-wise semantic fine masks for images
containing multiple category objects.

• The proposed framework can be generalized cross
datasets. With only trained on a subset of the ImageNet
dataset, and it achieves comparable performance on PAS-
CAL VOC dataset as other image-level label-based state-
of-the-arts.

• The proposed framework can be easily extended to image
foreground object segmentation and it achieves compa-
rable performance with the state-of-the-art supervised
methods on the Internet Object dataset.

II. RELATED WORK

A. Semantic Segmentation

Recently, many semantic segmentation methods have been
proposed. Based on the level of annotations used, these

methods fall into three categories: fully supervised pixel-
wise annotation-based methods that trained with pixel-wise
labels annotated by human labors [1], [2], [3], [4]; weakly
supervised object-level annotation-based methods that trained
with object-level annotations such as bounding boxes, spots,
and scribbles [13], [15], [17], [18]; and weakly supervised
image-level annotation-based methods that trained with image
category labels [11], [12], [14]. Trained with accurate pixel-
labels, fully supervised pixel-wise annotation-based methods
have the best performance.

Fully supervised pixel-wise annotation-based methods:
Long et al. [1] made the first attempt to apply fully convolu-
tional network (FCN) in semantic segmentation and achieved
the milestone break. Badrinarayanan et al. proposed a sym-
metric auto-encoder architecture by utilizing the convolution
and deconvolution layers [4]. Chen et al. [2] employed the
atrous convolution, atrous spatial pyramid pooling, and fully-
connected Conditional Random Field (CRF) in semantic seg-
mentation, which was widely used in other networks later.
Zhao et al. [3] proposed to employ the pyramid pooling model
to aggregate the context information of different regions in an
image and achieved the state-of-the-art performance on various
semantic segmentation datasets.

Weakly supervised object-level annotation-based meth-
ods: Object bounding boxes, as a relatively cheaper yet
quite accurate annotation, are used to train weakly supervised
semantic segmentation models. In this way, bounding boxes
annotated for other tasks such as object detection can be
directly used to train segmentation models. Papandreou et al.
[17] developed an Expectation-Maximization (EM) method for
semantic image segmentation model trained on the bounding
boxes annotations and obtained competitive results. Dai et
al. [16] proposed a CNN model trained on bounding boxes
of automatically generated region proposals. Khoreva et al.
[13] proposed to train with bounding boxes for semantic and
instance segmentation. With the relatively accurate annotations
and powerful model, they achieved the state-of-the-art results
in weakly supervised semantic segmentation. Lin et al. pro-
posed to train a network with scribbles which are the minimum
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(a) Coarse Mask Generation

(b) Coarse Mask Enhancement

(c) Recursive Mask Refinement
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Fig. 2. The main components of the proposed method: (a) coarse mask generation; (b) coarse mask enhancement; and (c) recursive mask refinement.

object-level annotations [15].
Weakly supervised image-level annotation-based meth-

ods: Wei et al. [14] proposed to train the model with image-
level labels by transferring the image classification models into
segmentation model via adversarial training. Hong et al. [12]
proposed to utilize videos collected by web engines, along
with the weakly annotated images to train the models. Taking
the advantages of Generative Adversarial Networks (GANs),
fake images generated by GAN along with some real images
with image-level labels are used to train a segmentation model
by Souly et al. [11]. Hong et al. [21] proposed to train a
segmentation network with some auxiliary segmentation an-
notations for different categories and image-level class labels.
Kolesnikov and Lampert [22] proposed a new loss function
for weakly supervised semantic segmentation by constraining
the segmentation to coincide with object boundaries. Qi et al.
proposed to implicitly utilize the stronger supervision to guide
the weakly segmentation model [19]. Wei et al. [23] proposed
to employ dilated convolution to generate reliable object
localization maps. Zhang et al. [24] proposed a decoupled
spatial neural attention network to generate pseudo-annotations
by localizing the discriminative parts of the object region.

B. Foreground Segmentation

The semantic segmentation is a task to discover objects
and assign a pixel-level class label to each pixel, while the
foreground segmentation is a task to discover the generic
objects shown in images and to assign a pixel-level label to
indicate whether the pixel belongs to foreground object or
belong to the background. The only difference between the
two tasks is that the semantic segmentation needs to assign the
semantic labels of objects. Therefore, the networks designed
for semantic segmentation can be easily extended to handle
the foreground segmentation task. Recently, many methods
have also been proposed for the foreground segmentation.
There are three main strategies for generic foreground object
segmentation: joint segmentation-based methods which use

the prior knowledge as the supervision [25], [26], [27], [28],
[29], [30], saliency prediction-based methods which identify
regions likely to capture human attention [31], [32], [33],
[34], and object proposal-based methods which localize all
the objects in images [35], [36], [37]. Jiang et al. proposed to
formulate saliency detection via absorbing Markov chain on
an image graphical model [33]. Zhang and Sclaroff proposed a
boolean map-based model to predict the saliency. Each image
is characterized by a set of binary images, and then saliency
maps are generated by analyzing the topological structure of
these boolean maps [34]. Since low-level cues or priors do not
produce good enough saliency detection, Zhao et al. employed
multi-context deep learning framework to model saliency of
objects in images by utilizing multi-context features [31].
Arbeláez et al. proposed a Multiscale Combinatorial Grouping
(MCG) for bottom-up hierarchical image segmentation and
object candidate generation [35]. Pinheiro et al. proposed
to train a discriminative convolutional neural network with
multiple objectives, while one of them is to generate a class-
agnostic segmentation mask [36]. Jain et al. proposed to train
a fully convolutional neural network, which was originally
designed for semantic segmentation, for the foreground object
segmentation [38].

Different from other image-level based methods that need
multi-category information for each image, we propose a new
coarse-to-fine framework for semantic segmentation by using
images with only one category label and achieves compara-
ble performance with the state-of-the-art weakly supervised
semantic segmentation methods. Furthermore, our framework
can be easily extended to foreground segmentation task and
achieves comparable performance with the state-of-the-art
supervised methods on the Internet Object dataset [25].

III. THE PROPOSED APPROACH

A. Overview

As shown in Fig. 2, our framework contains three main com-
ponents: coarse mask generation, coarse mask enhancement,
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and recursive mask refinement. Firstly, a trained 8-layer CNN
is employed to generate the initial coarse masks for images.
Secondly, a graph-based model is employed to enhance the
quality of the initial coarse masks based on the object prior.
Finally, these enhanced masks together with the input images
and their category labels are used to recursively train a fully
convolution network designed for semantic segmentation.

B. Coarse Mask Generation

The core intuition behind this step is to generate coarse
masks without any class labels. Many methods can generate
the coarse masks such as VideoPCA [39], Non-Local Consen-
sus Voting (NLC) [40], Unsupervised Foreground Segmenta-
tion(UFS) [20], and Unsupervised Object Segmentation (UOS)
[41]. These methods can segment moving objects in videos or
generate saliency maps for images.

Different from other methods that perform unsupervised
object discovery in videos or in collections of images at
testing time [39], [40], [41], the framework in [20] is a
CNN-based network that trained with millions of unlabeled
images and achieves the state-of-the-art in unsupervised object
segmentation. Moreover, the student network, an 8-layer CNN
trained on large scale video frames, in [20] is two orders of
magnitude faster than other previous methods at testing. The
coarse masks can be obtained by applying a standard feed-
forward processing along the network. Therefore, the student
network is employed to generate the coarse masks in our
framework.

However, the generated coarse masks are very noisy and
inaccurate. As shown in Fig. 1, usually there are many holes
and the locations of the masks are inconsistent with the
locations of the objects. The quality of masks is essential to the
performance of the semantic segmentation. Inspired by [13],
[15], a graphical model is employed to enhance the masks to
train the semantic segmentation network.

C. Coarse Mask Enhancement

The semantic segmentation network would have an inferior
performance by directly train on noisy and inaccurate coarse
masks. Therefore, a mask enhancement is conducted before
the recursive training of semantic segmentation network.

Following [13], [15], [20], GrabCut [42] is employed as
an unsupervised mask enhancement technique to improve the
quality of the initial coarse masks. GrabCut is an efficient
interactive foreground/background segmentation method based
on graph cuts [42]. The model employs a Gaussian Mixture
Model to estimate the color distribution of the foreground
objects and that of the background. These distributions are
then used to construct a Markov Random Field over the
pixel labels (i.e. foreground or background). A graph cut-
based optimization method is run to minimizing the energy
function that prefers connected regions having the same label.
By repeating the two-step procedure until it converges, the
enhanced coarse masks are obtained. There are two steps
to apply GrabCut to enhance the coarse masks: (1) finding
the smallest bounding box of the foreground region from the
coarse mask and (2) generating a refined mask based on the

the bounding box and the RGB image. For all the experiments
in the paper, we use the default parameters of GrabCut [42]
which leads to the best quality of masks in our datasets.

Some example images and their corresponding coarse
masks, the enhanced masks are shown in Fig. 2. The location
and shape of the enhanced masks are more accurate and
compact than the coarse masks. These enhanced masks are
used to recursively train the semantic segmentation network.

D. Recursive Mask Refinement

So far for each image, both the generated coarse mask and
enhanced mask are obtained as foreground by unsupervised
learning without semantic category labels. We propose a recur-
sive semantic segmentation network to obtain the pixel-wise
semantic segmentation mask by combining the image category
label with the enhanced coarse mask as the initial semantic
labels for training. Our semantic segmentation network is
trained on a subset of the ImageNet dataset. Since ImageNet
dataset is designed for image classification problem with the
main object usually occupies a large space in the image,
the enhanced coarse masks can cover most part of the main
object. Based on this assumption, the category label of each
image is assigned to all the pixels belong to the foreground
object, and the category for the rest of the pixels is set to
the background. This process is demonstrated in Fig. 3. These
generated enhanced masks are taken as the initial input in the
next training round of our recursive semantic segmentation
network.

We choose DeepLab [2] as the semantic segmentation
network due to its practical merit and effectiveness. By using
the atrous convolution to increase the receptive field of neu-
rons, employing the atrous spatial pyramid pooling (ASPP) to
consider the objects at multiple scales, and using the Fully
Connected CRF to improve the localization performance of
object boundaries, Deeplab achieved the state-of-the-art in
semantic segmentation benchmarks. At the end of the first
training round, we obtain a semantic segmentation model that
can be applied to any image to predict the semantic mask.
Since the quality of the enhanced masks is low and the model
can hardly reach its capacity just in one training round, we
propose to recursively train the network to continue to refine
the semantic masks by taking the output masks from the last
training round as the input masks of the current training round.
This process repeats for several iterations until the network
converges. Some example images and their corresponding
masks after each training round can be found in Fig. 5. We
only keep the pixels have the same category as the image as
the new mask, the category of the rest of the pixels is set to
background. Then GrabCut is applied on this new mask to
enhance it based on the object prior. Finally, these enhanced
masks are used as the semantic labels to continue to train the
network.

When the training finished, we obtain the segmentation net-
work that can segment the interested category out for any given
image. In the training phase of the semantic segmentation
model, the only annotation needed is the image-level labels
which designed for image classification. Also, no human-
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Fig. 3. The process of semantic mask generation. The training mask is obtained by assigning the image category to the foreground pixels in the enhanced
masks. The training mask is then used to train DeepLab. The Round 2 image is obtained by applying DeepLab which is trained with the training masks on
original RGB images. At each training round, even trained with noisy masks, the network can automatically learn to generate better masks which can be used
to further training the network. With the recursive training, our network can finally generate high-quality segmentation masks.

made labels are needed to train the student network in [20].
Therefore, our method is complete weakly supervised.

E. Model Parametrization

Algorithm 1 illustrates the overall training process including
the coarse mask generation, the coarse mask enhancement,
and the recursive mask refinement. Let img denotes training
images from ImageNet dataset in which each image is paired
with one category label, maskc denotes the coarse masks
generated by applying the unsupervised learned student model
on RGB images from ImageNet [20], mske denotes the
enhanced masks by applying GrabCut over the coarse masks,
maskr denotes the refined masks generated by our DeepLab
model which is trained with the enhanced masks.

Algorithm 1 Coarse-to-fine Semantic Segmentation
Input: img: images from ImageNet for training;

1: Generate maskc from img with an unsupervised learned network
2: Generate enhanced mask mske from mskc by applying GrabCut
3: for each refinement round r = 1 to R do
4: Train DeepLab [2] with the enhanced mask maske
5: Generate refined masks maskr from img with the trained

DeepLab
6: Generate the updated enhanced mask maske from maskr

by applying GrabCut
7: end for

Output: Final refined masks maskr

After the recursive training finished, the network can gen-
erate high-quality semantic segmentation masks.

F. Extend the Proposed Framework to Foreground Segmenta-
tion

In order to demonstrate the generalization of the proposed
framework, we further extend it for foreground segmentation
task. Compared to the semantic segmentation which needs to
recognize the category of each pixel, the general foreground
object segmentation only needs to identify whether the pixel
belongs to foreground objects or not. Therefore, by only
replacing the network in the ”recursive mask refinement”
step with the network that designed for foreground object
segmentation, our framework can be applied to foreground
segmentation task.

Inspired by dilated convolution and multi-scale feature
learning, we propose the Dilated Feature Pyramid Network
(DFPN) for foreground segmentation task as shown in Fig. 4.
The proposed DFPN has the same architecture as FPN [43]
except adding the dilated convolution layers for three branches
to enlarge the receptive field of the network. Each branch
contains three dilated convolution layers with different dilated
rates. The dilated features of three branches are then aggre-
gated and concatenated together to make the prediction.

Fig. 4. The network of our proposed Dilated Feature Pyramid Network
(DFPN) for foreground object segmentation. The dilated convolution layers
enlarge the receptive field of the network and can significantly improve the
performance of foreground segmentation.

IV. EXPERIMENTS

To evaluate our proposed framework, we conduct several
experiments including the impact of quality of masks, the
effect of the number of training round, and compared with
others work. All our experiments are trained on the subset of
the ImageNet dataset with only category labels and evaluated
on the PASCAL VOC dataset with the same set of parameters.

A. Datasets

ImageNet: ImageNet is an image collection organized
according to the WordNet hierarchy, described by multiple
words or word phrase, is called a “synonym set” or “synset”,
each expressing one concept. There are more than 100, 000
synsets in WordNet. The ImageNet aims to provide an average
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Fig. 5. Example semantic segmentation results from coarse to fine. As shown in the last three rows, our model can obtain the semantic masks for multiple
category objects appear in the same image even though only one image category label is available in the training data. It shows that the neural network has
the ability to learn to recognize multiple categories of objects in images when trained with images only have one category label. Different colors within one
image mask represent different category objects.

of 1, 000 images to illustrate each synset, which is quality-
controlled and human annotated with image-level labels. The
list of the synsets used in the experiments can be found in the
supplementary material.

VOC: The semantic segmentation network is evaluated on
the PASCAL VOC 2012 segmentation benchmark dataset [5]
containing 21 object categories including the background. The
dataset is split into three subsets: 1, 464 images for training,
1, 449 images for validation and 1, 456 images for testing.
For a fair comparison with other weakly supervised image-
level based state-of-the-art semantic segmentation methods
[14], [16], [19], [22], [44], we use the same validation and
test datasets to as others to obtain the segmentation results.
Since the ground truth masks for the VOC testing dataset is

not released, the testing accuracy is obtained by submitting the
predicted results to the PASCAL VOC evaluation server. Each
class in VOC dataset is related to at least one fine-grained class
in ImageNet. We select the categories in ImageNet dataset
that are closest to the 20 categories in the VOC dataset as
the training dataset. Take the car as an example, there are
6 classes of images related to the car in ImageNet dataset
which are racing car, car mirror, carriage, wagon, freight car,
dodgem. We only select the images under racing car and
wagon categories as the training data since they are more
similar to the cars in VOC dataset.

Two datasets are collected from ImageNet dataset as the
training data for our networks: ImageNet-Sub1 and ImageNet-
Sub2. The ImageNet-Sub1 consists of 38, 000 images that are
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selected purely based on the names of the categories. Since
the ImageNet-Sub1 is collected only by using the category
name, images of one category have very large variations. For
example, the aeroplane class in ImageNet dataset has many
images of various propeller and many of them are not even
from aeroplane. However, in the VOC dataset the aeroplane
is only about aircraft. Therefore, ImageNet-Sub2 dataset (con-
sists of 9, 000 images) is formed by removing images that are
unrelated to VOC categories from the ImageNet-Sub1 dataset.

MIT Object Discovery Dataset: The foreground object
segmentation network is evaluated on the MIT Object Dis-
covery Dataset which contains 2, 488 images belonging to
three categories of foreground objects: Airplanes, Cars, and
Horses. The images in this dataset were collected from Internet
search, and each image is annotated with pixel-level labels
for the evaluation purpose. This dataset is most widely used
for evaluating weakly supervised foreground segmentation
methods. For a fair comparison with other weakly supervised
methods [38], the performance on the same test set and a
subtest set of this dataset are reported and compared with
others.

Fig. 6. The performance of semantic segmentation with and without GrabCut
on the validation split of PASCAL VOC dataset. The mask refinement process
can significantly improve the performance.

B. Training Details for Recursive Mask Refinement

We use mini-batch Stochastic Gradient Descent (SGD)
with a batch size of 12 images. The learning rate is set to
0.00025, momentum to 0.9, and weight decay to 0.0005. This
network is trained with images from our collected subset of
the ImageNet. The refined masks of each image are generated
by our recursive semantic segmentation network followed by
GrabCut [42] process. Training is completed for 5 training
rounds and the masks are updated at the end of each training
round. During training, random crop and resize are applied
for data augmentation. Specifically, each image is resized to
321 × 321, then random cropped to the size of 256 × 256.
The results in Table II and Table IV are obtained by training
networks on ImageNet-Sub2 dataset and testing on VOC
dataset, while the rests are obtained by training networks on
ImageNet-Sub1 dataset and testing on VOC dataset. For all
the experiments, we use the non-foreground regions within
these images as the background in the training phase. The

TABLE I
The performance of semantic segmentation networks trained with four kinds
of masks evaluated in the validation split of PASCAL VOC dataset in mean

IOU.

Training Mask Type IOU (%)

Coarse Masks 32.5
Bounding Boxes 35.2
Enhanced Masks 47.7
Refined Masks 50.4

ResNet101 is used as the backbone for both the semantic
segmentation and foreground segmentation networks.

C. Evaluation Metrics

Following others [11], [12] [13], [16], [17], Intersection over
Union (IOU) which is averaged across 21 categories (20 for
objects and one for background) are computed to evaluate
the performance for the semantic segmentation. We conduct
experiments on the validation split to guide our experiment
design. Final results are reported and compared with other
methods on the test split of PASCAL VOC dataset. For the
foreground object segmentation task, the IOU of the predicted
binary mask of the foreground object and the ground truth
mask is calculated and compared with the state-of-the-art
methods.

D. Semantic Segmentation Results

1) Impact of the mask quality.: To evaluate the impact of
the quality of the mask to the performance, we compare the
mean IOU of DeepLabs trained with four kinds of masks:
coarse masks, enhanced masks, bounding boxes of enhanced
masks, and refined masks at the end of the first training round.
During the training, these masks are taken as the semantic
labeled masks. These experiments are only for evaluating the
impact of the quality of masks on the performance, we do not
recursively train the models in these experiments.

As shown in Table I, among all the methods, the network
trained with coarse masks has the worst performance due to
the very low mask quality (many holes and inaccurate). By
applying the enhancement with GrabCut, the IOU improves
15.2% which comes from the quality improvement. This
demonstrates the importance of the quality of masks and the
effectiveness of enhancement. The mean IOU of bounding
box method is 2.7% higher than that of using the coarse
masks. This is probably because the enhanced masks are more
compact than the coarse masks, and the locations are aligned
more closely to the objects. The performance of refined masks
is 2.7% higher than that of the network trained on the enhanced
masks. This validates our idea that the network can refine
the masks from coarse to fine. Based on this observation, we
recursively train the semantic segmentation network to refine
the masks.

2) Effectiveness of recursive refinement.: To evaluate the
effectiveness of the recursive refinement, we recursively train
the models with the two kinds of masks respectively: with and
without GrabCut post-processing. At each training round, the
masks are updated with the processed output of the network
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TABLE II
Comparison of weakly-supervised semantic segmentation methods on

PASCAL VOC 2012 test and validation dataset. (* indicates the methods
implicitly use pixel-level or other supervisions.)

Methods mIoU (val) mIoU (test)

Supervision: Bounding Box
WSSL (ICCV 2015) [17] 60.6 62.2
BoxSup (ICCV 2015) [16] 62.0 64.2
SDI (CVPR 2017) [13] 65.7 67.5

Supervision: Scribbles
Scribblesup (CVPR 2016) [15] 63.1 —

Supervision: Spot
1 Point (ECCV 2016) [18] 46.1 —
Scribblesup (CVPR 2016) [15] 51.6 —

Supervision: Image-level Labels
MIL-seg* (CVPR 2015) [45] 42.0 40.6
TransferNet* (CVPR 2016) [21] 52.1 51.2
AF-MCG* (ECCV 2016) [19] 54.3 55.5
WSSS* (CVPR 2017) [12] 58.1 58.7

MIL-FCN (ICLR 2015) [46] 25.7 24.9
CCNN (ICCV 2015) [47] 35.3 35.6
MIL-sppxl (CVPR 2015) [45] 36.6 35.8
MIL-bb (CVPR 2015) [45] 37.8 37.0
EM-Adapt (ICCV 2015) [17] 38.2 39.6
DCSM (ECCV 2016) [48] 44.1 45.1
BFBP (ECCV 2016) [44] 46.6 48.0
STC (PAMI 2017) [49] 49.8 51.2
SEC (ECCV 2016) [22] 50.7 51.7
AF-SS (ECCV 2016) [19] 52.6 52.7
WebSeg (CVPR 2017) [50] 53.4 55.3
AE-PSL (CVPR 2017) [14] 55.0 55.7
WebCoSeg (BMVC 2017) [51] 56.4 56.9
DSNA (Arxiv 2018) [24] 58.2 60.1
MDC (CVPR 2018) [23] 60.4 60.8
MCOF (CVPR 2018) [52] 60.3 61.2
DSRG (CVPR 2018) [53] 61.4 63.2
AffinityNet (CVPR 2018) [54] 61.7 63.7
Boostrap(CVPR 2018) [55] 63.0 63.9
Ours 61.9 62.8

from the last round. Between each training round, the masks
are improved by a post-processing with three strategies: a) If
less than 1% pixels or more than 80% pixels are foreground,
then this image would not be used to train the network in
next training round. b) Since one image has only one label,
if network predicts multiple categories for an image, only the
pixels belonging to the original category would be valid, all
other pixels would be set as background. c) For the recursive
training, the GrabCut is applied on the predicted masks by
DeepLab to refine the masks. At the end of each training
round, the network predicts the masks of all the training
images, then the three strategies are applied on all the predicted
masks to update the masks.

Fig. 6 shows the importance of recursive refinement. The
performance of all the networks improves as the training round
increase and saturates after 3 or 4 training rounds. Fig. 6 also
shows that the performance of recursive training with different
quality of masks: 1) by directly using the last round masks
without any post-processing, and 2) by applying Grabcut on
the last round masks. With GrabCut as the post-processing,
the performance is better than directly using the masks from
the last round due to the error propagation. This phenomenon
is consistent with the experiment in [13].

3) Comparison with others.: The performance of compari-
son on PASCAL VOC 2012 validation and test split is shown
in Table II. Based on the level of annotations, these methods
fall into two categories: object-level annotation-based meth-
ods and image-level annotation-based methods. The methods
trained with accurate annotation of bounding box or spot for
each object belong to the object-level annotation-based meth-
ods. Since the object-level annotations are more accurate and
comprehensive than image-level annotations, these methods
usually have better performance. For example, the methods
trained with accurate bounding boxes have performance more
than 60% IOU, while most of the methods with image-level
labels have the performance less than 60%. Some image-level
based methods implicitly use pixel-level supervision in their
models such as [19], [21], therefore their models can achieve
relatively higher performance than those only using image-
level labels.

Our method only uses the image-level annotations and
achieves 61.9% on the validation split and 62.8% on the test
split of Pascal VOC dataset. However, most of the image-
level annotation-based methods are trained on PASCAL VOC
dataset with accurate category label, while each image has
multiple labels (see the examples of categories of Bird and
Horse in Fig. 5). Trained only with simple and inaccurate
category label annotations, our model outperforms most of
the image-level based methods.

In addition to the final mean IOU result, we compute the
per-class IOU as listed in Table III and the confusion matrix
of our model as shown in Fig. 7. Our model can accurately
classify the pixels of most categories such as Aeroplane,
Bird, Horse, Train, and Sheep, but has more errors in several
categories including Bicycle, Chair, and Plant. For example,
the pixel accuracy for Bird, Sheep, and Train categories is
more than 80%. This demonstrates the effectiveness of the
proposed method.

E. Qualitative Results

The recursive training the semantic segmentation network
is a process of mask refinement. The coarse masks of training
data are recursively refined by the semantic segmentation
network. Some qualitative results of masks at different round
are shown in Figs 5. Each image has only one category in the
dataset. However, the trained semantic segmentation network
can identify multi-categories in the training image. As shown
in Fig. 5, the categories of Bird and Horse, with only one
category label for each image, the final semantic segmentation
masks can distinguish the birds and the chair, and the horse
from persons.

The qualitative results on PASCAL VOC dataset are shown
in Fig. 8. Even though the coarse masks are very noisy, our
network can predict the final pixel-wise semantic masks with
only one category label available for each image. However,
the results show that our network can handle images contain
multi-category objects. There are objects belonging to multi-
categories, but our trained model can distinguish the pixels of
different categories (e.g. The first two rows in Fig. 8).
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TABLE III
Per-class results on PASCAL VOC 2012 validation and test set.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU
Val 77.1 25.9 75.3 59.8 62.3 80.2 73.9 79.7 16.9 70.7 32.5 73.1 72.2 67.8 69.2 45.0 72.6 42.6 72.3 41.9 61.9
Test 74.2 29.6 81.7 53.2 58.1 75.4 73.6 80.2 18.1 71.3 40.8 75.7 76.1 72.8 67.7 51.5 74.4 47.7 67.4 39.7 62.8

TABLE IV
Quantitative results of foreground segmentation on MIT Object Discovery dataset. Our proposed weakly supervised method achieves comparable
performance as several state-of-the-art supervised methods. “*” indicates the method uses pixel-level annotations. “N/A” stands for not available.

Methods MIT dataset (subset) MIT dataset (full)
Airplane Car Horse Average Airplane Car Horse Average

# Images 82 89 93 N/A 470 1208 810 N/A
DiscrCoseg [26] 15.36 37.15 30.16 27.56 N/A N/A N/A N/A

MCoSeg [27] 11.72 35.15 29.53 25.47 N/A N/A N/A N/A
CoSegmentation [28] 7.9 0.04 6.43 4.79 N/A N/A N/A N/A

MITObject [25] 55.81 64.42 51.65 57.26 55.62 63.35 53.88 57.62
EVK [29] 54.62 69.2 44.46 56.09 60.87 62.74 60.23 61.28

ActiveSeg [30] 58.65 66.47 53.57 59.56 62.27 65.3 55.41 60.99
MarkovChain [33] 37.22 55.22 47.02 46.49 41.52 54.34 49.67 48.51
BooleanMap [34] 51.84 46.61 39.52 45.99 54.09 47.38 44.12 48.53

DeepMC [31] 41.75 59.16 39.34 46.75 42.84 58.13 41.85 47.61
DeepSaliency [32] 69.11 83.48 57.61 70.07 69.11 83.48 67.26 73.28

MCG [35] 32.02 54.21 37.85 40.27 35.32 52.98 40.44 42.91
DeepMask [36] 71.81 67.01 58.80 65.87 68.89 65.4 62.61 65.63

SalObj [37] 53.91 58.03 47.42 53.12 55.31 55.83 49.13 53.42
UnsupervisedSeg [20] 61.37 70.52 55.09 62.32 N/A N/A N/A N/A
PixelObjectness* [38] 66.43 85.07 60.85 70.78 66.18 84.80 64.90 71.96

FPN-Baseline 61.09 76.22 57.89 65.06 61.93 75.94 64.03 67.3
DFPN (Ours) 64.92 77.60 60.36 67.63 (+2.57) 65.88 77.07 65.82 69.59 (+2.29)

F. Foreground Segmentation Results

The performance comparison on the test split of the MIT
Object Discovery dataset [25] is shown in Table IV. Following
[38], our proposed method is compared with 14 existing
state-of-the-art methods belonging to three categories: Joint
Segmentation-based methods [25], [26], [27], [28], [29], [30],
saliency detection-based methods [31], [32], [33], [34], and
object proposal-based methods [35], [36], [37], [38]. With
the dilated convolution modules to enlarge receptive fields,
the proposed DFPN significantly improves the performance
by around (2.5%) for foreground segmentation task on MIT
Object Discovery dataset. Trained with noisy masks, our
proposed method achieves comparable performance as the
state-of-the-art methods including the models trained with
accurate pixel-level human-labeled masks.

Among all the methods, the performance of Unsupervised-
Seg [20] and PixelObjectness [38] are most close to our
method. The network in UnsupervisedSeg is trained with
masks generated by an unsupervised method. Our model
outperforms UnsupervisedSeg by 5.28% on the MIT Object
Discovery dataset [25]. The PixelObjectness is a supervised
method in which a fully convolutional neural network is
trained with accurate human-annotated masks to predict the
masks. However, even trained with noisy masks, our proposed
method achieves 69.9% which is only 2.06% lower than the
supervised method.

V. CONCLUSIONS

We have proposed a novel coarse-to-fine semantic segmen-
tation framework that can be trained from only image-level
category labels and then iteratively refine the segmentation

masks to pixel-wise level. The initial coarse mask is gen-
erated by a convolution neural network-based unsupervised
foreground detection. Then a fully convolution neural network
is recursively trained to continue to refine the masks. Finally,
the final semantic segmentation mask is predicted by only use
the simple image category label annotation. Our framework
can handle images contains multiple categories of objects.
With only trained on ImageNet, our framework achieves com-
parable performance on PASCAL VOC dataset as other image-
level label-based state-of-the-arts of semantic segmentation
and achieves comparable performance with the state-of-the-
art supervised methods for the foreground object segmentation
task.
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