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Self-Guiding Multimodal LSTM - when we do not
have a perfect training dataset for image captioning

Yang Xian, Member, IEEE, and Yingli Tian, Fellow, IEEE

Abstract—In this paper, a self-guiding multimodal LSTM
(sgLSTM) image captioning model is proposed to handle uncon-
trolled imbalanced real-world image-sentence dataset. We collect
FlickrNYC dataset from Flickr as our testbed with 306, 165
images and the original text descriptions uploaded by the users
are utilized as the ground truth for training. Descriptions in
FlickrNYC dataset vary dramatically ranging from short term-
descriptions to long paragraph-descriptions and can describe any
visual aspects, or even refer to objects that are not depicted.
To deal with the imbalanced and noisy situation and to fully
explore the dataset itself, we propose a novel guiding textual
feature extracted utilizing a multimodal LSTM (mLSTM) model.
Training of mLSTM is based on the portion of data in which the
image content and the corresponding descriptions are strongly
bonded. Afterwards, during the training of sgLSTM on the rest
training data, this guiding information serves as additional input
to the network along with the image representations and the
ground-truth descriptions. By integrating these input components
into a multimodal block, we aim to form a training scheme with
the textual information tightly coupled with the image content.
The experimental results demonstrate that the proposed sgLSTM
model outperforms the traditional state-of-the-art multimodal
RNN captioning framework in successfully describing the key
components of the input images.

Index Terms—image captioning, self-guiding, real-world
dataset, multimodal, recurrent neural network.

I. INTRODUCTION

In the recent popularized language-vision community, image
captioning has been an important task. It involves generating
a textual description that describes an image by analyzing its
visual content. Automatic image captioning is able to assist
solving computer vision challenges including image retrieval,
image understanding, object recognition, navigation for the
blind, and many others.

Although image captioning is a natural task for human
beings, it remains challenging from a computer vision point
of view especially due to the fact that the task itself is
ambiguous. There are countless ways to describe one input
image, from high-level descriptions to explanations in details,
while all are semantically correct. The fundamental cause is
that in principle, descriptions of an image can talk about any
visual aspects in it varying from object attributes to scene
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Fig. 1. Example of the description generated by the proposed sgLSTM image
captioning framework compared with the result generated by the traditional
multimodal RNN. Both frameworks are trained with FlickrNYC - a new
dataset proposed in this paper.

features, or even refer to objects that are not depicted and the
hidden interaction or connection that requires common sense
knowledge to analyze [1].

In general, image captioning is a data-driven task. Descrip-
tions for query images are normally defined by the training
data. Therefore, it is not uncommon to see the birth of a
new dataset for a new task. Recently, Amazon Mechanical
Turk (AMT) is involved in more and more dataset description
generation process. Different sets of descriptions may be gen-
erated depending on the instructions provided to fit a specific
captioning task. Since it is an expensive process, majority of
the image captioning frameworks focus on exploring existing
datasets which tend to provide a sentence description embed-
ded with the objects, attributes, and the reactions with the
scene in the image. Some other frameworks tackle the problem
from a different angle, such as unambiguous descriptions [2],
image stream descriptions [3], etc.

In this paper, we work with FlickrNYC - an image-sentence
dataset collected directly from Flickr. The original descriptions
provided by the users are utilized as the training data. Flickr
data has been widely used in the dataset collection [4], [5],
[6] due to its availability of billions of images. However, the
descriptions provided by the users are rarely used for caption-
ing purpose directly due to several characteristics of the Flickr
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text data: 1) Lengths of the descriptions vary dramatically for
each image. While some users talk in paragraphs about the
details including the possible background that is not directly
related to the image, others may just describe in a few words
indicating the location or the date information. 2) Users may
input descriptions for an album instead of a photo. Therefore,
we may have multiple images that look visually different
with the same description. 3) Unlike the labeling process
performed by AMT workers, the content of the descriptions is
not strictly controlled semantically or syntactically. Foreign
languages exist along with personal information including
copyright statement, camera information, and links to personal
social media accounts. Existing natural language processing
(NLP) tools provide a limited solution in preparing the training
data. In the end, it becomes tedious to set filtering criteria
or use regular expressions to generate the ‘perfect’ training
dataset.

However, despite all the characteristics listed, Flickr data
meets the criterion for image captioning task - it comes from
millions of users who can describe anything related to the
images they upload. And more importantly, it is a real-world
uncontrolled valuable resource. In this paper, we use ‘new york
city’ as our test case, i.e., ‘new york city’ is employed as the
keyword for the query process, to build FlickrNYC dataset.
As observed in FlickrNYC, descriptions in shorter lengths are
more strongly correlated to the image content and are mainly
related to the locations, events, or activities. They occur more
repetitively compared with longer descriptions, e.g., a user
may uploaded several images related to a walk in central park
and they all have the description as ‘central park’. On the other
hand, descriptions in longer sentences or paragraphs reveal
more syntactical details, but may provide concepts that are
more implicitly related to the images and have a weaker or no
correlation to the image content. Examples in FlickrNYC can
be found in Fig. 2.

In the proposed framework, a self-guiding multimodal long
short-term memory (sgLSTM) framework is presented to
leverage between two portions of the data: datas (images with
shorter length of descriptions) and datal (images with longer
length of descriptions). We aim to make use of the part of the
dataset with more reliable information to guide the training
process of the caption generation. As demonstrated in Fig. 1,
a direct training utilizing the state-of-the-art multimodal RNN
captioning method fails to capture the core event revealed in
the image due to the fact that, FlickrNYC is a noisy real-
world dataset in which we have multiple images labeled as
‘thanksgiving’ but are visually different. Moreover, thanksgiv-
ing celebration is more frequently seen than Chinese New Year
celebration within the training dataset. However, the proposed
framework manages to generate accurate description that is
both semantically and syntactically correct.

Contributions of the proposed framework are threefold:
• A novel image captioning framework is proposed to

deal with the uncontrolled image-sentence dataset where
descriptions could be strongly or weakly correlated to the
image content and in arbitrary lengths. The self-guiding
process looks into the learning process in a global way to
balance the syntactic correctness and the semantic details

revealed in the images. This scheme can be extended to
handle other tasks when we have imperfect training data.

• A new FlickrNYC dataset is introduced with 306, 165
images related to ‘new york city’. Light pre-processing
combining basic NLP tools and regular expression fil-
tering are performed to remove the personal information
including copyright, camera info., URLs, social network
accounts, etc. Different from the majority captioning
datasets, descriptions in FlickrNYC come from the orig-
inal Flickr users.

• Experimental results demonstrate that the proposed guid-
ing textual feature manages to provide additional text in-
formation which strongly correlates to the image content.
Compared with the existing traditional multimodal RNN
captioning framework, the self-guiding scheme is able to
recover more accurate descriptions given an input image.

The rest of the paper is organized as follows: Related work
is discussed in Sec. II. Sec. III provides a detailed description
of the proposed image captioning framework based on self-
guiding multimodal LSTM. The collected dataset including the
experimental results are presented and discussed in Sec. IV.
Conclusions and future work are listed in Sec. V.

II. RELATED WORK

A. Image Captioning

Based on the underlying models utilized, recent image
captioning frameworks can be classified into three categories.
The first group of approaches casts the problem as a retrieval
problem in which description of a test image is generated
by searching for similar images in a database. This group of
models employs the visual space to measure the similarity
during image search. Descriptions of these similar images are
transferred to obtain the target description. [7] utilized the
activations of the last layer of the Visual Geometry Group
convolutional neural network (VGG-CNN) [8] trained on
ImageNet [9] to represent the image features. The description
of the query image is represented as a weighted average of
the distributed representations of the retrieved descriptions.
Different from [7], [10] employed the n-gram overlap F-score
between the descriptions to measure the description similarity.
Other than the deep learning based approaches, traditional
machine learning techniques are also utilized in this task [11].

The second group of methods adopts pre-defined sentence
templates to generate image descriptions. The missing com-
ponents in the sentence structures are filled based on image
understanding of the objects, attributes and the correlations
between objects and the scene. [12] proposed a sentence
generation model which parses a query image into a visual
dependency representation (VDR) which then traversed to
fill the missing slots in the templates. More linguistically
sophisticated approaches [13], [14], [15] were proposed to
tackle the sentence generation.

The third group of approaches integrates image understand-
ing and natural language generation into a unified pipeline.
In general, image content in terms of objects, actions, and
attributes is represented based on a set of visual features.
Later, this content information is utilized to drive a language



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 3

Fig. 2. Sample images and the corresponding descriptions in FlickrNYC dataset. (a) Examples from datas in which images are with short descriptions. (b)
Examples from datal in which images are with long descriptions.

generation system, e.g., a recurrent neural network (RNN),
to output the image descriptions[16], [17]. Some frameworks
model image and text jointly into a multimodal space where
later the joint representation space is used to perform cross-
modal retrieval based on a query image. [18] presented an
alignment model which uses a structured object to align the
two modalities (i.e., CNN over image regions and bidirectional
RNN over sentences) through a multimodal embedding. An
encoder-decoder framework is presented by [19] utilizing a
joint multimodal space in which the LSTM is a big success.
Another represented work in this category is the mRNN
model [20] in which a multimodal component is introduced
to explicitly connect the language model and the vision model
by a one-layer representation.

Within the encoder-decoder design, semantic concepts are
employed in many frameworks. Visual detectors were used to
generate conditional inputs to a maximum-entropy language
model in [21]. Jia et al. [22] modified the LSTM model
to add semantic information extracted from the image as
extra input to each LSTM block. In [16], an algorithm was
introduced which learns to selectively attend to semantic
concept proposals and fuse them into hidden states and outputs
of RNN. Liu et al. [23] proposed to use a semantically
regularized embedding layer as the interface between CNN
and RNN. Detected semantic concepts was directly utilized
to generate image captions in [24]. Semantic compositional
network (SCN) was proposed in [17] which detects semantic
concepts from the image and uses the propability of each
semantic concept to compose the parameters in a LSTM
network.

With image captioning being a thriving topic, it is driven
by the technical trials and improvements in both computer
vision and NLP, and also importantly, the availability of

relevant datasets. Other than the traditional image captioning
task, efforts have been made to special captioning tasks.
[25] modified mRNN to address the task of learning novel
visual concepts. In [26], a hierarchical multimodal LSTM
was proposed which jointly learns the embeddings of all
sentences, phrases, images and image regions. Compared
with mRNN, this hierarchical structure allows it to learn a
dense embedding space and explicitly exploit the relations
among ‘parent’ and ‘children’ image regions and phrases. [27]
incorporated unpaired image data with labeling and unpaired
text data to address the concept limitations in the image-
sentence paired dataset. Similarly, [28] proposed the Novel
Object Captioner (NOC) to describe object categories that are
not present in the existing image-sentence datasets. ‘Referring
expression’ was explored in [2], [29] to generate unambiguous
descriptions. [3] presented a coherence recurrent convolutional
network (CRCN) to describe an image stream in a storytelling
manner utilizing blog data. Later, the authors brought up the
personalized image captioning framework counting in users’
vocabulary in previous documents [30]. A fill-in-the-blank
image captioning task was introduced by [31].

The proposed sgLSTM captioning framework falls into
the third category. A multimodal component is utilized to
connect the visual and the textual spaces. Different from the
existing methods, a novel guiding textual feature is proposed
to emphasize the correlation between the description and
the image content. The guiding text is extracted through a
separate mLSTM model and serves as an additional input to
the multimodal component.

B. Datasets

Due to the rising interest in image captioning task, a number
of datasets have been brought up varying in sizes, formats
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of the descriptions, and the collection process. One of the
earliest benchmark datasets - Pascal1K [32] was proposed
which consists of 1, 000 images selected from Pascal 2008
object recognition dataset [33]. Each image is associated with
five sentence descriptions generated by AMT.

Later, based on Pascal 2010 action recognition dataset, [12]
introduced the Visual and Linguistic Treebank (VLT2K) with
2, 424 images. AMT is again utilized with specific instructions
to generate three, two-sentence descriptions for each image.
Object annotation is available for a small subset of the images
and VDRs are created manually for these images.

The Flickr8K [5] and Flickr30K [6] find their roots on im-
ages from Flickr. Although the images are collected based on
user queries for specific objects or actions, the descriptions are
generated in a manner similar to Pascal1K dataset where AMT
workers provide five captions for each image. The original
titles or descriptions from Flickr are not directly utilized to
generate the captions in these two datasets. On the other hand,
user-provided descriptions are employed in SBU1M [4] which
contains approximately one million captioned images from
Flickr. Strict filtering is applied that the downloaded image
should contain at least one noun and one verb on predefined
control lists.

The MS COCO dataset [34] is widely used recently for
image captioning evaluation with 123, 287 images accompa-
nied by five descriptions per image. Extensions of MS COCO
dataset are available to meet specific needs of various tasks,
e.g., question answering [35], unambiguous descriptions [2],
and text detection and recognition [36]. The Déjà image cap-
tions dataset [37] makes use of the existing web data without
additional human efforts. It consists 4 million images with
180K unique captions where lemmatization and stop word
removal are employed to normalize the captions and create
a corpus of near-identical texts. News images are explored in
[38] and captions written by journalists along with auxiliary
information are utilized to generate image descriptions. In
[39], a large-scale dataset with over 40 million images and
300 million sentences is collected from publicly available Pins
on Pinterest [40].

Although various datasets have been collected recently,
expensive human label under specific instructions or strict fil-
tering is often required especially for large datasets. However,
as mentioned, image descriptions should come in different
degrees of abstraction, i.e., descriptions could be abstract as
in several words or a short term, or as a detailed paragraph
in a storytelling way. FlickrNYC dataset is collected through
the real-world user data, which meets the requirements for
image description naturally and the additional human efforts
for the dataset generation is minimized without NLP-based
normalization.

III. DEEP CAPTIONING VIA SELF-GUIDING MULTIMODAL
LSTM

The successful combination of CNN and RNN, especially
LSTM, has been widely experimented in image captioning
and related tasks. However, as observed by [22], the generated
sentence sometimes is weakly coupled to the provided image

but is strongly correlated to the high frequency sentences in
the training dataset. This is due to the fact that the generated
sentence is “drifted away” during the sequence prediction
process. This problem exists especially for long sentences
where the generation is carried out “almost blindly towards
the end of the sentence”. To address this issue, alternative
extensions have been proposed by adding attention mechanism
[41] and modifying the LSTM cell [22]. However, it is still
challenging with an uncontrolled dataset with descriptions in
arbitrary lengths and abstraction levels.

In this section, we first introduce the basic multimodal
LSTM (mLSTM) image captioning framework which fuses
the information of the input sentences and the correspond-
ing image features in the multimodal component. It works
effectively when the two input sources are strongly bonded.
However, when this is not the case, it is difficult to maintain
the correlation as the sentence generation goes on especially
when the training dataset is not ideal for image captioning
task.

As observed in FlickrNYC dataset, descriptions in shorter
sentences tend to have a stronger bond with the image content
compared with longer descriptions. Although they may not be
syntactically sound to form a sentence, these short descriptions
tend to accurately describe the locations, activities, objects,
or events, as the images were taken. Some examples can be
found in Fig. 2(a) where core information in these images
are conveyed in the corresponding descriptions. On the other
hand, long descriptions are valuable as the users may state
their feelings, reasoning, personal experiences, or objects that
are not depicted in the image. As shown in Fig. 2(b), these
sentences are difficult to reproduce by the AMT workers even
with instructions. However, some descriptions may not be
strongly bonded with the visual content.

In order to generate image captions with adequate details
related to the image content, we separate the data based on the
different characteristics revealed. FlickNYC is divided into two
subsets, datas with descriptions in short sentences or terms,
and datal with descriptions in long sentences or paragraphs
(the length is measured in the number of words. Details of
the data separation can be found in Sec. IV-A). We start by
training a mLSTM captioning model based on datas. This
captioning model aims to extract the key textual information
provided an input image. This key information is later utilized
to guide the training of sgLSTM based on datal to better link
the description to the image content. This guiding information
is represented through a sentence vectorizer and fed as another
input to the multimodal component in sgLSTM.

A. Captioning with mLSTM
To train a caption model with datas, we employ a variation

of mRNN [20] due to its elegance and simplicity. The gated
recurrent unit is replaced with LSTM in the proposed mLSTM
model. The LSTM network [42] has been widely used to
model temporal dynamics in sequences. Compared with the
traditional RNN, it better addresses the issue of exploding
and vanishing gradients. The basic LSTM block consists of
a memory cell which stores the state over time and the gates
which control how to update the state of the cell.



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 5

Fig. 3. Systematic flowchart of the proposed self-guiding multimodal LSTM (sgLSTM) captioning framework. (a) Basic multimodal LSTM (mLSTM)
captioning framework trained on a subset of the FlickrNYC dataset with short descriptions (i.e., datas). wt denotes the t-th word in a sentence with words
ranging from w1 to wT . A start sign wstart and an end sign wend are added to all training instances in both datas and datal. (b) Guiding text feature
(GTF) extraction: to extract the text feature for self-guiding, we generate the descriptions utilizing mLSTM followed by the sentence vectorizer. (c) Illustration
of the sgLSTM architecture. Compared with mLSTM, an additional textual feature is fed to the multimodal block which encodes the language information
connected to the image content. The previous trained mLSTM is used to provide the additional textual feature, i.e., guiding text feature. Figure is best viewed
in color.

As illustrated in Fig. 3(a), mLSTM is composed of a word
embedding layer, an LSTM layer, a multimodal layer, and
a softmax layer. It takes the training images and the corre-
sponding descriptions as inputs. Each word in the sentences
is encoded with one-hot representation before being fed to
mLSTM training. The word embedding layer aims to map the
one-hot vector to a more compact representation as shown in
Eq. 1. Same as [20], we randomly initialize the embedding
layer and learn We during training.

et =We · wt, (1)

where wt stands for the one-hot representation of word at step
t. We is the mapping weight between the one-hot representa-
tion and the word embedding representation et.

There are many LSTM variants. In the proposed mLSTM
model and later in sgLSTM, we adopt LSTM with peepholes
[43] where the memory cell and gates within an LSTM block
are defined as:

it = σ(WicCt−1 +Wihht−1 +Wieet + bi), (2)

ft = σ(WfcCt−1 +Wfhht−1 +Wfeet + bf ), (3)

ot = σ(WocCt +Wohht−1 +Woeet + bo), (4)

Ct = ft � Ct−1 + it � g1(Wchht−1 +Wceet + bc), (5)

ht = ot � Ct, (6)

in which � denotes the element-wise product. σ(·) is the
sigmoid nonlinearity-introduce function. g1(·) is the basic
hyperbolic tangent function. it, ot, ft, Ct, and ht represent
the state values of the input gate, output gate, forget gate, cell
state, and hidden state at step t, respectively. W[·][·] and b[·]

denote the weight matrices and bias vectors for corresponding
gates and states.

The word sequence is fed to the LSTM network by iterating
the recurrence connection as shown in Fig. 3(a). Inception v3
[44] is used to extract the image features. They are connected
with the language inputs though a multimodal component. The
multimodal part fuses the language information represented as
the dense word embedding and the LSTM activation with the
image information represented using CNN as shown below:

mmt = g2(Wi · I +Wd · et +Wl · LSTMt), (7)

where g2(·) is the element-wise scaled hyperbolic tangent
function [45] which leads to a faster training process than the
basic hyperbolic tangent function. Wi, Wd, and Wl indicate the
mapping weights between the image feature/ word embedding/
LSTM layer and the multimodal layer to learn during training.

The mLSTM model is learnt utilizing a log-likelihood cost
function based on perplexity introduced by [20]:

CmLSTM =
1

Nw

Ns∑
i=1

Li · log2 P(w
(i)
1:Li
| I(i)) + λθ · ‖θ‖22, (8)

where P(·) stands for the perplexity of a sentence given the
image which is a standard measure for evaluating language
model. Nw and Ns represent the number of words and the
number of sentences in the training set. Li is the length of the
i-th sentence, and θ denotes the model parameters. λθ is used
to leverage the two terms.

B. Captioning with sgLSTM

In this subsection, we describe in detail the training of
sgLSTM with datal. As mentioned, for some training in-
stances in datal, there is not a strong connection between
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the textual description and the image content. In other words,
additional textual features are needed during training. There-
fore, as presented in Fig. 3(b), we use mLSTM (trained on
datas) to assist the training by connecting it to a sentence
vectorizer. These two components form a guiding textual
feature (GTF) extractor. This guidance feature aims to provide
additional textual information for each training instance in
datal, which tends to emphasize the correlation between the
textual and the visual domains. Compared with the basic
mLSTM architecture, sgLSTM carries additional information
in the multimodal component. Same as the image feature, the
guiding textual features are fed into the multimodal component
on each timestep as auxiliary information. This additional
textual feature implicitly encodes the semantic information
related to the image, such as location, activity, etc.

The sgLSTM architecture is composed of four layers in each
timestep similar to mLSTM. The embedding layer encodes the
one-hot word representation into a dense word representation.
The weights in the embedding layer are learnt from the training
data aiming at encoding the syntactic and semantic meaning of
the words. The word representation after the embedding layer
serves as the input to the LSTM layer. Same as mLSTM,
we adopt a basic LSTM block with peepholes. After this
layer, a multimodal layer is set to connect the CNN-based
image feature, the dense word representation, the recurrent
layer output, and the proposed guiding texture feature. The
activations of these four inputs are mapped to the same
multimodal feature space as the activation of the multimodal
layer:

mm
′

t = g2(W
′

i · I +W
′

d · et +W
′

l · LSTMt +W
′

t · T ), (9)

where W
′

i , W
′

d, W
′

l , and W
′

t represent the corresponding
weighting matrices between the image/ word embedding/
LSTM layer/ guiding text feature and the multimodel
component.

Extraction of Guiding Textual Features:
To generate the guiding textual feature for a certain image,

we first utilize mLSTM trained on datas to output a short
description (i.e., the raw sentence for the guiding textual
feature). Beam search is adopted in the process to avoid the
exhaustive search in the exponential search space. It is widely
used in RNN-based captioning models [3], [20], [22] due to
its efficiency and effectiveness. The top 1 ranked sentence is
selected for further vectorization. Fig. 4 presents examples of
the guiding texts generated by mLSTM trained on datas. The
images are from datal and therefore, the original descriptions
are relatively long. As demonstrated, the guiding texts either
provide core information that is not conveyed in the original
descriptions, e.g., authorship info (jackson pollock), landmark
name (radio city music hall), and season info (snowy day), or
emphasize the key image content buried in long sentences, e.g.,
event (macy’s thanksgiving day parade), and location (grand
central terminal). We also observe some interesting results that
reveal some underneath feelings of the images themselves,
e.g., ‘snow, dirt, love, and loneliness’.

A group of sentence vectorizers are investigated to vectorize
the sentence or term generated by mLSTM. In general, we
adopt the word2vec with fusion scheme, i.e., each word
in the sentence is vectorized and then these word vectors
are combined to produce the final output. Three word2vec
schemes are experimented:

• word2vec-GloVe: we adopt pre-trained GloVe [46], i.e.,
Global Vectors for word representation, as the word
vectorizer. The word vectors are trained through aggre-
gated global word-word co-occurrence statistics from a
corpus combining Wikipedia 2014 and Gigaword 5. Four
different feature dimensions, 50, 100, 200, and 300 are
tested.

• word2vec-NYC: compared with word2vec-GloVe,
word2vec-NYC is a local word vectorizer trained on
the textual data in FlickrNYC. This model is trained
utilizing gensim [47] and a 128-dimensional vector is
generated per word.

• word2vec-short: a word embedding mapping is learnt
when training mLSTM on datas. In this word vectorizer,
the representation after the word embedding layer is em-
ployed directly as to map a word to a 1, 024-dimensional
vector.

After representing each word in vector, two different fusing
methods are investigated:

• Average: an average of all the word vectors in a sentence
is calculated to obtain the final sentence vector.

• TF-IDF: the word vectors are combined using term
frequency-inverse document frequency (TF-IDF) weight-
ing scheme to generate the final representation.

The various vectorization methods look into the mapping
problem from different angles, utilizing a global corpus or
a local dataset, and in different dimensionality. As later
shown in Table II, sgLSTM based on word2vec-GloVe with
TF-IDF weighting under feature dimension 50 (denoted as
sgLSTM-GloVe-tfidf-50) appears to work the best among all
the 12 vectorization schemes (more details can be found in
Sec. IV-C).

Training sgLSTM
Same as mLSTM, a log-likelihood cost function related to

the perplexity is utilized for training sgLSTM as shown in
Eq. (8). Normalization regarding the number of words corrects
the bias over shorter sentences during the caption generation
process, and therefore, is suitable for FlickrNYC with images
in various lengths.

IV. EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed self-guiding
strategy is verified experimentally on FlickrNYC. We start by
a deeper introduction of FlickrNYC dataset followed by the
implementation details of the proposed system. Afterwards,
experimental evaluation results are presented and analyzed.

A. FlickrNYC Dataset

The FlickrNYC dataset is composed of 306, 165 images in
total collected from Flickr with key word ‘new york city’.
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Fig. 4. Examples of the guiding text (marked in red) generated by mLSTM (trained on datas) compared with the original descriptions (marked in blue)
provided by the Flickr users. All 6 images come from datal. The guiding text provides supplementary information that is strongly related to the image
content. Figure is best viewed in color.

More specifically, Flickr search API is employed to crawl
image-description data based on the key word, i.e., photos
whose title, description, or tags contain ‘new york city’ will
be fetched. After capturing the images and their correspond-
ing metadata, each image is accompanied with 1 reference
description provided by the original user. Images without
valid descriptions are discarded. We only perform a light pre-
processing without modifying the sentence structure utilizing
NLTK Toolbox [48], textacy1, and self-defined regular ex-
pressions, to remove unnecessary personal information (e.g.,
URLs, copyright declaration, camera information, personal
social media accounts, advertisements, etc.) since we aim to
keep the syntactic and semantic variety from the real-world
user data.

After the textual pre-processing, the dataset is divided based
on the number of words in the descriptions. Images with
descriptions shorter than 10 form dataset datas with 165, 374
images for training and 1, 000 for testing. The rest 139, 791
images form datal in which 137, 791 is used for training,
1, 000 for validation and 1, 000 for testing. Table I provides
the statistics of distributions based on the description lengths in
FlickrNYC. Sample images and the corresponding descriptions
can be found in Fig. 2.

Different from the traditional way to create the vocabu-
lary which removes all words that contain non-alphanumeric
characters or even non-alphabetic characters, the vocabulary

1http://textacy.readthedocs.io/en/latest/index.html

TABLE I
STATISTICS OF IMAGE DISTRIBUTION BASED ON THE DESCRIPTION

LENGTHS IN FLICKRNYC DATASET.

sentence length 1− 5 6− 10 11− 15 16− 25 ≥ 26
num of instances 94, 180 85, 691 45, 291 37, 108 43, 895

build-up process for FlickrNYC is tricky: 1) Since the dataset
is based upon New York city in which multiple landmark
names contain combinations of alphanumeric characters (e.g.
‘5th avenue’ or informally ‘5 ave’ in some descriptions),
therefore, numeric and alphanumeric words should not be
eliminated in the vocabulary. Moreover, words that contain or
are connected by punctuations should also be considered, e.g.,
‘Macy’s’, ‘it’s’, ‘let’s’, ‘sight-seeing’, ’African-Americans’,
etc. 2) Although one image is accompanied by one description,
the description is not restricted to one sentence. As observed,
some descriptions can be long containing multiple sentences.
To better model the continuity of a paragraph of sentences,
punctuations such as ‘ , ’, ‘ . ’, ‘ ! ’, and ‘ ? ’ should be
considered as part of the vocabulary list. 3) FlickrNYC utilizes
uncontrolled real-world text data, which indicates that the
usage of words can be informal. However, we find sometimes
this informality is valuable since it reveals the emotions of the
users, such as Emoticons (‘ :-) ’, ‘ :-P ’, etc.) and exaggerated
expressions (‘soooo’, ‘superrrr’, etc.). Therefore, in order to
keep all the information mentioned above, after tokenization
and converted to lowercase, words that appear at least 3 times

http://textacy.readthedocs.io/en/latest/index.html
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in the training set are kept to create the vocabulary2. The final
vocabulary size is 22, 230.

B. Implementation Details

The proposed framework is built upon mRNN3 with Ten-
sorFlow [50]. The inception v3 [44] pretrained on ImageNet
[9] is used to compute CNN features as image representation.
Feature dimension for this image representation is 2, 048. In
both mLSTM and sgLSTM, the word embedding layer is with
1, 024 dimension. The LSTM layer and the multimodal layer
are with 2, 048 dimensions. We assign 0.5 dropout rate to all
three layers.

Both mLSTM and sgLSTM models are trained with RM-
SProp optimizer [51]. We apply the stochastic gradient descent
(SGD) with mini-batches of 64. The beam search size is
set to be 3. The top ranked sentence generated by mLSTM
based on training data in datas is utilized for guiding textual
feature extraction. As mentioned, three word2vec schemes are
tested, i.e., word2vec-GloVe, word2vec-NYC, and word2vec-
short. Four different sets of pre-trained word vectors are tested
for word2vec-GloVe with dimensions 50, 100, 200, and 300.
Dimensions for word2vec-NYC and word2vec-short based
representations are 128 and 1, 024, respectively.

C. Experimental Evaluations

In order to select the best vectorization scheme for the
guiding textual feature, certain objective criterion is needed to
evaluate each scheme. Popular evaluation metrics for image
captioning tasks include BLEU [52] (BLEU@1, 2, 3, 4), ME-
TEOR [53], ROUGE-L [54], and CIDEr [55]. However, none
of the criteria listed is a perfect metric for the evaluation task
in our case since the ground-truth descriptions in FlickrNYC
dataset are noisy. An example can be found in the bottom left
image in Fig. 5 in which the original description is ‘december
6th’. On the other hand, the proposed sgLSTM framework
outputs description ‘boaters on the lake in central park near
the bow bridge’ which is a much better description compared
with the original one given the image content. However, this
superiority will not be reflected in the numerical metrics listed
above.

Despite the challenges in evaluating the vectorization
schemes in the proposed framework, there still exists a large
portion of data in FlickrNYC which suits ‘perfectly’ for cap-
tioning task. Therefore, a small validation dataset is separated
from datal and utilized to evaluate the 12 different vector-
ization schemes. Among the various GloVe-based approaches,
there is no clear correlation between the size of the feature
dimensions and the numerical results. TF-IDF fusing achieves
better performance for some dimensions, but not always.
Based on the experimental results, sgLSTM-GloVe-tfidf-50
achieves the best performance quantitatively. Thus we adopt
sgLSTM based on word2GloVe in TF-IDF weighting with
dimension 50 as the final setting and all the results reported
in this paper are based on this setting unless stated otherwise.

2If a word only contains alphabetic characters, we employ WordNet [49]
to rule out typos and non-English words.

3https://github.com/mjhucla/TF-mRNN

Table II presents the numerical results based on 1, 000
testing images in datal. The proposed sgLSTM framework
is compared with mRNN [20], mLSTM, and among different
vectorization settings. The results of the top 4 performers in
the previous verification step are included in this table. mRNN
is trained based on all the training data in FlickrNYC (i.e.,
datas and datal) utilizing the source code 4 provided by the
authors. We use all the default settings used in the original
paper. mLSTM-long represents the mLSTM captioning model
trained on datal which shares the similar limitations as mRNN
due to the lack of correlation between the images and descrip-
tions in the training data. As shown in Table II, sgLSTM-
GloVe-tfidf-50 gives the best performance numerically almost
among all the evaluated methods, which is consistent with our
observation in the verification step.

The zero numbers shown in Table II for mRNN might be
better explained by looking into the results in Fig. 5. A direct
training over the whole dataset tends to put a preference into
high frequency sentences in the training dataset, which may be
unrelated to the test image itself. Therefore, when it comes to
numerical evaluations, a total miss of the core concept in the
image content leads to a low score. On the other hand, by in-
tegrating the guiding textual features into the training process,
the proposed sgLSTM model manages to generate accurate
descriptions related to the image content, and sometimes, the
generated descriptions are more meaningful than the original
ones provided by the Flickr users as demonstrated in Fig. 5.

To confirm the proper sizes of the LSTM layer and the
multimodal layer are selected, additional experiments are
conducted by varying the sizes of these two layers. As shown
in Table III, these additional networks are represented as
sgLSTM-A-B where A indicates the size of the LSTM layer
and B represents the multimodal layer size. All the networks
are based on word2vec-GloVe with TF-IDF weighting scheme
under feature dimension 50. As demonstrated, sgLSTM-2048-
2048 (i.e., the final setting adopted in this paper) achieves the
best performance.

Fig. 6 provides more examples by comparing the results
generated by the proposed framework with the original
descriptions provided by the Flickr users. Our sgLSTM
model accurately generates descriptions that are closely
related to the image content and successfully recovers key
image features (e.g., weather, objects, activities) and the
landmarks. In Fig. 7, several results are presented that could
be further improved. Additional preprocessing steps could
be performed before the training to remove terms such as
‘more on blog’ as shown in the figure. NLP techniques can
be applied in avoiding a repetitive pattern shown in the ‘bear’
example. For certain cases, solely based on image content,
it is difficult to generate accurate descriptions even for New
Yorkers - as to differentiate between ‘sunset’ and ‘sunrise’,
‘brooklyn’ and ‘bronx’, or to decide the name of a certain
building with little information - to that extent, it would be
better to remove the ambiguous information that cannot be
predicted based on the image content in the final description.

4https://github.com/mjhucla/TF-mRNN

https://github.com/mjhucla/TF-mRNN
https://github.com/mjhucla/TF-mRNN
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TABLE II
NUMERICAL RESULTS OF THE PROPOSED FRAMEWORK COMPARED WITH OTHER METHODS BASED ON THE TESTING IMAGES IN datal .

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

mRNN [20] 0.036 0.019 0.000 0.000 0.021 0.084 0.003
mLSTM-long 0.310 0.257 0.216 0.169 0.145 0.244 0.696
sgLSTM-NYC-ave 0.237 0.194 0.160 0.133 0.122 0.198 1.270
sgLSTM-GloVe-tfidf-50 0.417 0.381 0.359 0.339 0.211 0.365 1.010
sgLSTM-Glove-ave-200 0.426 0.364 0.333 0.308 0.190 0.342 2.384
sgLSTM-GloVe-tfidf-300 0.281 0.279 0.278 0.276 0.154 0.248 0.177

Fig. 5. Descriptions generated by the proposed framework (marked in red) compared with mRNN [20], mLSTM-long (mLSTM trained on datal), mLSTM-
full (mLSTM trained on all training data) and the original descriptions (marked in blue) provided by the Flickr users. The guiding texts are also provided.
To help with the evaluation, the ground-truth locations are marked in each image (usage of different colors is for the best contrast). Figure is best viewed in
color.

TABLE III
NUMERICAL RESULTS OF THE PROPOSED FRAMEWORK AT VARIOUS
PARAMETER SETTINGS BASED ON THE TESTING IMAGES IN datal .

BLEU-1 METEOR ROUGE-L CIDEr

sgLSTM-2048-4096 0.163 0.051 0.112 0.673
sgLSTM-2048-2048 0.417 0.211 0.365 1.010
sgLSTM-1024-2048 0.310 0.042 0.125 0.595
sgLSTM-1024-1024 0.023 0.004 0.016 0.047

sgLSTM with MS COCO Dataset
Although the proposed sgLSTM captioning framework is

designed to tackle real-world datasets, it is worth experiment-
ing the proposed self-guiding scheme with controlled dataset.
We adopt MS COCO [34] as our testbed.

Since all the training instances in MS COCO are considered

‘perfect’, we randomly divided the training dataset (i.e., the
combined version of Train2014 and Val2014) into two equal
parts dataa and datab. The first training subset dataa is
utilized to train mLSTM. The trained mLSTM is then com-
bined with the sentence vectorizer (GloVe-tfidf-50) to generate
the guiding text feature for the second training subset datab.
Afterwards, an sgLSTM is trained based on datab. We use the
trained sgLSTM model to generate results of the MS COCO
test set (i.e., Test2014) which are then evaluated by MS COCO
evaluation server [56].

Due to the strong correlation between the image content
and the descriptions in MS COCO, the guiding text feature
actually provides duplicated information as the ground-truth
descriptions when training sgLSTM. Therefore, the training
of sgLSTM only sees half of the training dataset, while
the compared approach observed the full dataset. As shown
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Fig. 6. More results generated by the proposed framework compared with the original descriptions provided by the Flickr users. Blue indicates a precise
description of the image content that does not even appear in the original descriptions. Green shows a successful recovery of the landmarks. Figure is best
viewed in color.

TABLE IV
NUMERICAL RESULTS OF SGLSTM COMPARED WITH OTHER METHODS BASED ON THE TESTING IMAGES (TEST2014) IN MS COCO [34]. SGLSTM IS

BASED ON GLOVE-TFIDF-50.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE-L METEOR

mRNN-c5 [20] 0.680 0.506 0.369 0.272 0.791 0.499 0.225
mRNN-c40 [20] 0.865 0.760 0.641 0.529 0.789 0.640 0.304
sgLSTM-c5 0.679 0.499 0.365 0.269 0.821 0.499 0.235
sgLSTM-c40 0.863 0.753 0.633 0.519 0.829 0.643 0.320

in Table IV, although with only half of the training data,
sgLSTM achieves comparible performance compared with
mRNN measured in BLEU@1, 2, 3, 4 and ROUGE-L, even
better performance measured in CIDEr and METEOR.

D. Discussions

Majority of the existing image captioning frameworks rely
on the controlled training datasets, i.e., image content and the
descriptions are strongly correlated and there is minimal varia-
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Fig. 7. Results generated by the proposed framework that could be further improved. Purple indicates wrong or unrelated phrases. Red shows a wrong location
or activity based on the original descriptions provided by the users. However, for some cases, these locations or activities cannot be recovered solely based
on the image content. Figure is best viewed in color.

tion in the text format. Moreover, some semantic-based image
captioning frameworks also depend on certain pre-knowledge
(e.g., pretrained on other datasets such as ImageNet), which
leads to degraded performance with new datasets such as
FlickrNYC due to object differences.

On the other hand, the proposed self-guiding scheme can
be naturally plugged into many state-of-the-art captioning
algorithms when dealing with real-world datasets. Given any
real-world datasets, is it always easy to separate the less noisy
data from the rest? The answer is it depends. Since the data
is collected from uncontrolled environment, it is important to
“observe” the data which is not necessary for the mainstream
captioning datasets. In the worst case, human experts can be
included into the data separation process. However, different
from the aforementioned description generation by humans
such as AMT, this will be a simpler classification task and
we still use the real-world data. As far as there is adequate
useful information in the training dataset, self-guiding scheme
is effective without the need of outside data.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel self-guiding mul-
timodal LSTM captioning framework which targets at a more
effective training over uncontrolled real-world dataset. A new
FlickrNYC dataset is introduced as the testbed to verify the
proposed self-guiding scheme. The portion of data, in which
the textual description strongly correlates with the image
content, is utilized to train a mLSTM model to extract the

textual features. Afterwards, the additional features are utilized
to guide the training process of the caption generation based
on the rest of the data. Experimental results demonstrate
the effectiveness of the proposed framework in generating
descriptions that are syntactically correct and semantically
sound.

In the future, we will demonstrate the effectiveness of self-
guiding scheme by experimenting on more state-of-the-art
image captioning frameworks, i.e., boosting their performance
on FlickrNYC. Due to the noisy labels in real-world datasets,
there are limitations in the existing evaluation tools to perform
parameter selection and comparison. It is worth developing a
systematic way to perform evaluation in these cases. We also
plan to extend our work to use self-guiding to assist caption
dataset generation and in other computer vision tasks.
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Captions: A Corpus of Expressive Descriptions in Repetition,” in
NAACL, 2015.

[38] A. Tariq and H. Foroosh, “A Context-Driven Extractive Framework for
Generating Realistic Image Descriptions,” IEEE Transactions on Image
Processing, vol. 26, pp. 619–632, 2017.

[39] J. Mao, J. Xu, Y. Jing, and A. Yuille, “Training and Evaluating Multi-
modal Word Embeddings with Large-scale Web Annotated Images,” in
NIPS, 2016.

[40] “Pinterest,” https://www.pinterest.com/.
[41] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov,

R. Zemel, and Y. Bengio, “Show, Attend, and Tell: Neural Image Caption
Generation with Visual Attention,” in ICML, 2015.

[42] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, pp. 1735–1780, 1997.

[43] F. Gers and J. Schmidhuber, “Recurrent nets that time and count,” in
IJCNN, 2000.

[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in CVPR, 2016.

[45] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Neural Networks:
Tricks of the Trade: Second Edition. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012.

[46] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors
for Word Representation,” in EMNLP, 2014, pp. 1532–1543. [Online].
Available: http://www.aclweb.org/anthology/D14-1162
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