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Abstract — Choosing clothes with complex patterns and colors 

is a challenging task for visually impaired people. Automatic 

clothing pattern recognition is also a challenging research 

problem due to rotation, scaling, illumination, and especially large 

intra-class pattern variations. We have developed a camera-based 

prototype system that recognizes clothing patterns into 4 

categories (plaid, striped, patternless, and irregular) and 

identifies 11 clothing colors. The system integrates a camera, a 

microphone, a computer, and a Bluetooth earpiece for audio 

description of clothing patterns and colors. A camera mounted 

upon a pair of sunglasses is used to capture clothing images. The 

clothing patterns and colors are described to blind users verbally. 

This system can be controlled by speech input through 

microphone. To recognize clothing patterns, we propose a novel 

Radon Signature descriptor and a schema to extract statistical 

properties from wavelet subbands to capture global features of 

clothing patterns. They are combined with local features to 

recognize complex clothing patterns. To evaluate the effectiveness 

of the proposed approach, we collected the CCNY Clothing 

Pattern dataset. Our approach achieves 92.55% recognition 

accuracy which significantly outperforms the state-of-the-art 

texture analysis methods on clothing pattern recognition. The 

prototype is further tested by 10 visually impaired participants.  

 
Index Terms — Clothing pattern recognition, assistive system, 

texture analysis, global and local image features, visually 

impaired people. 

I. INTRODUCTION 

ASED on statistics from the World Health Organization 

(WHO), there are more than 161 million visually impaired 

people around the world, and 37 million of them are blind [9]. 

Choosing clothes with suitable colors and patterns becomes a 

challenging task for blind or visually impaired people. They 

manage this task with help from family members, using plastic 

braille labels or different types of stitching pattern tags on the 

clothes, or by wearing clothes with a uniform color or without 

any patterns. Automatically recognizing clothing patterns and 

colors may improve their life quality. Automatic camera-based 

clothing pattern recognition is a challenging task due to many 
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clothing pattern and color designs as well as corresponding 

large intra-class variations. Existing texture analysis methods 

mainly focus on textures with large changes in viewpoint, 

orientation, and scaling, but with less intra-class pattern and 

intensity variations (Fig. 1). We have observed that traditional 

texture analysis methods [3, 5, 10, 11, 15, 19, 23, 26, 29, 32] 

cannot achieve the same level of accuracy in the context of 

clothing pattern recognition.  

Here we introduce a camera-based system to help visually 

impaired people to recognize clothing patterns and colors. The 

system contains three major components (Fig. 2): 1) sensors 

including a camera for capturing clothing images, a 

microphone for speech command input, and speakers (or 

Bluetooth, earphone) for audio output; 2) data capture and 

analysis to perform command control, clothing pattern 

recognition, and color identification by using a computer which 

can be a desktop in a user’s bedroom or a wearable computer 

(e.g., a mini-computer or a smart phone); and 3) audio outputs 

to provide recognition results of clothing patterns and colors, as 

well as system status. 

In an extension to [30], our system can handle clothes with 

complex patterns and recognize clothing patterns into 4 

categories (plaid, striped, patternless, and irregular) to meet the 

basic requirements based on our survey with 10 blind 

participants. Our system is able to identify 11 colors: red, 

orange, yellow, green, cyan, blue, purple, pink, black, grey, and 

white. For clothes with multiple colors, the first several 
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Figure 1: Intra-class variations in clothing pattern images and traditional 

texture images: (a) clothing pattern samples with large intra-class pattern 
and color variations; (b) traditional texture samples with less intra-class 

pattern and intensity variations.   
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dominant colors will be spoken to users. In order to handle the 

large intra-class variations, we propose a novel descriptor, 

Radon Signature, to capture the global directionality of clothing 

patterns. The combination of global and local image features 

significantly outperforms the state-of-the-art texture analysis 

methods for clothing pattern recognition. We also show that our 

method achieves comparable results to the state-of-the-art 

approaches on the traditional texture classification problems.   

This paper is organized as follows. In Section II, we 

summarize the related work on assistive techniques for visually 

impaired people and the research work on texture analysis. The 

computations of global and local features for clothing pattern 

recognition are described in Section III. Section IV introduces 

the system and interface design. The details of clothing pattern 

recognition and color identification are demonstrated in Section 

V. Section VI presents our experimental results on a 

challenging clothing pattern dataset and a traditional texture 

dataset. Section VII describes the preliminary evaluations by 

blind users. Section VIII concludes the paper. 

II. RELATED WORK 

 A lot of efforts have been made to develop assistive systems 

to improve life quality and safety for the individuals with 

special needs [2, 6, 7, 16, 20-22, 27, 28, 30, 31], including 

indoor navigation and wayfinding, display reading, banknote 

recognition, rehabilitation, etc. Liu et al. [12] built a clothing 

recommendation system for specific occasions (e.g., wedding 

or dating). Hidayati et al. [14] proposed a method for genre 

classification of upper-wear clothes. The two systems are both 

designed without considering key factors for blind users [1]. 

Yuan et al. [31] developed a system to assist blind people to 

match clothes from a pair of clothing images. This system can 

provide a user with the information about whether or not the 

clothing patterns and colors match. However, this system is not 

able to automatically recognize clothing patterns.  

 Texture provides the essential information for many image 

classification tasks including clothing pattern recognition. 

Some early research work on texture recognition [3, 5, 10, 15, 

19, 23] focused on the analysis of global 2D image 

transformations including in-plane rotation and scaling. Due to 

the lack of invariance to general geometric transformations, 

these approaches cannot effectively represent texture images 

with large 3D transformations such as viewpoint change and 

non-rigid surface deformation. Multi-Fractal analysis [25, 26] 

has achieved good resilience to 3D deformations. Texture 

representations based on this method benefit from the 

invariance of fractal dimensions to geometric transformations.  

For example, MFS proposed by Xu et al. [26] combined fractal 

dimensions of pixel sets grouped by density functions and 

orientation templates. In order to make representations of 

texture more robust to 3D image transformations (e.g., 

viewpoint change and non-rigid surface deformation) and 

illumination variation, most of recent methods reply on 

extracting local image features [11, 29, 32]. A texton dictionary 

is then generated by clustering the extracted local features. On 

the other hand, multiple features are able to capture properties 

of an image in different aspects. If different features are highly 

complementary, their combination will improve the feature 

representation. For example, Lazebnik et al. [11] proposed a 

texture representation method based on affine-invariant 

detectors (Harris and Laplacian) and descriptors (RIFT and 

SPIN). Zhang et al. [32] also combined SIFT and SPIN for 

texture classification.  

Unlike existing traditional texture images, clothing patterns 

contain much larger intra-class variations within each pattern 

category. Although many computer vision and image 

processing techniques have been developed for texture analysis 

and classification, traditional texture analysis methods cannot 

effectively recognize clothing patterns. Here we develop a 

camera-based system specifically for visually impaired people 

to help them recognize clothing patterns and colors. 

III. IMAGE FEATURE EXTRACTION FOR CLOTHING PATTERN 

RECOGNITION 

Some clothing patterns present as visual patterns 

characterized by the repetition of a few basic primitives (e.g., 

plaids or stripes). Accordingly, local features are effective to 

extract the structural information of repetitive primitives. 

However, due to large intra-class variance, local primitives of 

the same clothing pattern category can vary significantly (Fig. 

1). Global features including directionality and statistical 

properties of clothing patterns are more stable within the same 

category. Therefore they are able to provide complementary 

information to local structural features. Next, we present 

extractions of global and local features for clothing pattern 

recognition, i.e., Radon Signature, statistical descriptor (STA), 

and Scale Invariant Feature Transform (SIFT). 

 

A. Radon Signature 

Clothing images present large intra-class variations which 

result in the major challenge for clothing pattern recognition. 

However, in a global perspective, the directionality of clothing 

patterns is more consistent across different categories and can 

be used as an important property to distinguish different 

clothing patterns. As shown in Fig. 8, the clothing patterns of 

plaid and striped are both anisotropic. In contrast, the clothing 

patterns in the categories of patternless and irregular are 

isotropic. To make use of this difference of directionality, we 

propose a novel descriptor, i.e., Radon Signature, to 

characterize the directionality feature of clothing patterns. 

Figure 2: Overview and architecture design of the camera-based clothing 

pattern recognition system for blind and visually impaired persons. 
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Radon Signature is based on the Radon transform [8] which 

is commonly used to detect the principle orientation of an 

image. The image is then rotated according to this dominant 

direction to achieve rotation invariance. The Radon transform 

of a two-dimensional function        is defined as: 
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where   is the perpendicular distance of a projection line to the 

origin and   is the angle of the projection line, as shown in Fig. 

3(b). To retain the consistency of Radon transform for different 

projection orientations, we compute the Radon transform based 

on the maximum disk area instead of the entire image. The 

large intra-class variations of clothing patterns also reflect as 

images in the same category present large changes of color or 

intensity. To reduce the intensity variations, we use the Sobel 

operator to compute the gradient map as        in Eq. (1). Fig. 

3(b) illustrates the Radon transform over a disk area of gradient 

map.        in Eq. (1) is a function with two parameters of   

and  , as shown in Fig. 3(c). The directionality of an image can 

be represented by          , the variances of   under a certain 

projection direction   : 
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where          is the projection value at perpendicular distance 

of    and projection direction of   ;         is the expected 

value of        ;   is the number of sampling bins in each 

projection line. The Radon Signature is formed by the variances 

of   under all sampling projection directions: 

 

                                    
 

where   is the number of sampling projection directions. It 

determines the feature dimension of Radon Signature. As the 

Radon Signature is a non-sparse representation, we employ the 

L2-norm to normalize the feature vector. The principle 

directions of the image in Fig. 3(a) correspond to the two 

dominant peaks in the Radon Signature in Fig. 3(d).  

Fig. 4 illustrates Radon Signature descriptors of four sample 

images from different clothing pattern categories. The plaid 

patterns have two principle orientations; the striped ones have 

one principle orientation; as for the patternless and the irregular 

images, they have no obvious dominant direction, but the 

directionality of the irregular image presents much larger 

variations than that of the patternless image. Accordingly, there 

are two dominant peak values corresponding to two principle 

orientations in Radon Signature of the plaid image. Radon 

Signature of the striped image has one peak value associated 

with the one principle orientation. There is no dominant peak 

value in the irregular and the patternless cases. But Radon 

Signature of the patternless image is much smoother than that 

of the irregular image. 

Figure 3: The computation of Radon Signature. (a) An intensity image of 

clothing pattern. (b) Radon transform performed on a maximum disk area 

within the gradient map of (a). (c) The result of Radon Transform. (d) The 
feature vector of Radon Signature.     

 

Figure 4: Clothing patterns samples and associated Radon Signature descriptors.  
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B. Statistics of Wavelet Subbands 

The Discrete Wavelet Transform (DWT) decomposes an 

image   into low-frequency channel       under a coarser scale 

and multiple high-frequency channels under multiple scales 

                          , where   is the number of 

scaling levels. Therefore, in each scaling level  , we have four 

wavelet subbands including one low-frequency channel       

and three high frequency channels        . The high frequency 

channels                 encode the discontinuities of an 

image along horizontal, vertical, and diagonal directions, 

respectively. In this paper, we apply     scaling levels of 

DWT to decompose each clothing image, as shown in Fig. 5. 

Statistical features are well adapted to analyze textures 

which lack background clutter and have uniform statistical 

properties. DWT provides a generalization of multi-resolution 

spectral analysis tool. So we extract the statistical features from 

wavelet subbands to capture global statistical information of 

images at different scales. It is customary to compute the single 

energy value on each subband [24]. In this paper, we employ 

four statistical values including variance, energy, uniformity, 

and entropy to all wavelet subbands. Thus the statistical 

descriptor (STA) is a feature with the dimension of 48 (3×4×4). 

The four normalized statistical values extracted from each 

wavelet subband can be computed by the following equations: 
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where                            is the intensity level 

and corresponding histogram;   is the number of intensity 

levels;           
   
    is the average intensity level. 

 

C. SIFT Bag-of-Words  

The local image features are well adapted to a number of 

applications, such as image retrieval, and recognition of object, 

texture, and scene categories [32], as they are robust to partial 

occlusion, cluttered background, and viewpoint variations. This 

has motivated the development of several local image feature 

detectors and descriptors. Generally, detectors are used to 

detect interest points by searching local extrema in a 

scale-space; descriptors are employed to compute the 

representations of interest points based on their associated 

support regions. In this paper, the uniform grids are used as the 

interest points sampling strategy, as more sophisticated 

detectors tend to saturate and fail to provide enough interest 

points, especially for the textureless images [18]. The evenly 

sampled interest points are then represented by SIFT 

descriptors.  

We choose SIFT descriptor as the representation of interest 

points based on the following reasons: 1) the descriptor with 

128 dimensions is compact and fairly distinctive; 2) the 

representation with careful design is robust to variations in 

illumination and viewpoints; 3) an extensive comparison 

against other local image descriptors observed that SIFT 

descriptor performed well in the context of image matching 

[17]. The Bag-of-Words (BOW) [18] method is further applied 

to aggregate extracted SIFT descriptors by labeling each SIFT 

descriptor as a visual word and counting frequencies of each 

visual world. The local feature representation of an image is 

therefore represented as the histogram of the quantized SIFT 

descriptors. We perform   -norm and Inverse Document 

Frequency (IDF) normalization of BOW histograms. Fig. 6 

demonstrates the process of local features extraction. 

Figure 5: The computation of statistical descriptor (STA) on wavelet 
subbands. Three levels of wavelet decomposition are applied to a clothing 

image. Each decomposition level includes four wavelet subbands of 

original, horizontal, vertical, and diagonal components arranged from the 
close to the distant in each level. Four statistical values calculated in each 

wavelet subband are concatenated to form the final descriptor.     

 

Figure 6: The process of local image feature extraction. 
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IV. SYSTEM AND INTERFACE DESIGN 

The camera-based clothing recognition aid prototype for blind 

people integrates a camera, a microphone, a computer, and a 

Bluetooth earpiece for audio description of clothing patterns 

and colors. A camera mounted upon a pair of sunglasses is used 

to capture clothing images. The clothing patterns and colors are 

described to blind users by verbal display with minimal 

distraction to hearing sense. The system can be controlled by 

speech input through microphone. 

In order to facilitate blind users to interact, speech 

commands input from a microphone are used to provide 

function selection and system control. As shown in Fig. 7, the 

interface design includes Basic Functions and High Priority 

Commands. 

Basic Functions: A blind user can verbally request the 

function he/she wants the clothing recognition aid to perform. 

The recognition results will be presented to the blind user as 

audio outputs including recognized, not recognized, and start 

new function. As for recognized function, the next level 

functions include pattern/colors to announce the recognized 

clothing pattern and dominant colors; repeat results to repeat 

the recognized result; and save result to save the clothing image 

with associated pattern and color information in the computer. 

High Priority Commands: A blind user can set the system 

configuration by several high priority speech commands such 

as system restart, turn off system, stop function (i.e., abort 

current task), speaker volume and speed control commands 

(e.g., louder, quieter, slower, and faster) and help. The high 

priority commands can be used at any time. A user can speak 

out help, and the clothing recognition system will respond with 

the options associated with current function. A bone conducted 

earphones or small wireless Bluetooth speakers can be 

employed to protect privacy and minimize background sounds. 

The battery level will also be checked and feedback as an audio 

warning if the battery level is low.  

Audio Output: As for audio display, we make use of the 

operating system speech facility that is standard in modern 

portable computer systems and smart phones. We currently use 

Microsoft Speech Software Development Kit which supports 

scripts. A number of configuration options are also available 

according to user preference, such as speech rate, volume, and 

voice gender. 

V. RECOGNIZING CLOTHING PATTERNS AND COLORS 

The extracted global and local features are combined to 

recognize clothing patterns by using Support Vector Machines 

(SVMs) classifier. The recognition of clothing color is 

implemented by quantizing clothing color in the HIS (hue, 

saturation, and intensity) space. In the end, the recognition 

results of both clothing patterns and colors mutually provide a 

more precise and meaningful description of clothes to users.   

  

A. Clothing Pattern Recognition 

In our system, we empirically set the size of visual 

vocabulary to 100. We apply 3 scaling levels to decompose 

clothing images. The statistics of wavelet subbands features are 

therefore formed by a vector with a dimension of 48. In the 

computation of Radon Signature, we evenly sample 60 

projection directions from    to     . The feature vector of 

Radon Signature is therefore with the dimension of 60. We 

combine all the global and local features by concatenating 

corresponding feature channels together. The combined feature 

vector is with a dimension of 208.  

The combined feature vector is used as the inputs of SVMs 

classifier with RBF kernel. In our experiments, the optimal 

parameters of RBF kernel are found by 5-fold cross-validation, 

and the one-versus-one scheme is used.  

 

B. Clothing Color Identification 

Clothing color identification is based on the normalized 

color histogram of each clothing image in the HSI color space. 

The key idea is to quantize color space based on the 

relationships between hue, saturation, and intensity. In 

particular, for each clothing image, our color identification 

method quantizes the pixels in the image to the following 11 

colors: red, orange, yellow, green, cyan, blue, purple, pink, 

black, grey, and white.  

The detection of colors of white, black, and gray is based on 

saturation value   and intensity value  . If the intensity   of a 

pixel is larger than a upper intensity threshold   , and the 

saturation   is less than a saturation threshold   , the color of 

the pixel is “white”. Similarly, the color of a pixel is determined 

to be black if the intensity   is less than a lower intensity bound 

   and saturation   is less than   . For the remaining values of 

  while   is less than   , the color of a pixel is identified as 

gray. For other colors (i.e., red, orange, yellow, green, cyan, 

blue, purple, and pink), the hue values are employed. The hue 

  can be visualized as a 360° color wheel. We quantize the 

color of red in the range of     -     and   -  , orange as 

   -   , yellow as    -   , green as    -    , cyan as 

    -    , blue as     -    , purple as     -    , and pink 

as     -    . The weight of each color is the percentage of 

pixels belonging to this color. 

If a clothing image contains multiple colors, the dominant 

colors (i.e., pixels larger than 5% of the whole image) will be 

Figure 7: The system interface design for the proposed camera-based 

clothing pattern recognition system by using speech commands. The high 
priority commands can be used at any time to overwrite the basic functions.  

 



Submission to IEEE Transactions on Human-Machine Systems 6 

output. The clothing patterns and colors mutually provide 

complementary information. As shown in Table I, the 

recognized patterns provide additional information about how 

different colors are arranged, e.g., striped clothes with blue and 

white color. We test color identification on clothing color 

matching experiment. If the dominant colors of a pair of 

clothing image are the same, the two clothing images are 

determined as color matched. The proposed color identification 

achieves 99% matching accuracy in the experiment. More 

details can be found in [31]. 
 

TABLE I 

CLOTHING PATTERNS AND DOMINANT COLORS. 

THE COMPLEMENTARY INFORMATION PROVIDES MORE COMPLETE 

DESCRIPTIONS OF CLOTHING IMAGES. 
 

Image 

    

Pattern plaid striped patternless irregular 

Color 

yellow(49%) 

orange(36%) 

black(9%) 

blue(75%) 

white(19%) 
red(98%) 

black(41%) 

red(26%) 

blue(6%) 

green(5%) 
 

VI. CLASSIFICATION EXPERIMENTS 

In this section, we evaluate the performance of the proposed 

method on two different datasets: 1) the CCNY Clothing 

Pattern dataset with large intra-class variations to evaluate our 

proposed method and the state-of-the-art texture classification 

methods and 2) the UIUC Texture dataset to validate the 

generalization of the proposed approach. Our experiments 

focus on the evaluation and validation of 1) the complementary 

relationships between the proposed global and local feature 

channels; 2) the superiority of our proposed method over the 

state-of-the-art texture classification approaches in the context 

of clothing pattern recognition; and 3) the generalization of our 

approach on the traditional texture classification.  

 

A. Datasets 

CCNY Clothing Pattern Dataset: This dataset includes 627 

images of 4 different typical clothing pattern designs: plaid, 

striped, patternless, and irregular with 156, 157, 156, and 158 

images in each category. The resolution of each image is 

downsampled to 140×140. Fig. 8 illustrates sample images in 

each category. As shown in this figure, in addition to 

illumination variances, scaling changes, rotations, and surface 

deformations presented in the traditional texture dataset, 

clothing patterns also demonstrate much larger intra-class 

pattern and color (intensity) variations, which augment the 

challenges of recognition. The clothing pattern dataset can be 

downloaded via our research website
1
. 

UIUC Texture Dataset: We also evaluate the proposed 

method on the UIUC Texture dataset [11] which is a well 

 
1media-lab.engr.ccny.cuny.edu/data 

established traditional texture dataset. It contains 1000 

uncalibrated and unregistered images with the resolution of 

640×480. There are 25 texture classes with 40 images for each 

class. The texture images present rotation, scaling and 

viewpoint change, and non-rigid surface deformation. Fig. 9 

shows four sample images of four texture classes in this dataset. 

As shown in Fig.8 and Fig. 9, the traditional texture dataset 

mainly focuses on the geometric changes of texture surfaces, 

but with less intra-class pattern and intensity variations 

compared to the clothing images. 

 

B. Experiments and Discussions on Clothing Pattern 

Recognition 

B1.  Experimental Setup  

In our implementation, the training set is selected as a 

fixed-size random subset of each class and all remaining 

images are used as the testing set. To eliminate the dependence 

of the results on the particular training images used, we report 

the average of the classification rates obtained for 50 randomly 

selected training sets. This ensures all the classification rates 

Figure 8: Four sample images of four clothing patterns categories. 

 

Figure 9: Four sample images of four sample texture classes in the UIUC 

Texture dataset. 
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are statistically comparable. The recognition performance is 

measured by the average classification accuracy. 

B2.  Effectiveness of Different Features and Combinations  

We first evaluate and demonstrate the complementary 

relationships between global and local features on clothing 

pattern images. A combination of multiple features may obtain 

better results than any individual feature channel. However, a 

combination of features that are noisy, contradictory, or 

overlapping in terms of class distribution could deteriorate the 

performance of classification. 

To validate the effectiveness of the proposed features, we 

first evaluate the complementary relationships between 

different feature channels including global features of Radon 

Signature (RadonSig) and statistics of wavelet subbands 

(STA), and local features (SIFT). SIFT represents the local 

structural features; STA is the global statistical characteristics; 

and Radon Signature captures the property of global 

directionality. Fig. 10 displays the recognition results of 

different features as a function of training set size. For 

individual feature channels, SIFT and STA achieve comparable 

recognition accuracies. While the results based on a single 

channel of Radon Signature are worse than that of SIFT or 

STA, the performance of SIFT+RadonSig is better than that of 

SIFT+STA. Both of them outperform any individual feature 

channel. Therefore, for clothing patterns recognition, the global 

and local feature combination of SIFT and Radon Signature is 

more effective than that of SIFT and STA. Furthermore, the 

combination of all three feature channels further improves the 

recognition results and dominates in all of different training set 

sizes.  

The comparisons of different feature channels and their 

combinations validate our intuition that the effectiveness and 

complementarities of our proposed feature channels. The 

detailed recognition accuracies of Fig. 10 are listed in Table II. 

The percentages of training images per class are 10%, 30%, 

50%, and 70%, respectively. As shown in Table II and Fig. 10, 

the recognition accuracy of SIFT+STA+RadonSig using 30% 

images as training set is comparable or even better than that of 

other feature channels using 70% images as training set. This 

observation demonstrates another merit of our proposed 

approach that it is able to achieve a desirable result by using 

much less training data. 

 
TABLE II 

RECOGNITION ACCURACY (%) OF DIFFERENT FEATURE CHANNELS UNDER 

DIFFERENT VOLUMES OF TRAINING SETS (10%, 30%, 50%, 70% OF THE 

DATASET USED FOR TRAINING) ON CLOTHING PATTERN DATASET.  
 

Feature channel 10% 30% 50% 70% 

SIFT 69.42 80.45 84.50 87.73 

STA 69.45 80.65 84.28 86.94 

RadonSig 69.24 75.41 79.93 82.44 

SIFT+STA 75.80 84.03 87.09 88.68 

SIFT+RadonSig 76.94 85.91 88.89 91.34 

SIFT+STA+RadonSig 81.06 88.09 90.59 92.55 

 

B3.  Comparison with the State-of-the-art Texture Analysis 

Methods for Clothing Pattern Recognition 

We further compare the overall performance of our proposed 

method with that of the state-of-the-art methods including MFS 

[26], SIFT [13], (H+L)(S+R)[11], and SIFT+SPIN [32], which 

have achieved the state-of-the-art performances on the 

traditional texture classification tasks. MFS [26] is an extension 

of the fractal dimension based on three density functions of 

image intensity, image gradient, and image Laplacian. It 

combines both global spatial invariance and local robust 

measurement. SIFT [13] corresponds to the single feature 

channel in our method. It captures the local image structural 

information. (H+L)(S+R) [11] is based on the extraction of 

SPIN and RIFT descriptors on affine Harris and Laplacian 

regions of an image. The elliptic regions detected by two 

sophisticated detectors are normalized to circles to handle 

affine transform. SPIN is a rotation-invariant local image 

descriptor formed by 2D histogram of the distribution of pixel 

intensity values. RIFT is an alternate representation of SIFT. 

SIFT+SPIN [32] is the combination of two local image features 

including SIFT and SPIN. In the comprehensive evaluations of 

texture classification [32], SIFT and SIFT+SPIN organized by 

the BOW model achieved the state-of-the-art results on 

traditional texture datasets. In our implementation, the 

sampling strategies for SIFT and SIFT+SPIN are both uniform 

grid sampling as mentioned in Section III-C. 

 
TABLE III 

RECOGNITION ACCURACY (%) OF DIFFERENT METHODS AND VOLUMES OF 

TRAINING SETS (10%, 30%, 50%, 70% OF THE DATASET USED FOR TRAINING) 

ON CLOTHING PATTERN DATASET.  

 

Method 10% 30% 50% 70% 

MFS [26] 56.71 66.68 72.39 75.80 

SIFT [13] 69.42 80.45 84.50 87.73 

(H+L)(S+R) [11] 52.71 60.34 62.65 64.69 

SIFT+SPIN [32] 66.25 78.76 83.20 85.53 

Our method 81.06 88.09 90.59 92.55 

    

Table III shows the recognition accuracies of different 

methods on the CCNY Clothing Pattern dataset. The 

experiments are evaluated by using 10%, 30%, 50%, and 70% 

Figure 10: Comparative evaluation on recognition accuracies of different 

feature channels and their combinations versus percentage of training 

samples.   
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of the dataset as training sets, and the rest as testing sets. As 

shown in this table, our proposed method significantly 

outperforms other well-established approaches, especially 

when the training set is small. A closer look at Table III also 

confirms that our proposed method is able to obtain comparable 

or even better results by using much less training data. For 

instance, the accuracy rate of our method using 30% images as 

a training set is better than that of other well-established 

methods using 70% as a training set. While these methods 

perform very well on traditional texture datasets, they cannot 

achieve the same level of accuracy for clothing pattern 

recognition due to the large intra-class variations. (H+L)(S+R) 

performs much worse than other methods. This is mainly 

because of the insufficient interest points detected by two 

sophisticated detectors, especially for striped and patternless 

categories. It also confirms the importance of sampling density 

for clothing pattern classification. It is also interesting to 

observe that the performance of SIFT+SPIN is worse than that 

of SIFT alone. This is probably because SPIN is a local image 

descriptor based on pixel intensities. But the clothing images 

present large intra-class color variations, which accordingly 

result in large intra-class intensity variations. Since SPIN is 

sensitive to intensity changes, it cannot overcome the large 

intra-class variations. This observation validates it is important 

to choose appropriate feature channels for feature combination.        

 
TABLE IV 

CONFUSION TABLE FOR THE CLOTHING PATTERN RECOGNITION EXPERIMENTS 

OF OUR PROPOSED METHOD USING 70% IMAGES AS TRAINING SET. EACH ROW IS 

THE GROUND TRUTH AND EACH COLUMN IS THE CLASSIFIED RESULTS. THE 

AVERAGE PERFORMANCE IS 92.07%.  
 

 plaid striped patternless irregular 

plaid 0.8855 0.0494 0.0149 0.0502 

striped 0.0383 0.9234 0.0123 0.0260 

patternless 0.0094 0.0183 0.9570 0.0094 

irregular 0.0260 0.0451 0.0119 0.9170 

 

Table IV demonstrates the confusion table results of our 

method by using 70% images as training set. In the confusion 

table, each row represents the ground truth categories of 

clothing pattern images and each column corresponds to the 

recognized category. The system recognizes patternless the 

best, where the images have the most discriminative local and 

global properties. On the other hand, plaid tends to confuse 

with striped. 

 

C. Experiments with the UIUC Texture Dataset 

The proposed method significantly outperforms the 

traditional texture classification methods in recognizing 

clothing patterns. In order to validate the generalization of our 

method, we further compare our method with other 

state-of-the-art approaches on a traditional texture dataset, i.e., 

UIUC Texture dataset. The experimental setup is the same as 

Section VI-B1. 

In the performance evaluation on the UIUC Texture dataset, 

we also compare our proposed method with MFS, SIFT, 

(H+L)(S+R), and SIFT+SPIN, as mentioned in Section VI-B3. 

Table V shows the classification rates of different methods on 

UIUC Texture dataset. In the experiments, the numbers of 

training images per class are 5, 10, 15, and 20, respectively. The 

remaining images in each class are used as testing set. As 

shown in this table, our method achieves comparable results to 

SIFT, (H+L)(S+R), and SIFT+SPIN, and obtain better 

accuracy rates than MFS. In contrast to the performance of 

clothing pattern recognition, (H+L)(S+R) performs very well 

on this dataset as the two sophisticated detectors can localize 

sufficient interest points on highly textured images. This result 

again demonstrates the importance of sampling density for 

robustness of texture classification. SIFT+SPIN performs the 

best on UIUC Texture dataset while its performance on 

clothing pattern images is much worse. This is because the 

intra-class intensities of texture images in this dataset are much 

more consistent than that in clothing pattern images. SPIN 

provides complementary appearance feature to SIFT. However, 

when the number of training images is 5, SIFT+SPIN largely 

outperforms our method. This is probably because the 

directionality property in nature texture is not as evident as that 

in clothing images and Radon Signature needs a relatively large 

training set to model the directionality of texture images. But in 

other cases, our method achieves comparable results to 

SIFT+SPIN. Therefore, it demonstrates the generalization of 

our method, i.e., it achieves state-of-the-art results on both 

clothing pattern images and traditional texture dataset.  

  
TABLE V 

CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS  
AND NUMBER OF TRAINING IMAGES ON UIUC TEXTURE DATASET.  

 

Method 5 10 15 20 

MFS [26] 82.24 88.36 91.38 92.74 

SIFT [13] 91.13 95.46 96.94 97.56 

(H+L)(S+R) [11] 91.12 94.42 96.64 97.02 

SIFT+SPIN [32] 93.13 96.87 97.74 98.83 

Our method 88.04 94.51 96.31 97.61 

 

VII. PROOF OF CONCEPT EVALUATION 

The proposed clothing pattern and color recognition 

prototype was tested in a proof of concept evaluation with 10 

blind participants including 5 men and 5 women with ages 

ranging from 36 to 72 years old. The testing was conducted in a 

laboratory under normal lighting conditions. Because some of 

the totally blind users are not aware of the environment lighting 

conditions, the system provides a reminder if the environment 

is too dark before the testing starts.  

As shown in Fig. 11, the clothing images are captured by a 

camera (Logitech web camera with auto focus) mounted on a 

pair of sunglasses where the blind user holds the clothes to be 

recognized. The images captured by people with normal vision 

are similar to those captured by blind participants after they are 

trained for several minutes to hold clothes in front of the camera 

to occupy the image view. The images of the clothes are 

captured and recognized by the system. The system provides 

the clothing patterns and verbally presents the three dominant 

colors to the user.  
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 The number of clothing patterns and colors recognized by the 

system is less than what humans can provide. In addition, the 

audio description is not as flexible as what humans can state. 

However most blind users expressed wanting such a system to 

support more independence in their daily life. They also 

expressed the desire of more detailed colors such as rose red 

and more clothing patterns. The blind users expressed a desire 

for faster speech feedback in order to gain more information. 

Some blind participants expressed a desire to have the camera 

on a cap instead of on glasses and have the function available 

on mobile phones. 

VIII. CONCLUSION 

Here we have proposed a system to recognize clothing 

patterns and colors to help visually impaired people in their 

daily life. We employ Radon Signature to capture the global 

directionality features; STA to extract the global statistical 

features on wavelet subbands; and SIFT to represent the local 

structural features. The combination of multiple feature 

channels provides complementary information to improve 

recognition accuracy. Based on a survey and a proof of concept 

evaluation with blind users, we have collected a dataset on 

clothing pattern recognition including 4 pattern categories of 

plaid, striped, patternless, and irregular. Experimental results 

demonstrate that our proposed method significantly 

outperforms the state-of-the-art methods in clothing pattern 

recognition. Furthermore, the performance evaluation on 

traditional texture datasets validates the generalization of our 

method to traditional texture analysis and classification tasks. 

This research enriches the study of texture analysis, and leads to 

improvements over existing methods in handling complex 

clothing patterns with large intra-class variations. The method 

also provides new functions to improve the life quality for blind 

and visually impaired people. 
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