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Abstract—Local feature with Bag of Words (BOW) 

representation has become one of the most popular approaches in 

object classification and image retrieval applications in the 

computer vision community. The recent efforts in the remote 

sensing community demonstrate that the BOW approach can also 

effectively apply to geographic images for the applications of 

classification and retrieval. However, the BOW representation 

discards spatial information, which is critical for the remotely 

sensed land use classification. Several algorithms have 

incorporated spatial information into the BOW representation by 

hard encoding coordinates of local features. Such rigid spatial 

encoding is not robust to translation and rotation variations, 

which are common characteristics of geographic images. To 

effectively incorporate spatial information into the BOW model 

for the land use classification, we propose a Pyramid of Spatial 

Relatons (PSR) model to capture both absolute and relative 

spatial relationship of local features. Unlike the conventional 

co-occurrence approach to describe pairwise spatial relationships 

between local features, the PSR model employs a novel concept of 

spatial relaton to describe relative spatial relationship of a group 

of local features. As the result, the storage cost of the PSR model 

only linearly increases with the visual word codebook size instead 

of the quadratic relationship as in the co-occurrence approach. 

The PSR model is robust to translation and rotation variations, 

and demonstrates excellent performance for the application of 

remotely sensed land use classification. On the Land Use and 

Land Cover image database, the PSR achieves 8% higher in the 

classification accuracy than the state of the art. If using only gray 

images, it outperforms the state of the art by more than 11%. 

 
Index Terms—Bag of Words, Spatial Pyramid Matching, 

Pyramid of Spatial Relatons, Geographical Image Classification, 

Land Use Classification 

I. INTRODUCTION 

HE local features [2, 4, 8, 9, 18, 27] have been 

successfully applied to many computer vision applications, 

including image retrieval, object classification, and scene 

understanding etc. They also begin to gain popularity in remote 

sensing community due to the robustness to rotation, scale 

changes, and occlusion [3, 19, 29, 32, 33, 34, 40, 41, 42, 43, 
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44]. 

 One of the most popular approaches to group local 

features in an image is the Bag of Words (BOW) model [8]. By 

simply counting occurrences of local features in an image 

without modeling their spatial relationships, the BOW 

demonstrates good performance in both computer vision and 

remote sensing applications. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1: Sample images in three different classes of the Land Use Land Cover 

(LULC) dataset: (a) Overpass; (b) Tennis court; (c) Airplane. 

Nevertheless, several researchers [7, 21, 28, 31, 43] have 

confirmed that the spatial relationship among local features 

improves performance over many applications, e.g., image 

classification and retrieval etc. Most of the proposed models 

hard code image coordinates of local features [7, 21, 28], which 

captures the absolute spatial information of local features based 

on their image coordinates. The absolute spatial information 

improves some computer vision applications, in which camera 

views are usually fixed in the upright orientation and the point 

of interest is approximately in the center of an image. 

One of the most popular absolute spatial models is the 

Spatial Pyramid Matching (SPM) [21]. The SPM model 

hierarchically divides an image into several sub-regions. A Bag 

of Words (BOW) histogram is constructed for each sub-region. 

Then the BOW histograms of all sub-regions are concatenated 

together based on the absolute spatial order of sub-regions in 

the image space. The SPM model demonstrates excellent 
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performance and has been a key component in many computer 

vision applications [10, 17, 37, 38], including object 

recognition, scene understanding, and object detection etc. 

However, the camera view of geographic images or aerial 

images can be freely rotated. The point of interest can also 

appear anywhere in the image. Figure 1 shows some sample 

images from three different classes in the Land Use and Land 

Cover (LULC) dataset, i.e., Overpass, Tennis court and 

Airplane. All three classes exhibit rotation and translation 

variations. Therefore, the absolute spatial information may not 

improve the classification accuracy for these geographic 

images. Actually, some researchers [43] have reported that the 

absolute spatial information degrades the classification 

performance as compared with the order-less approach. 

Instead of absolute spatial information, some researchers 

[15, 16, 31, 43] explore relative spatial relationship among 

local features. Relative spatial information describes locations 

of local features relative to each other in an image, independent 

of their absolute image coordinates. The researchers generally 

model relative spatial relationship through co-occurrence of 

local features, which satisfies certain spatial constraints, such 

as distance or angular directions. The co-occurrence matrix 

models spatial relationships of local features within a local 

region, which achieves invariance to rotation and translation. 

By combining the co-occurrence matrix with the order-less Bag 

of Words model, the performance of land use classification 

improves [43]. However, the storage cost of the co-occurrence 

matrix has quadratic relationship with the visual word 

codebook size [43]. For a codebook size of 1000, which is 

common for the geographical image classification [43], the size 

of a co-occurrence matrix can reach a million. 

Inspired by the success of Spatial Pyramid Matching (SPM) 

model for the computer vision applications and the 

co-occurrence approach for the remote sensing applications, we 

propose a Pyramid of Spatial Relatons (PSR) model to 

incorporate both absolute and relative spatial information into 

the Bag of Words framework. Similar to the texton and 

correlaton [31], we define relaton as a basic relationship unit. 

The PSR divides an image into successively finer sub-regions 

as in the SPM model. Then a collection of spatial relationships 

prototypes and a histogram of local features are extracted from 

each of the sub-regions. 

The Pyramid of Spatial Relatons (PSR) model achieves 

excellent performance for land use classification on the Land 

Use and Land Cover (LULC) geographical image database. It 

achieves 8% higher in classification accuracy than the state of 

the art. If using only gray images, it outperforms the state of the 

art by more than 11%. As compared with the BOW model, the 

PSR model improves classification accuracy across all 

codebook sizes we evaluated in our experimental setup. The 

performance improvement is especially significant when the 

codebook is compact, e.g., the performance gain of the PSR is 

more than 11% for the codebook size smaller than or equal to 

1000. Our extensive experiments demonstrate the effectiveness 

of the PSR model, which incorporates both relative and 

absolute spatial relationship into the BOW model. 

 In the following of this paper, Section II discusses the 

related work on both computer vision and remote sensing 

applications. Section III describes the details of the proposed 

Pyramid of Spatial Relatons (PSR) framework. Section IV 

presents experimental setup and results. Finally, Section V 

concludes the paper. 

II. RELATED WORK 

The Pyramid of Spatial Relatons (PSR) is most closely 

related to the bag of words (BOW) model [8, 22, 35] and its 

spatial variants. The bag of words model remains one of the 

most popular approaches in image classification applications 

due to its simplicity and excellent performance. Over the past 

few years, several spatial variants [6, 7, 21, 23, 24, 28, 31, 43, 

44, 46] of the BOW model are proposed to incorporate the 

spatial information of local features. These spatial variants 

utilize either absolute or relative spatial context of local 

features. They have demonstrated performance improvements 

in many computer vision applications. However, direct 

adaptation of these spatial models to the remotely sensed land 

use classification still remains challenging [43]. 

A. Order-less Approach: Bag of Words 

The Bag of Words (BOW) is commonly used in document 

classification or text retrieval application [1]. A document is 

represented by a histogram of words, where each element in the 

histogram represents frequency of occurrences of a word in the 

document.  

Inspired by the success of the BOW model in text retrieval 

literature and the robustness of local features as image 

representation [2, 13, 20, 27], computer vision community 

adapts the BOW to represent an image by treating local features 

as visual words [8, 35]. 

Different from words in text, there are much more variations 

in local features. Hence, similar features in feature space are 

grouped together to form a cluster, which is represented by a 

prototype feature, i.e., a visual word. The collection of visual 

words from each cluster in training data forms a visual 

dictionary or codebook. 

 
Figure 2: (a) Illustrate local features in an image; (b) Illustrate the 

corresponding Bag of Words representation of the image based on the statistics 

of local features. 

Figure 2 illustrates the Bag of Words (BOW) representation 

for a geographical image. The local features are illustrated with 

purple ellipses, which are encoded based on visual words in a 

codebook. Then we form a histogram of visual words by proper 

pooling techniques [4]. The histogram is the final BOW 
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representation of the image. 

In the coding step, local features are encoded using visual 

words in a codebook. The simplest coding method is vector 

quantization, i.e., hard assignment. The hard assignment of a 

local feature is to assign the weight of 1 to the nearest neighbor 

visual word, while all other visual words in the codebook are 

assigned with 0 weight. Other more sophisticated coding 

techniques include soft assignment [25] and sparse coding [45], 

which generally improve classification accuracy at the expense 

of increased complexity. 

Pooling is to aggregate all codes of local features into a 

single vector as the image’s BOW histogram. Two of the most 

popular pooling operators are average pooling [8] and 

maximum pooling [25]. Maximum pooling usually achieves 

higher accuracy and is employed in most state-of-the-art 

systems for image classification. 

A major limitation of the Bag of Words (BOW) model is that 

it only represents an image as an order-less collection of local 

features without considering features’ spatial information in the 

image. As proven by many researchers, the spatial relationship 

of local features can be very important for image classification 

[6, 7, 21, 31, 43]. 

B. Incorporating Spatial Context 

To improve classification accuracy, both absolute spatial 

information [7, 21, 28] and relative spatial information [31, 43] 

have been incorporated into the bag of words representation by 

researchers.  

1) Absolute Spatial Context 

Absolute spatial context is the location information of local 

features with reference to the absolute image coordinates. 

Despite the fact that absolute spatial information of local 

features is not invariant to translation or rotation of cameras, it 

has achieved the state of the art performances on several 

benchmark datasets for image classification [7, 21, 28]. 

Lazebnik et al. [21] propose Spatial Pyramid Matching 

(SPM) as feature representation, by partitioning an image into 

successively smaller sub-regions and calculating a BOW 

histogram for each sub-region. Then, the model concatenates 

all BOW histograms of the sub-regions together to form the 

SPM representation of an image. With the finer regions 

assigned with larger weights, the intersection kernel is 

employed for the classification, as shown in Eq. (1). 

,    (1) 

where   is the total number of levels.   is the total number of 

sub-regions at level  .   is the codebook size of visual words. 

Note that      is 1 when   is 0, otherwise      equals to 0. 

Conventionally, SPM is calculated at three levels. At the first 

level, the whole image is a sub-region. At the second and the 

third level, the image is divided into 2 x 2, and 4 x 4 sub-regions 

respectively. As compared with the order-less BOW model, the 

SPM achieves better accuracy in several challenge datasets [11, 

12, 14, 39] with slightly increase of computational cost. 

Recently, McCann and Lowe [28] proposed Spatial Local 

Coding (SLC), which is also based on absolute spatial 

information of local features. SLC augments Scale Invariant 

Feature Transform (SIFT) features with their absolute location 

(x, y) in the image coordinate space. Then a dictionary is 

constructed based on these augmented SIFT features. Local soft 

assignment and maximum pooling are employed to build the 

final spatially encoded BOW representation. 

Our previous work [7] employs a collection of EigenMaps as 

image representation to incorporate both appearance and 

absolute spatial information. An EigenMap is location 

likelihood of a visual word obtained from kernel density 

estimation. As compared with other spatial variants of the 

BOW model, the EigenMap is more computationally efficient 

while remaining comparable classification accuracy. 

2) Relative Spatial Context 

On the other hand, relative spatial context captures spatial 

information relative to some of local features in an image. It is 

invariant to translation and rotation. 

Savarese et al. [31] borrow the idea of color correlograms 

[16] to develop visual word correlograms, which incorporate 

relative spatial information. Correlograms capture spatial 

correlation between all possible pairs of visual words by 

forming a co-occurrence matrix of visual words as a function of 

distance. 

The correlograms matrix requires expensive computation 

and memory cost [31]. Savarese et al. utilize integral histogram 

techniques to improve computational efficiency. However, the 

technique becomes less effective as the codebook size 

increases. Furthermore, the storage cost for the integral 

histogram also increases dramatically for an image even at a 

moderate codebook size, e.g., 1000. 

C. Related Remote Sensing Applications  

Bag of Words (BOW) representation and its spatial variants 

have also demonstrated the effectiveness for the remotely 

sensed land use classification [43, 44]. The paper [43] describes 

the performance of the BOW and two other spatial variants for 

the application of large-scale land use image classification. 

They demonstrate that the BOW approach achieves comparable 

performance with the best of standard approaches, e.g. color 

histogram.  

However, the absolute spatial information in the Spatial 

Pyramid Matching (SPM) model degrades the classification 

performance of the land use images according to their 

experiments [43]. The authors argue that land use images 

exhibit significant translation and rotation variation. Motivated 

by the importance of spatial structure of geographical images 

[36], they [43] proposed to incorporate relative spatial 

information into the BOW using spatial co-occurrence kernel 

(SCK), which is similar to correlograms [16, 31] approach with 

an intersection kernel. 

Yang and Newsam [44] further propose Spatial Pyramid of 

Co-occurrence Kernel (SPCK) model, which incorporates both 

absolute and relative spatial context for the geographical image 

classification. Similar to the Spatial Pyramid Matching model, 
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the SPCK method partitions an image into sub-regions 

successively. Within each sub-region, it computes the 

co-occurrence matrix instead of the bag of words histogram. 

Then different sub-regions are concatenated together with 

appropriate weights to form the final image representation. The 

method demonstrated improved performance over the 

order-less BOW model and the model with the absolute spatial 

context, i.e., the Spatial Pyramid Matching model. 

III. PYRAMID OF SPATIAL RELATONS 

A. Overview  

Motivated by both spatial pyramid matching (SPM) model 

and spatial co-occurrence kernel approach, we propose a new 

algorithm, i.e., the Pyramid of Spatial Relatons (PSR). The PSR 

captures both absolute and relative spatial relationships of local 

features. We evaluate the proposed PSR model for the remotely 

sensed land use classification. 

 

Figure 3: Illustrate Pyramid of Spatial Relatons model. An image is divided 

into sub-regions (green rectangles) hierarchically; An order-less collection of 

spatial relatons, which support regions are illustrated by the red rectangles, 

captures the relative spatial relationship of local features within each 

sub-region. A spatial relaton is represented by a quantized histogram of local 

features within a support region (red rectangle). 

Similar to the SPM model, the PSR divides an image into 

sub-regions at multiple levels successively, as illustrated in 

Figure 3. Each sub-region (green rectangle) is represented by 

an order-less collection of spatial relatons (i.e., spatial relaton 

histogram). The spatial relaton is a quantized local features 

distribution within a support region (red rectangle). The 

concept of relaton, which is inspired by the texton and 

correlaton [31], means the basic relationship unit.  By 

combining both spatial relaton histogram and Bag of Words 

(BOW) histogram in each sub-region, the PSR model 

incorporates both absolute and relative spatial relationship of 

local features. Hence, the PSR is more robust to rotation and 

translation, which are the main challenges for remotely sensed 

land use classification.  

Unlike the co-occurrence matrix approach, the PSR describes 

spatial relationship of a group of local features in a support 

region without modeling detailed pair-wise relationship. 

Therefore, the PSR is more efficient in terms of computational 

and memory cost as compared with the conventional 

co-occurrence approach. 

B. Spatial Relaton 

As in the Bag of Words (BOW) approach for generic object 

recognition, we represent a geographical structure by the 

distribution over its structure parts. Such distribution implicitly 

represents the spatial relationship of the structure parts relative 

to the geographical structure. 

 
              (a)                                    (b)                (c) 

Figure 4: Illustrate structure part distribution for the geographical structure of 

(a) tennis court, (b) house, and (c) airplane. 

Figure 4(a)-(c) illustrate structure part distribution for the 

geographical structures of tennis court, house, and airplane 

respectively. We introduce a novel concept of spatial relaton to 

represent spatial arrangement of structure parts relative to a 

geographical structure (i.e., structure part distribution). The 

concept of spatial relaton is analogous to the visual words of 

Bag of Words model. An arbitrary spatial relationship can be 

generated by linearly combining finite number of prototype 

spatial relationships, i.e., the spatial relatons. 

 
 

Figure 5: Illustrate the flowchart to generate a dictionary of spatial relatons. 

Figure 5 illustrates the flowchart to generate a dictionary of 

spatial relatons. Local features, which represent structure parts, 

are first extracted from training images. Then we generate a 

codebook of N visual words by clustering local features with 

K-mean clustering algorithm [26]. Each training image samples 

a set of patches or support regions. For each of the support 

regions, a patch BOW histogram is generated to capture its 

local feature distribution.  
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These patch BOW histograms represent the spatial 

relationships of local features (i.e., structure parts), which 

spatial affinity constraint is defined by the size of patches. 

There can be infinite number of different spatial relationships 

of local features. Therefore, we cluster local features’ spatial 

relationships (i.e., patch BOW histograms) into M prototype 

spatial relationships by the K-mean algorithm again. The 

prototype spatial relationships are spatial relatons, which 

provide a compact representation of relative spatial relationship 

of local features. 

C. Pyramid of Spatial Relatons (PSR) 

Motivated by the state of the art performance of the Spatial 

Pyramid Matching (SPM) kernel, the PSR model also partitions 

an image into successively fine sub-regions, as illustrated in 

Figure 3. In each sub-region, we extract both BOW histogram 

and spatial relaton histogram using local soft assignment 

coding and maximum pooling [25]. 

To perform local soft assignment coding, we introduce 

metric to calculate distance between two vectors,    and   , as 

shown in Equation (2). 

             
                            

                              
 ,       (2) 

where         is K nearest neighbors of   . If two vectors are 

far from each other, the distance is simply infinite. 

The local soft assignment coding of local feature   to visual 

word    is shown in Equation (3). 

     
               

  
               

   

    ,                           (3) 

where   is a parameter to control the sensitivity of coding over 

distance. If   reaches infinitive, local soft assignment coding 

becomes hard assignment coding, which assigns 1 to the 

feature’s nearest neighbor visual word, and 0 to the other visual 

words. 

We employ maximum pooling to aggregate all codes 

together to form a BOW histogram as shown in Equation 4. 

  
                         ,                            (4) 

where     is the total number of features in image I. Note that 

Equation (3) and (4) can also be used to calculate patch BOW 

histogram for a support region of spatial relaton except that the 

image I now becomes an image patch. 

 Similarly, we also compute spatial relaton histogram using 

local soft assignment coding and maximum pooling, as shown 

in Equation (5) and (6) respectively. 

     
 
               

  
                

   

          ,                    (5)  

   
                            ,                    (6) 

where     is i
th

 patch BOW histogram in an image I.    is m
th

 

spatial relaton in the relaton dictionary formed in last section. 

    is the total number of patches in the image I. 

Patches (i.e., support regions of spatial relatons) are 

illustrated by the blue and green bounding boxes in Figure 6(a). 

Each patch generates a patch BOW histogram     , as 

illustrated in Figure 6(b) and 6(c) for the blue and green patch 

respectively. In this paper, we apply uniform grid method to 

extract     patches in an image. Finally a spatial relaton 

histogram is the order-less collection of all patch BOW 

histograms in an image, as illustrated in Figure 6(d). 

 

Figure 6: Illustrate spatial relaton histogram, which captures relative spatial 

relationship of local features. (a) A geographic image with two support regions 

marked by blue and green bounding boxes respectively; (b) Patch BOW 

histogram of the blue bounding box; (c) Patch BOW histogram of the green 

bounding box; (d) An order-less collection of spatial relatons to form a spatial 

relaton histogram. 

While a spatial relaton histogram captures relative spatial 

relationship of local features, a BOW histogram represents an 

image’s appearance information. To take the advantage of their 

complementarities, we combine both BOW histogram and 

spatial relaton histogram for each sub-region. The linear kernel 

matrix of the PSR is shown in Equation (7). 

                     
        

           
         

    
   

   
    

    
   

   
   ,   (7) 

where N is the codebook size of the BOW, and M is the 

dictionary size of the spatial Relatons. H and    are the BOW 

histogram and the spatial relaton histogram respectively for 

each sub-region. L is the total number of levels in the pyramid, 

and    is the total number of sub-regions at l
th

 level. 

During training step of the support vector machine (SVM), 

we maximize the dual form of the objective function in 

Equation (8). 

       
 

 
                  

   
   

   
   

   
   ,        (8) 

subjects to the following constraints. 

      ,                                      (9) 

       
   
   ,                       (10) 

where C is a constant to tradeoff classifier’s margin with 
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training error, and     is the total number of training images. 

In testing phase, we can predict the class of an unknown 

image   with the following equation. 

                
    
     ,                   (11) 

where 

  
 

            
                  

    
              ,   (12) 

where      is the total number of support vectors obtained 

during the training. By substituting Equation (7) into Equation 

(11), we have: 

                    
        

           
         

 

   

   

   

   

 

    

   

   

   

    

   

   

(13) 

Simplifying equation (13), we have  

              
     

           
      

    
   

   
    

    
   

   
     ,  (14) 

with 

    
              

     
   ,                        (15) 

     
               

     
   .                        (16) 

D. Computation and Memory Complexity 

Since we employ linear kernel for the PSR model, the 

computational complexity to predict a new image is linearly 

proportional to the codebook size of visual words and the 

dictionary size of spatial relatons, as shown in Equations (14) to 

(16). Therefore it is much more efficient in computation as 

compared with the intersection kernel of the original Spatial 

Pyramid Matching model [21]. 

Similar to the co-occurrence matrix, spatial relaton 

histogram models relative spatial relationship between local 

features. However, spatial relatons capture relative spatial 

arrangement of a group of local features instead of detailed 

pairwise spatial relationship as in the co-occurrence matrix. As 

the result, the construction cost in computation and the storage 

cost in memory are reduced significantly. 

If using brute force approach, it requires      computation 

complexity to construct a co-occurrence matrix, where n is the 

number of rows or columns in an image [31]. Savarese et al. 

[31] employs integral histogram to reduce the computation cost 

to      . However, memory cost of an integral histogram can 

become prohibitively expensive, especially when the codebook 

size increases. For a typical 1000 by 1000 image with moderate 

codebook size of 1000 visual words, the memory of its integral 

histogram is 4GB, assuming 4 bytes for a float value. 

On the other hand, spatial relaton histogram requires 

               , where     is total number of patches 

used in an image, and M is the dictionary size of spatial 

relatons. N is the codebook size of visual words.     is much 

smaller than n. The number of patches used in our experiment is 

4. Based on our experiments, it only slightly improves the 

classification accuracy when the number of patches continues 

increasing. M*N is comparable to   . Therefore, the 

computation cost to construct spatial relaton histogram is still 

     . And it only requires memory to store a dictionary of 

spatial relatons, which is about the size of an image. 

Furthermore, the dictionary is shared among all images. 

The storage cost of a co-occurrence matrix is      , where 

N is the total number of visual words in the codebook. For a 

moderate codebook size of 1000, the storage cost can reach 

4MB for a co-occurrence matrix. On the other hand, the storage 

cost for a spatial relaton histogram is only     , where M is 

the total number of spatial relatons in the relaton dictionary. 

The size of the relaton dictionary is 300 in most of our 

experiments. Hence, the storage cost of a spatial relaton 

histogram is only about 1 KB. 

E. Local Features 

We adopt Scale Invariant Feature Transformation (SIFT) 

[27] as the local feature in our experiments. SIFT features have 

shown great success on both computer vision and remote 

sensing applications [5, 27, 28, 42, 43, 44]. 

In this paper, we apply SIFT feature on gray images with 

densely sampled interest points, which is the most popular 

approach in both computer vision and remote sensing 

communities [28, 30, 42, 43, 44,]. The sampling rate used in 

this paper is one interest point every 8 pixels in both x and y 

directions, as suggested in the paper [28]. 

IV. EXPERIMENT 

To evaluate the effectiveness of the proposed PSR 

framework for the remotely sensed land use classification, we 

conduct experiments using the Land Use or Land Cover 

(LULC) high-resolution aerial image database [42], which is 

one of the largest geographical image databases with ground 

truth labeling. 

We first compare classification accuracy of the proposed 

PSR with the state of the art performance reported on the LULC 

dataset. Our proposed PSR achieves 8% higher in accuracy 

than the state of the art result under similar experimental 

setting. If using gray image only, we outperform the state of the 

art by more than 11% on the LULC database.  

Then we compare the PSR algorithm with the Bag of Words 

model and the Spatial Pyramid Matching model under our 

experimental setup. We find that the PSR model exceeds these 

state of the art methods by a significant margin across a range 

of visual words codebook size.  

We further investigate the effect of several important 

parameters related to the PSR model, such as the dictionary size 

of the spatial relatons, and the number of hierarchical levels. 
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A. Dataset 

The Land Use or Land Cover (LULC) dataset [42] is one of 

the largest geographical image databases with ground truth, 

which are publically available. The images are downloaded 

from the United States Geographical Survey (USGS) national 

map.  

There are total of 21 categories, including agricultural, 

beach, buildings, chaparral, dense residential, and forest etc. 

Sample geographical images of each land use category are 

shown in the Figure 7. Each class has 100 images with same 

size, i.e., 256 by 256 pixels. The pixel resolutions of all images 

are 30cm per pixel. 

B. Experimental Setup 

 To be consistent with other researchers’ experimental 

setting on the LULC dataset [43, 44], we randomly partition the 

database into five subsets, with each subset contains 20 images 

from each land use category. Four subsets are used as the 

training data, and the remaining subset is used in the testing. 

Figure 7: Sample geographical images from each of 21 categories in the Land Use or Land Cover (LULC) database. 

 
     (a)             (b) 

Figure 8: Evaluate the effect on the classification accuracy for the parameters of 
(a) number of hierarchical levels; (b) and spatial relatons’ dictionary size. 
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The experiments are repeated five times by selecting one of the 

five subsets as the testing data. The average classification 

accuracies and the standard errors are reported in this paper, 

unless otherwise noted. 

As the codebook size increases, it can take several days to 

generate just one codebook from four subsets of training data. 

In order to facilitate the experiments, we generate a codebook 

of visual words by selecting four subsets of training data, and 

reuse the same visual word codebook for the other experiments 

as we rotate through the testing subset. 

In the experiments, we use the dictionary size of 300 for 

spatial relatons, as it provides a good tradeoff between the 

accuracy and the efficiency. In Section C, we will evaluate how 

the dictionary size of spatial relatons affects the classification 

accuracy. 

C. Effect of PSR Parameters 

The Pyramid of Spatial Relatons (PSR) model has two 

important parameters, i.e., the number of pyramid levels and 

the dictionary size of the spatial relatons. In the following 

experiments, we will use the same experimental setup as in the 

previous section except changing one of the parameters. 

Figure 8(a) shows the classification accuracy over different 

number of hierarchical levels in the PSR model. As the 

hierarchical level increases, the performance continues 

improving until the number of levels is 3. 

The performance decreases slightly, when the number of 

hierarchical levels reaches 4. As the hierarchical level 

increases, the influence of absolute spatial information in the 

model also increases since the partitioned sub-regions becomes 

finer. At the fourth hierarchical level, an image is divided into 8 

by 8 sub-regions.  

Figure 8(b) shows the effect of spatial relatons’ dictionary 

size on the classification accuracy. We run this experiment on 

the first subset of testing data. The performance improves only 

slightly when the dictionary size increase from 100 to 500. 

After that, the performance remains constant. Hence, the 

dictionary size of 300 provides a good tradeoff between the 

accuracy and efficiency.  

D. Comparison with the state of the art 

To prove the effectiveness of the proposed Pyramid of 

Spatial Relatons (PSR), we first compare its classification 

performance on the LULC dataset with the state of the art 

performance reported in the literatures under similar 

experimental setup (i.e., 80% of images from each category are 

used as training, and the remaining 20% images are used as 

testing). As shown in Figure 9, the PSR model achieves around 

8% higher in accuracy, as compared with the best performance 

reported using HLS color histogram features [43]. Note that the 

PSR does not use color information in the model, although the 

accuracy can potentially be higher if the color information is 

also modeled. 

If considering gray level image only, the PSR model 

achieves more than 11% higher in accuracy than the best 

performance of the Spatial Co-occurrence Kernel with the Bag 

of Words (BOW+SCK). Yang and Newsam [43] also employed 

SIFT features for the BOW+SCK model. Their experimental 

setup is also similar to ours, i.e., 80% of the images in each 

category are used as training data, and the remaining 20% of the 

images are used as testing data. 

The superior performance, as comparing with the current 

state of the art results on the LULC dataset, demonstrates the 

effectiveness of the proposed PSR model for remotely sensed 

land use classification.  

To further evaluate the performance of the PSR model with 

the state of the art algorithms, we implement two of the most 

successful algorithms on the geographical image classification, 

i.e., the Bag of Words (BOW) model and the Spatial Pyramid 

Matching (SPM) model. We then directly compare the PSR 

with those two algorithms under our experimental setup. We 

found that the PSR outperforms the two state of the art 

algorithms by a significant margin over various codebook sizes. 

The detailed comparisons are shown in Section E and F below.  

E. Comparison with Bag of Words (BOW) 

The performance of the Bag of Words (BOW) model can 

vary significantly with the codebook size. Hence, we compare 

the performance of the Pyramid of Spatial Relatons (PSR) 

model with the BOW over different codebook sizes, as shown 

in Figure 10.  

The PSR outperforms the BOW model over all codebook 

sizes, i.e., 5000, 1000, 500, 300, 100, 50. The performance 

improvement is especially prominent when the codebook size 

is small. At the codebook size of 50, the improvement is more 

than 30%. 

 
Figure 9: Compare the Pyramid of Spatial Relatons (PSR) with the state of the art performance reported in the literature on the LULC database. The blue bars are 

the performance based on gray images. The green bars are based on color images. The performance reported in the PSR is only based on gray images. 
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Figure 10: Compare classification accuracy of the Pyramid of Spatial Relatons 

(PSR) with the Bag of Words (BOW) model over codebook sizes (x-axis). 

Even at the codebook size of 1000, which are typically used 

by other researchers on the LULC dataset [43], the PSR model 

exceeds the BOW model by more than 11%. At the codebook 

size of 5000, the PSR model achieves the average classification 

accuracy of 89.1%, which is almost 4% higher than the BOW 

model. 

As shown in Figure 10, the standard errors are very small 

over all codebook sizes, which confirm that the improvement of 

the PSR is statistically significant across all codebook sizes we 

evaluated. 

For the PSR model, the most confusion occurs in the 

“building”, “dense residential”, “mobile home park” and 

“medium residential” categories. By observing the sample 

images in Figure 7 on these four categories, we find the great 

similarity between the “mobile home park” and the “medium 

residential” categories. The “building” and “dense residential” 

categories also show some similarity.  

 
(a) 

 
(b) 

Figure 11: (a) Building images misclassified as dense residential by the PSR 

model; (b) Mobile home park images misclassified as medium residential by 

the PSR model. 

Figure 11(a) shows some of the building images, which are 

misclassified as dense residential. The first two images have 

large shadow in the image, which cause the recognition to 

become very challenged even by human. The last two images in 

Figure 11(a) share some similarity with the dense residential 

category. Note that the first three building images are also 

misclassified as dense residential by the BOW model. And the 

last image in Figure 11(a) is misclassified as tennis court by the 

BOW model.  

Figure 11(b) shows some misclassified images of mobile 

home park. All four images are incorrectly predicted as 

medium residential area, as these two categories have very 

similar appearance. 

 Except for the Mobile home park and the Medium 

Residential categories, the PSR has better or comparable 

performance over the BOW model in all other categories.  The 

performance improvement is especially profound over the 

baseball diamond and sparse residential categories, which is 

around 25% and 35% respectively as shown in Figure 15. The 

BOW model confuses the baseball diamond with storage tanks 

and sparse residential. For the sparse residential, the BOW 

model confuse it with many other categories including 

intersection, baseball diamond and storage tanks etc. 

 
(a) 

 

 
(b) 

Figure 12: (a) Baseball diamond images, (b) and Sparse Residential images, 

are predicted correctly by the PSR model, but not by the BOW model. 

 Figure 12 shows the geographical images from those two 

categories, which are predicted correctly by the PSR model, but 

not by the BOW model. The BOW model misclassifies the 

second and the fourth image in Figure 12(a) as storage tanks, 

and the third image of the baseball diamond as beach. By 

incorporating both relative and absolute spatial information of 

baseball diamond and its surroundings, the PSR model is able 

to correctly predict them as the baseball diamond. Similarly, 

without the spatial order of sparse residential area and its 

surroundings, the BOW misclassifies the last two geographical 

images in Figure 12(b) as intersection.   

F. Comparing with Spatial Pyramid Matching (SPM) 

We implement the original Spatial Pyramid Matching (SPM) 

model, which employs intersection kernel [21]. Figure 13 

compares the classification accuracy of the PSR with the SPM 

model over same set of codebook sizes in Figure 10. 

As shown in Figure 13, the best performance of the PSR 

model is more than 3% higher in classification accuracy than 

that of the SPM model. The PSR model has better performance 

when the codebook size is large, which is at least 500 for the 

LULC database in our experiments. The SPM model has 

slightly better performance than that of the PSR model when 

the codebook size is small. 
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To understand the performance advantage of the SPM at 

small codebook size, we replace the non-linear kernel, i.e., the 

intersection kernel, with the linear kernel as in the PSR model. 

We found that the performance of the PSR model improves 

across all codebook sizes. The detailed comparison is shown in 

Figure 14. Note that the best performance of the linear kernel 

SPM at the codebook size of 5000 is actually better than that of 

the original SPM model with the non-linear intersection kernel.  

As compared with the PSR, the SPM model has lower 

performance particularly on the categories, which are not 

invariant to the rotation, such as the airplane and the baseball 

diamond. As an example, the baseball diamond is most 

confused with the golf course in the SPM model. By capturing 

relative spatial information, the PSR model is able to reduce the 

confusion, and achieves 95% on the baseball diamond 

category, as shown in Figure 15.  

Figure 15 shows the performance of all the three models over 

each category of LULC database. The PSR model has better 

performance than the SPM in 13 out of 21 categories. In the 

remaining categories, they have equal performance. As 

compared with the BOW model, the PSR model has better 

performance in 9 out of 21 categories. The remaining 

categories have equal performance except 2 categories. 

V. CONCLUSION 

In this paper, we have proposed a Pyramid of Spatial 

Relatons (PSR) model to incorporate both relative and absolute 

spatial information into the Bag of Words (BOW) model for the 

remotely sensed land use classification. The novel spatial 

relaton captures quantized relative spatial relationship of local 

features using local feature distribution, which is more 

computationally efficient than the co-occurrence matrix 

approach. The proposed PSR model outperforms the state of 

the art performance by 8%. Comparing to the classification 

accuracy reported without color information, the PSR achieves 

more than 11% higher. We also implement two state of the art 

algorithms for the geographical image classification in our 

experimental setting. The side-by-side comparison with those 

two algorithms further demonstrates the advantages of the PSR 

model. 
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Figure 15: Compare category-wise performance of the Pyramid of Spatial Relatons (PSR) with the Bag of Words (BOW) and the Spatial Pyramid Of Matching 

with original intersection kernel (SPM) on the LULC database. 

 


