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Abstract—Prediction of sea ice motion is important for safe-
guarding human activities in polar regions, such as ship naviga-
tion, fisheries, and oil and gas exploration, as well as for climate
and ocean-atmosphere interaction models. Numerical prediction
models used for sea ice motion prediction often require a large
number of data from diverse sources with varying uncertainties.
In this study, a deep learning approach is proposed to predict sea
ice motion for several days in the future, given only a series of
past motion observations. The proposed approach consists of an
encoder-decoder network with convolutional Long Short-Term
Memory (LSTM) units. Optical flow is calculated from satellite
passive microwave and scatterometer daily images covering the
entire Arctic and used in the network. The network proves
able to learn long-time dependencies within the motion time
series, whereas its convolutional structure effectively captures
spatial correlations among neighboring motion vectors. The
approach is unsupervised and end-to-end trainable, requiring no
manual annotation. Experiments demonstrate that the proposed
approach is effective in predicting sea ice motion of up to 10 days
in the future, outperforming previous deep learning networks,
and being a promising alternative or complementary approach
to resource-demanding numerical prediction methods.

Index Terms—Advanced Microwave Scanning Radiometer -
Earth Observing System (AMSR-E), Advanced Microwave Scan-
ning Radiometer 2 (AMSR2), Advanced Scatterometer (ASCAT),
Arctic sea ice, convLSTM, deep neural networks, drift prediction,
optical flow, recurrent neural networks

I. INTRODUCTION

EA ice motion significantly affects the thickness distribu-

tion of ice in polar regions, causing leads or ridging. It
has a critical role in the advection of sea ice out of the Arctic
region, whereas it overall influences the ice mass balance and
fluxes between the ocean and the atmosphere [1]-[4]. It has
been used for the initialization, assimilation, and validation
of climate models simulating sea ice dynamics [5]-[9]. On
a local level, sea ice motion affects human activities in the
Arctic region. Following the continuous decline of sea ice
extent during the last decades and the projections for ice-
free periods in the future [10]-[12], the potential for more
extensive usage of the region for shipping, fisheries, oil and
gas exploration, and tourism has been raised [13]. In order
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to safeguard human activities and enhance climate modeling,
accurate short-term predictions of sea ice motion for several
days in the future are increasingly important.

Predictions of sea ice motion, together with sea ice ex-
tent and related variables, have almost exclusively been at-
tempted using numerical prediction models, including fully
coupled atmosphere-ocean global climate models, statistical
regression-based approaches, and heuristic methods [14]-[19].
A number of models have been designed to address seasonal,
interannual, and decadal predictions [13], [20], whereas others
focus on short-term forecasting [21], with the latter being
crucial for safe maritime operations. To generate the desired
outputs, these models usually rely on a large number of sources
of information, including surface winds, ice thickness, water
currents, ice collision rheology data, or previous predictions.
For a specific time frame or area of interest, the data sources
can be limited [22], thus, reducing the applicability of the
models. In addition, the model predictions are associated with
several sources of uncertainty, including model initial condi-
tions and uncertainties in the input data, e.g., ice thickness
data [23], [24].

More specifically, one of the main drivers of sea ice motion,
especially in central Arctic, rather than the coastlines, is
wind [25], [26]. This is why weather prediction models have
been extensively used to predict sea ice motion. Thus, wind
prediction limitations of these models consequently limit the
accuracy of sea ice motion prediction. In addition, given that
the average sea ice drift speed has increased during the last
decades to a much larger degree than wind speed [25], [27],
such predictions become more challenging. Additional factors
that affect sea ice motion are ocean currents, forcing due to
the Coriolis force and density-driven gravitational forcing, and
ice cover and internal ice strength, with the latter ones acting
as resisting motion factors.

In this study, we propose a short-term prediction approach
based on single-source data time series. In particular, we
employ sea ice motion data calculated from sequences of
daily passive microwave and scatterometer satellite images and
predict motion for several days in the future. Our proposed
approach is based on deep neural networks, specifically convo-
lutional Long Short-Term Memory (LSTM) networks [28], and
offers several advantages compared with the aforementioned
numerical model prediction paradigm: i) it relies on a single
source of data, thus, it is prone to single-source uncertainties;
ii) the data are available on a daily basis and cover the entire
Arctic; iii) the proposed approach is completely unsupervised
and automated, i.e., the proposed network is trained end-to-end
without requiring any human annotation of the data; and iv)
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while the methodology explicitly ignores the aforementioned
factors that affect sea ice motion prediction (wind, ocean
currents, sea ice cover), these factors can be implicitly modeled
through the calculations of spatial and temporal correlations
of sea ice motion. In addition, contrary to the only previous
deep learning approach for sea ice motion prediction [29], our
proposed convolutional LSTM approach can explicitly capture
spatial relationships among neighboring motion vectors.

Our study is organized as follows: Section II discusses
previous work on motion prediction. Section III presents the
data used in the study and Section IV details our proposed
method. Experimental results are drawn and discussed in
Section V. Conclusions are given in Section VI.

II. RELATED WORK

Recurrent neural networks (RNN) have been used in a
variety of remote sensing applications, including image clas-
sification [30], [31], automatic clustering of multispectral
images [32]; spatiotemporal prediction of snow depth and dis-
tribution driven by meteorological data [33]; retrieval of areal
extent of snow cover [34]; rainfall nowcasting from multi-
satellite passive-sensor images [35]; and estimation of soil
moisture dynamics [36]. In particular, LSTM networks have
been additionally employed in image classification [37]; image
captioning [38]; land cover change detection [39]; semantic
understanding of high resolution images [40]; and supervised
texture segmentation [41]. Contrary to the aforementioned
applications, LSTM networks are employed in this study to
encode spatiotemporal information, more specifically sea ice
motion, from 2D time-series and predict future time-series in
the 2D space for several days in the future.

Prediction of motion has been an increasingly studied field.
A number of approaches have focused in predicting motion
trajectories of image pixels or objects in the 2D space [42]-
[44]. Despite the similarities, the objective of this study is
different, as we do not aim at predicting the trajectory of
specific sea ice floes, but instead at predicting the motion
in the dense image field, i.e., for every pixel, for several
time instances. Prediction of traffic or crowd flow is another
relevant field to our study where deep learning techniques have
been proposed recently [45]-[49]. Ma et al. [46] proposed
a 2D image representation of spatiotemporal traffic and a
convolutional neural network (CNN) approach for short-term
traffic prediction. Similar to [49], space is considered as one
dimension, with spatial correlations captured in 1D space, and
thus, different from the 2D desired motion in this study. Closer
to the problem formulation in this study, Yu et al. [45] used
CNN to generate 2D spatial traffic features and fully connected
LSTM for prediction. Zhang et al. [47], [48] leveraged the
existence of motion temporal patterns and proposed the fusion
of temporal closeness, period, and seasonal trend to capture
temporal dependencies for short-term crowd flow prediction.
The method could be promising for sea ice motion prediction
under the assumption of seasonality patterns of the motion,
which have not been observed on our available single-year
data. Furthermore, several approaches have employed static
images to predict future image frames [50]-[52]. Such ap-
proaches are not appropriate in our study, since single-time

images, or even single-time sea ice motion, convey limited
information on future sea ice motion and any prediction would
be mostly arbitrary.

A number of approaches based on image time series as input
for future prediction have been proposed recently, mainly in
the field of unsupervised video prediction [28], [29], [53]-[61].
Srivastava et al. [59] proposed an encoder-decoder architecture
based on LSTM to predict a number of future images from an
input sequence of images. A variation of the network using
a predicted frame as additional input for the next prediction
provided the best results. Shi et al. [28] introduced the idea of
convolutional LSTM (convLSTM) networks, that besides the
ability to encode and decode temporal information, were able
to capture spatial relationships between neighboring pixels for
precipitation nowcasting. The idea of convolutional LSTM
models has further been employed in prediction studies [53],
[55], [56], [58]. A recent study used optical flow, i.e., dense
2D sea ice motion, directly as input to an encoder-decoder
LSTM network to predict sea ice motion for several days
in the future [29]. However, the input in this approach was
converted to a 1D vector to be handled by the fully connected
LSTM networks, thus ignoring spatial relationships between
neighboring pixels.

In this study we propose a deep convolutional LSTM
approach for sea ice motion prediction. A major difference
with aforementioned frame prediction approaches is that we
do not try to predict future images and use these images
to estimate motion. Instead, we use optical flow time series
as input to the convolutional LSTM network and directly
predict motion for several days in the future. Contrary to
[29], the proposed convolutional structure is able to capture
spatial relationships among neighboring pixels, whose motion
is highly correlated.

III. DATA

The principal data used to train the prediction model are a
large number of Level-3 brightness temperature images from
the Advanced Microwave Scanning Radiometer - Earth Ob-
serving System (AMSR-E) sensor on NASA’s Aqua satellite
[62]. The spatial resolution of the images is 12.5 km. In total,
a number of 276 daily images, from January Ist to October
3rd, 2011, are collected, most of them used for the model
training. The images are of horizontal polarization at 36.5 GHz
and cover the entire Arctic (Fig. 1), with the coordinates of
their corners being: top-left 30.98°N, 168.35°E; bottom-left
33.92°N, 80.74°W; top-right 31.37°N, 102.34°E; bottom-right
34.35°N, 9.97°W.

A variety of data is used to evaluate the prediction model,
coming from different sensors, properties, and periods of
the year. First, a random sample from the aforementioned
AMSR-E images is used for testing. In addition, images from
the Advanced Microwave Scanning Radiometer 2 (AMSR2)
onboard the Global Change Observation Mission - Water
(GCOM-W) satellite are used. AMSR2 data from both 36 GHz
and 89 GHz bands are collected from the winter (Feb. 21 —
Mar. 24, 2018) and summer (Aug. 21 — Sep. 30, 2018) seasons
[63]. In particular, Level-3 horizontal polarization brightness
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Fig. 1. AMSR-E image from January 1, 2011, with brightness temperature
colorbar (in K). The image is projected on the North Polar Stereographic
projection [65].

temperature images of 10 km spatial resolution are collected.
The images are downsampled to 12.5 km resolution to have
the same extent and size to the AMSR-E images. In order
to evaluate the performance of the approach beyond passive
microwave data, images from the Advanced Scatterometer
(ASCAT) onboard the EUMETSAT METOP satellite are also
collected for testing, both from the winter (Feb. 19 — Mar.
30, 2017) and the summer (Aug. 28 — Sep. 27, 2017) seasons
[64]. In particular, daily multi-orbit incidence angle normal-
ized sigma-0 (sigma-0 at 40 degree incidence angle) Arctic
images processed by the multi-variate Scatterometer Image
Reconstruction algorithm with filtering (SIRF) are used. The
images are downsampled from 4.45 km to 11.20 km, so their
width matches the width of the AMSR-E and AMSR2 images.

All images are projected in the National Snow and Ice
Data Center (NSIDC) Polar Stereographic North grid, with
70°N latitude of true scale and the origin longitude at 45°E
[65]. The images are scaled between the overall minimum
and maximum values of the entire set and converted to 8-bit
images for memory and processing efficiency. The open water
and land is masked out from each image, based on daily masks
generated by or distributed with the above products.

As a note, a main reason for the selection of the data
sources above for this study, besides the previous successful
use in sea ice motion estimation studies and the wide spatial
coverage, is the availability of daily data. This temporal

resolution is necessary to allow daily predictions. Thus, such
large swath width radiometer and scatterometer data are more
appropriate for the requirements of this study than smaller
swath width data sources, such as Synthetic Aperture Data
(SAR). Although SAR has proven accurate in providing high
resolution sea ice motion estimation, the daily availability of
images covering the entire Arctic is currently limited [66].

Note that the images and their corresponding sea-ice
masks used in the experiments in this manuscript, for the
AMSR-E, AMSR2, and ASCAT sensors are available at DOI:
10.21227/f87y-by42 with the title of “Data for Prediction of
Sea Ice Motion with Convolutional Long Short-Term Memory
Networks.”

IV. METHODS
A. Optical flow estimation

Optical flow is calculated for each pair of masked images
of consecutive days for AMSR-E, AMSR2, and ASCAT
data, respectively. Given a pair of images, the output of the
calculation is a 3D tensor with the two axes representing the
axes of the original 2D images in pixels, and the third axis
including the latitudinal and longitudinal motion of sea ice for
each pixel from the first to the second image. As a note, the
terms “latitudinal” and “longitudinal” motion are used in the
paper to indicate motions in the vertical and horizontal axis of
the reprojected images, respectively. Despite the fact that, due
to the selected map projection, the terms do not align with the
geographic latitude and longitude coordinates (e.g., positive
longitudinal motion in the upper part of the projected image
describes motion toward decreasing geographic longitudes),
the terms are selected to highlight the georeferenced nature
of the analyzed motion. The optical flow method proposed
in [67] is adopted, proven more accurate than traditionally
employed pattern matching in sea ice motion estimation and
able to provide dense calculation in the continuous (sub-pixel)
space [60].

The calculated optical flow data are grouped in overlapping
sequences including 7"+ P consecutive-day flow instances,
where the first 7" flow instances represent the input to the
prediction model and the last P ones the desired output.

B. Conditioned convolution LSTM network

1) Comvolutional LSTM unit: The proposed network con-
sists of connected convolutional LSTM units, which have the
typical structure of LSTM with peephole connections [28].
The structure of an LSTM unit is drawn in Fig. 2.

Each LSTM unit consists of a memory cell C, which is
connected with an input, i, forget, f, and output, o, logistic
sigmoidal gates. This structure allows the memory cell to sum
activities over time and capture long-term properties, counter-
acting exploding and vanishing gradient problems that limit
vanilla RNN networks. At time ¢, the unit gets as input the
t-th optical flow of a sequence, X, and the output, or hidden
state, from the previous step, H;_;. In the case of the encoder,
X; comes from the input optical flow sequence, whereas in
the case of the decoder from the predicted sequence. The two
input sources, X; and H;_1, pass through the input and forget
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Fig. 2. Representation of a LSTM unit. The inputs of the unit at time ¢ are
shown in the ellipse outside the box. Arrows with input variables in parenthesis
denote that only the specific input(s) is(are) passed. The outputs of the LSTM
unit are the updated cell, C¢, and hidden, Hy, states.

gates and update the cell state. The updated cell state, C, pass
together with X; and H;_; through the output gate and update
the hidden state of the unit through a tanh non-linearity. All
Hy, iy, fi, and oy are 3D arrays whose last two dimensions
match the width and height dimensions of X,. The following
formulas describe the overall LSTM connections:

i =0 (Wi ¥ Xy + Wi x Hy 1 + Wey © Cyoq + by),

fr =Wy Xy + Wiy x Hi_y + Wep © Ciq + by),
Ci =ft © Cy1 + s tanh(Woe % Xy + Whe x Hy 1 + be),
0 =0(Wao % Xy + Wio ¥ Hi_1 + Weo © Cy—1 + b,),
H; =o0; ® tanh(C}),

where o represents the sigmoid function, W the weight
matrices, and b the biases. The peephole connection weight
matrices We;, Wey, and W, are diagonal, whereas the rest
are dense. Convolutions are denoted by *, whereas © stands
for the Hadamard product.

2) LSTM network: The proposed prediction network has
an encoder-decoder structure with convolutional LSTM units
(Fig. 3). For a specific sequence, the input daily flows, X,
are given sequentially as input to the LSTM encoder and
transformed into a compact representation. The encoded rep-
resentation is then fed to the decoder network that predicts
the next daily optical flows. The output is fed to a forward
convolutional layer that reconstructs it to the same feature
dimensions as the input. During the training of the network,
the predicted flows, ¥;, j = T+ 1,...,T + P, are compared
with the corresponding calculated flows for the same days,
X, t =T +1,...,T + P. Thus, the entire network is end-to-
end trainable in an unsupervised fashion requiring no manual
annotation.

Fig. 4 draws in more detail the interactions among the
network components. As depicted, the last states and cell
outputs of the encoder are copied to the decoder network. The
encoder and decoder can consist of multiple layers of LSTM
units stacked together, with the output, H, of one layer being
the input of the next one. Contrary to the original convolutional
LSTM model [28], our decoder network is conditioned on
the previous output [59]. This structure allows the decoder

decoder
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Fig. 3. Overview of the structure of the proposed convolutional LSTM
prediction network. X represents the optical flow input sequence, ‘LSTM*
and ‘Conv* stand for convolutional LSTM and forward convolutional layers,
respectively, and ¥ represents the predicted flow array.
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Fig. 4. Breakdown of the encoder-decoder structure of the proposed prediction
network. X; represents the i-th optical flow array of the input sequence X,
I?j represents the j-th predicted flow array; Cj ; and H; ; stand for the cell
and hidden state of a convolutional LSTM unit in layer ! and time ¢.

network to use as additional input for each predicted flow,
Yt, t =T+ 1,..,T + P, the previous prediction, ?t,l,
with the exception of the first prediction, YT+1, where the
encoded information is the only input to the decoder (Fig.
4). During training, the observed optical flow in time ¢ — 1
is used as input, whereas during validation and testing the
predicted flow is used instead. This modification is supported
by the notion that sea ice motion between consecutive days
usually does not change dramatically as far as magnitude and
direction are concerned, at least at the 12.5 km spatial and
the daily temporal scale of the imagery. There can be regular
direction and speed changes on sub-kilometer and sub-daily
scales, due to tides, inertial effects, and ice leads and ridging
[68], [69], but their effects are averaged out on the scales of
analysis of this study. Thus, prior knowledge of the predicted
motion at time ¢ — 1 is expected to constrain and enhance the
prediction at time ¢. Furthermore, in [28] the outputs from all
decoder LSTM layers are concatenated and fed to the 1 x 1
convolutional layer to produce the final prediction. On the
contrary, in our network only the output of the last LSTM
layer is fed to the final 1 x 1 convolutional layer. The notion
of this simpler connection network is to keep the role of each
layer distinct in the propagation of information between layers,
so network optimization is more focused and targeted during
training. In addition, the number of network parameters is also
decreased in this final layer, preventing overfitting.

3) Optimization and loss: Backpropagation through time
(BPTT) and Root Mean Square Propagation (RMSProp) [70]
are used for minibatch training of our network. During train-
ing, having an optical flow sequence {Xi,..., X7} as input,
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the predicted sequence {¥r1,..., Y74 p} is compared with the
actual sequence {Yr41,..., Y7+ p}. Instead of the commonly
used squared loss [28], [29], [59], we additionally employ [
gradient difference loss [57], to penalize changes in differences
between neighboring pixels beyond the expected ones. Our
final loss function is

LY,Y)=ua Z ik — Yz‘,j,k’2

ik
~ ~ 2
+0) Yigk = Yicwjkl = [Yigw = Yic1 ]|
ik
~ 2, 2
+0 > [1Vigk = Yijokl = Yok — Vil
ik

D

where i, 7, and k are width, height, and depth, pixel indices,
respectively. The first summation term represents the squared
loss, whereas the last two terms the gradient loss. The weights
a € R and b € R define the relative contribution of the two
terms in the overall loss.

V. RESULTS AND DISCUSSIONS
A. Experimental settings

The daily optical flow arrays form sequences of 20
consecutive-day arrays. In each sequence, the first 10 arrays
are used as input (7" = 10) and the last 10 as the ground-
truth prediction output (P = 10). Data from AMSR-E are
used to train the prediction model. A number of temporally
overlapping sequences are randomly selected to form the
validation set during the network training. Another set of
temporally overlapping sequences are randomly selected as
testing set, under the condition of having no common dates
with the validation set. The remaining sequences are used as
the training set, with no common dates with the validation
and testing sets. The sequences are split in 32 x 32 spa-
tially non-overlapping patches over the longitude and latitude
image dimensions, forming sequences of 20 such patches.
For training efficiency, the sequences with no sea ice pixels
are removed from the training and validation sets. However,
since we aim at simulating real-life conditions and make the
algorithm agnostic of the underlying surface, we keep training
and validation sequences that include non-moving (e.g., land,
land-fast ice) pixels together with moving (sea ice) pixels, so
that the algorithm can learn zero-motion patterns as well. The
testing sets consist of sequences covering the entire Arctic
region, including both moving and non-moving regions.

Following the above process, the training and validation sets
include 32,087 and 1,208 sequences of 20 32 x 32 optical
flow patches from AMSR-E data, respectively. The testing
data include 1) 5,852 sequences of patches from AMSR-E; ii)
13,718 and 14,440 sequences from ASCAT winter and summer
data, respectively; and iii) 20,216 sequences from each of
AMSR?2 36 GHz and 89 GHz winter data type and 21,280
sequences from each summer data type.

We use a 3-layer encoder and a 3-layer decoder network.
The number of hidden states of the convolutional LSTM

TABLE I
COMPARISON OF THE PREDICTED OPTICAL FLOW WITH THE REFERENCE
OPTICAL FLOW VECTORS FOR THE AMSR-E DATA, FOR EACH
PREDICTION STEP IN THE FUTURE (‘FUT’). COLUMN ‘VECTORS’ REPORTS
THE TOTAL NUMBER OF VECTORS COMPARED. MEAN-ABSOLUTE ERROR
(MAE) AND ROOT MEAN-SQUARED ERROR (RMSE) ARE REPORTED FOR
THE LATITUDINAL (X) AND LONGITUDINAL (Y) MOTION AXES, BOTH IN
KM. THE AVERAGE ERRORS FROM ALL STEPS ARE ALSO REPORTED.

[ fut T vectors | x-MAE [ x-RMSE | y-MAE | y-RMSE |
1 807626 2.34 3.25 2.11 3.07
2 803467 2.65 3.69 2.32 3.44
3 799080 2.78 3.84 2.18 3.23
4 794545 3.00 4.10 2.30 3.35
5 790216 3.28 4.46 2.50 3.62
6 786609 3.37 4.60 2.68 3.84
7 782872 3.40 4.62 2.76 3.93
8 779041 3.44 4.63 2.86 4.05
9 774893 3.39 4.56 3.03 4.24
10 770026 3.28 4.40 3.09 4.33
Avg. | 788837.5 3.09 4.21 2.58 3.71

layers are 128, 64, and 32, respectively, whereas the state-
to-kernel size is 5 x 5. We use minibatch training of 16
sequences, a learning rate of 0.001 and a decay rate of 0.9
for RMSProp optimization. The size of LSTM layers and the
learning and decay rates are in line with related studies [28],
[55], [58]; we experiment with varying values without noticing
significant changes in performance. The batch size is selected
based on experimentation and capabilities of the available
GPUs (graphics processing units). As widely employed, the
convolutional LSTM layer weights, W, were initialized from
a uniform distribution in [-1, 1], whereas the initial biases,
b, were set to zero. We select the [y gradient loss function
described in eq. (1), which outperformed [, I1, and /; gradient
loss functions in our experiments. The weights of the loss
function in eq. (1), a and b, are set to 1.

We compare our conditioned convolutional LSTM network
with the fully connected conditioned LSTM network by Petrou
and Tian [29] and the convLSTM network by Shi et al. [28].
For the former, we employ a 2-layer encoder-autoencoder-
decoder architecture with 4096 and 2048 hidden states, uni-
form initialization of the weight matrices and biases set to
1, based on recommendations in [71]. The two convLSTM
versions have the same parameters as our network, one with
the originally proposed 3 x 3 state-to-kernel size and one with
5x 5. Based on the performance in the validation set, the same
number of 50 epochs is selected to train all networks.

B. Comparison with reference optical flow

The predicted optical flow from our proposed network for
ten days in the future is compared with the reference optical
flow for the same days. Thus, the average difference of the
predicted 2D motion vector at each pixel with the reference
optical flow at the same pixels is calculated.

1) AMSR-E data: Table 1 shows the mean-absolute error
(MAE) and root mean-squared error (RMSE) between the
vectors for the latitude (‘x”) and longitude (‘y’) axes for 10
prediction steps, as well as the overall average performance.

As expected, the best predictions—highlighted in bold—are
made for the first prediction step, i.e., the first day after the
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observed optical flow. The performance of the prediction starts
degrading as predictions move further into the future. In the y-
axis the worst performance is observed at the 10-th prediction
step, for the x-axis at the 8-th step, whereas overall the errors
are larger the later the predictions are into the future. The
MAE errors follow a quasi-linear increase as the predictions
move into the future. It is noteworthy that the worst error
predictions are less than by 50% worse than the best early
predictions. This indicates that prediction holds a similar, not
quickly decreasing performance after several prediction steps
in the future.

2) Winter ASCAT and AMSR?2 data: Fig. 5 draws the MAE
errors for the ASCAT and AMSR?2 data during the dry winter
season for the 10 prediction steps. Masking out non-sea ice
pixels, about 1.5 million and 1.1 million motion vectors are
included per prediction step. The predictions with ASCAT data
follow more closely the observed optical flow vectors than
the predictions from AMSR2 data for all prediction steps,
as far as the combined x- and y-axis errors are concerned.
The predictions from 36GHz ASMR?2 data are consistently
better than the 89 GHz AMSR?2 data, but following a highly
correlated pattern per prediction step. For all sources of data,
the predictions get less accurate as they move further in the
future. However, similar to the ASMR-E data, the prediction
drop from the first to the tenth precision step is only about
20% or lower for any of the ASCAT and AMSR2 data,
demonstrating that the performance of the model remains
stable after several days in the future. It is also noteworthy
that predictions, mostly from the ASCAT data, have similar
accuracy with the predictions from AMSR-E data reported
in Table I. This demonstrates that our model is transferable
to data sources different than the ones used to train it, and
highlights the importance of using optical flow data rather
than sensor-specific raw image values, such as brightness
temperature.

3) Summer ASCAT and AMSR?2 data: The MAE errors for
the ASCAT and AMSR?2 data during the melt summer season
are drawn in Fig. 6 for the 10 prediction steps. After masking
out non-sea ice pixels, each prediction step considers about
320,000 and 565,000 vectors from ASCAT and AMSR?2 data,
respectively. As in the dry season, the predictions with ASCAT
data are consistently more accurate than AMSR2 data. For
most prediction steps, the predictions with 36GHz AMSR2
data are not significantly worse than with ASCAT data. On
the contrary, 89 GHz AMSR2 errors are almost double as high
as 36 GHz AMRS?2 for most prediction steps. As reported in
previous studies [72], [73], 89 GHz microwave data are more
affected by atmospheric and surface properties than 36 GHz
and lead to less accurate estimation of sea ice motion. Such
atmospheric conditions, more intense during the summer melt
season, have affected the accuracy of the calculated optical
flow, used as input and reference data. Thus, the input data
from 89 GHz can include inconsistent and erroneous motion
patterns that the model has not been trained to identify, and
thus, lead to predictions less consistent with the calculated
reference flow.

4) Marginal ice zone and Canadian Archipelago: Besides
regions of thick ice, mainly in the center of Arctic and around

Winter predictions
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Fig. 5. Comparison of the predicted optical flow with the reference optical
flow vectors, for each prediction step in the future. MAE errors of the ASCAT
and AMSR?2 winter data are reported for the latitudinal (x) and longitudinal
(y) motion axes.

Summer predictions
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Fig. 6. Comparison of the predicted optical flow with the reference optical
flow vectors, for each prediction step in the future. MAE errors of the ASCAT
and AMSR?2 summer data are reported for the latitudinal (x) and longitudinal
(y) motion axes.

the North Pole, the area of study includes several regions
of thinner ice, where sea ice motion is usually more intense
and may be more challenging to predict. In addition to the
evaluation for the entire Arctic presented in the previous sec-
tions, we measure the performance of the algorithm separately
in two such areas of high operational interest, the Canadian
Archipelago and a marginal ice zone east of Greenland (Fig.
7).

Table II reports the MAE errors of the predicted versus the
observed reference flow with the ASCAT and AMSR2 data,
for both the winter and summer seasons. For space economy,
only the first and tenth predictions are reported, in most cases
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Fig. 7. Canadian Archipelago (solid line) and marginal ice zone (dashed line)
regions selected for study, on zoomed view of the 36 GHz AMSR2 image
from March 1, 2018.

TABLE 11

COMPARISON OF THE PREDICTED OPTICAL FLOW WITH THE REFERENCE

OPTICAL FLOW VECTORS, IN THE CANADIAN ARCHIPELAGO FOR ONE
AND 10 PREDICTION STEPS IN THE FUTURE (‘FUT’). COLUMN ‘VECTORS’

REPORTS THE AVERAGE NUMBER OF VECTORS COMPARED PER
PREDICTION STEP. MEAN-ABSOLUTE ERROR (MAE) IS REPORTED FOR
THE LATITUDINAL (X) AND LONGITUDINAL (Y) MOTION AXES. THE

AVERAGE ERRORS FROM ALL STEPS ARE ALSO REPORTED. ‘W,” AND ‘S,
‘36,” AND ‘89’ INDICATE WINTER, SUMMER, 36 GHZ, AND 89 GHZ DATA,

RESPECTIVELY.
x-MAE (km) y-MAE (km)
source vectors | fut I | fut 10 | fut I | fut 10
Canadian Archipelago
ASCAT-w 327709 | 1.31 1.89 1.50 2.07
AMSR2-36-w | 317075 1.75 2.33 1.83 2.56
AMSR2-89-w | 317075 | 1.88 2.51 1.88 2.96
ASCAT-s 63021 1.21 3.73 1.23 1.80
AMSR2-36-s 187304 | 4.12 3.99 3.26 3.27
AMSR2-89-s 187304 | 9.65 7.52 | 10.46 8.04
Marginal ice zone

ASCAT-w 68911 | 2.01 3.16 2.76 4.38
AMSR2-36-w 54819 | 2.49 4.15 2.64 429
AMSR2-89-w 54819 | 2.60 4.27 2.76 4.18
ASCAT-s 6449 | 1.91 3.09 2.79 1.30
AMSR2-36-s 29459 | 5.40 5.70 6.93 7.37
AMSR2-89-s 29459 | 5.31 5.19 6.20 6.23

representing the lower and upper error limits among the 10
predictions. The errors for the two regions are very similar
with the errors reported for the entire Arctic (Fig. 5 and Fig.
6). Our proposed model is able to predict the motion in these
challenging regions with similar accuracy as the entire study
area. As observed in the previous experiments, the ASCAT
data provide more accurate predictions than the AMSR2 data.
Similarly, the predictions are more close to the reference data
during the dry winter season than the melt summer season.

C. Comparison with previous methods

We compare our proposed network with previous multi-
step prediction approaches, as detailed in Section V-A, on the

TABLE III

COMPARISON OF THE PROPOSED METHOD WITH THE CONDITIONED
LSTM APPROACH BY [29] AND THE CONVOLUTIONAL LSTM APPROACH
BY [28], THE LATTER WITH 3 X 3 AND 5 X 5 STATE-TO-KERNEL SIZES, ON
THE AMSR-E DATA. THE ACCURACY OF COPYING THE LAST INPUT FLOW

IS ALSO REPORTED AS ‘BASELINE.” THE AVERAGE MAE AND RMSE
ERRORS, BOTH IN KM, FOR 10 PREDICTION STEPS ARE SHOWN, FOR THE

LATITUDINAL (X) AND LONGITUDINAL (Y) MOTION AXES.

[ Method | x-MAE | x-RMSE | y-MAE | y-RMSE |
baseline 3.61 494 3.10 443
[29] 3.36 453 2.68 371
281 [3x3] | 3.19 435 2.81 4.01
28] [5x5] | 312 4.24 2.63 372
Ours 3.09 421 2.58 371

AMSR-E data. In addition, the performance of simply copying
the last observed input optical flow is considered as baseline.
Table III presents the average errors for 10 prediction steps
in the future. The conditioned LSTM network by Petrou and
Tian [29] performs similarly with the convLSTM network with
3 x 3 state-to-kernel size by Shi et al. [28]. Increasing the
state-to-kernel size to 5 x 5 captures motion correlations in
a larger area and proves beneficial for the performance of
the network. Our proposed approach achieves lower errors
than both methods, as highlighted in bold. It proves able to
capture spatial correlations of motion with the convolutional
LSTM layers, whereas conditioning each prediction to the
previous one, acts as a priori—unsupervised—knowledge that
is beneficial for the next predictions.

D. Comparison with buoys

Following an unsupervised end-to-end training, our model is
trained to minimize the loss against the reference optical flow
values. These reference optical flow values, calculated from
the corresponding observed AMSR-E image pairs, are consid-
ered as a ground-truth during the model training. However,
the optical flow calculations with observed data entail errors
as evidenced when compared with more accurate validation
sources [07]. To get a further estimate on the accuracy of the
model predictions, the predicted optical flow vectors are addi-
tionally evaluated against buoys from the International Arctic
Buoy Programme (IABP) [74]. The buoys have estimated
position accuracy around 0.5 km/day [72], [74], providing
position accuracy at a much finer scale than the reference
optical flow estimated from the coarse 12.5 km resolution
AMSR-E images. The daily buoy positions at 12:00 GMT are
collected to calculate their motion within consecutive days,
and projected to the NSIDC Polar Stereographic North grid
[65].

Fig. 8 shows the performance of the proposed approach
against the buoy motion, on the AMSR-E data, for every
prediction step. The corresponding errors of the reference
optical flows are provided too, i.e., the errors calculating
the optical flow from observed images on the same days,
rather than predicting it. As expected, the reference flow errors
remain almost stable as the prediction steps change, since they
are independent from the prediction process. On the contrary,
the errors of the predictions overall increase as the prediction
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Fig. 8. Comparison of the predicted optical flow and the reference optical
flow vectors from the AMSR-E data against buoys, for each prediction step
in the future. MAE and RMSE errors are reported for the latitudinal (x) and
longitudinal (y) motion axes. The reference data errors are indicated by the
prefix ‘-r’.

moves further to the future. Some individual high error values
in the first prediction steps on the x axis may be considered
as statistical outliers, justified by the fact that the model is not
trained to minimize the errors against the buoys, but against
the reference flow data.

However, the plots can still offer useful indications on the
predictive power of the proposed network. We calculate the
relative difference between the corresponding predicted and
reference types of error (e.g., the MAE on the x axis for the
predicted and reference data), as (eqp — e’r'a,p) /€a.p, Where
€aq,p 15 the average prediction error for axis a, a = X,y and
type p, p = MAE,RMSE, for the 10 prediction steps, and
erq,p,t the corresponding reference error. This relative error
lies between 0.84 and 0.95 for the different error measures
and axes, indicating that the prediction errors are less than
double the reference optical flow error. In addition, it is
worth noting that several predicted motions are as accurate
as estimations of motion from observed images from previous
studies. In particular, pattern matching on similar AMSR-E
36.5 GHz data estimated motion with RMSE error 4.5 km
on the x and 4.83 km on the y axis [72]. As observed on
Fig. 8, predictions of up to five steps on the y axis have
lower error than the motion estimated with observed data from
the previous approach. This demonstrates, on the one hand,
that the selected optical flow approach offers a solid basis for
the training of our network compared with pattern matching
approaches, and on the other hand, that our prediction method
offers promising results for motion prediction, even without
using any buoy information for training. Assimilation of such
data in the training process is a candidate future pathway to
further increase our method’s prediction accuracy.

Fig. 9 focuses on the sea ice motions within the Arctic
Ocean. The predicted motion for one step in the future is
drawn, together with the reference optical flow calculated from
the corresponding observed AMSR-E images and the buoy
motion. Although the optical flow is predicted for each pixel
of the image, only 1/14 and 1/9 of the vectors are drawn for

—=prediction_1
= Reference
—=Buoys

15 km
=

Fig. 9. Focus on predicted sea ice motion for one day in the future with the
AMRS-E data, for the dates between May 24 and 25, 2011. The reference
optical flow calculated from observed images and buoy motion are also drawn.

clearer illustration for the latitude and longitude axis, respec-
tively. The scale of the motion is also magnified. As observed,
the predicted motion follows closely the reference one. For the
largest part of the image the predicted and reference motion
vectors are highly correlated both in magnitude and direction.
It is noteworthy that in certain areas, such as the Beaufort
Sea and Chukchi Sea on the left part of the depicted area, the
predicted motion does not agree well with the ground truth
buoy motion, since no buoy information was used during the
network training. Instead, the predictions follow closely the
reference flow, which demonstrates the success of our method
to extrapolate observations into the future, but also some of
its limitations associated with its limited training sources.

E. Image prediction

We additionally evaluate our network ability to predict
future AMSR-E images, given a sequence of past images
as input. The depth dimension of the network is changed
to 1, since single-band greyscale images are the input and
desired output in this case. The rest of the network parameters
remain the same. Fig. 10 shows examples of AMSR-E image
prediction for one, six, and 10 steps in the future. In particular,
a focused view of the predicted image for one step in the
future together with the original image are shown in Fig. 10a
and Fig. 10c, respectively. The sea ice mask image is also
drawn to highlight the areas mostly used during the model
training. It is observed that the proposed network is able to
predict most of the structure elements of the image, in the
sea ice, open ocean, and land areas. Some patch edge effects
can be observed in the predicted images, coming from the
32 x 32 pixel predicted patches that were mosaicked to form
the final images. In addition, the predicted image appears more
blur than the original one, with several sharp details useful
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to extract sea ice motion being smoothed out. However, the
network proves able to predict the overall structure of the area,
even in the parts of no sea ice that were masked out during
the training process.

Fig. 10b, Fig. 10d, and Fig. 10f draw the absolute differ-
ences between predicted and observed images for one, six, and
ten steps in the future, for the dates of May 20, 25, and 29,
2011. The overall predictions for all steps in the future are
relatively small, as indicated by the dark pixels in the images.
As expected, the first-step predictions are the closest to the
observed image. As predictions move further in the future,
the differences with the observed images slightly increase.
However, most differences appear in areas with non-sea ice
pixels, which were masked out during model training. Areas
in the central Arctic region, where the main sea-ice layer exists
as drawn in Fig. 10e show small differences even for 10-step
predictions.

Fig. 11 shows a detail of the predicted image of May 20,
2011, for one day in the future by the proposed convolutional
LSTM network and the fully connected network in [29]. The
improvement in accuracy and the ability to preserve edges
brought by the convolutional LSTM network is observed. Be-
sides these advantages, though, the proposed network appears
also more robust to patch effects created by splitting the
image (and optical flow) data into sequences of 32 x 32 pixels
during the training and prediction processes. These effects
clearly affect the quality of the image predicted by the fully
connected LSTM network, where the edges around each patch
are obvious, creating a tile effect. This effect can hardly be
observed in the predicted image by the proposed network. It is
noteworthy that the patch sequences are fed to the algorithm
during training in a random order, thus spatial relationships
among adjacent patches are not explicitly defined. However,
the ability of the proposed network to predict images with
indistinct patch edges is one more qualitative piece of evidence
that the network not only preserves spatial relationships among
neighboring pixels, but it provides accurate predictions in
absolute terms that allow smooth transitions among adjacent
patches.

VI. CONCLUSION

The convolutional LSTM approach proposed in this study
proved able to predict sea ice motion for several days in the
future. Optical flow calculated from pairs of AMSR-E images
was the only input to the unsupervised end-to-end trainable
system requiring no manual annotation. Conditioning each
prediction to the previous one, i.e., using as input at each
prediction step the previous prediction, took advantage of the
temporal correlations that exist in sea ice motion between
consecutive days. Besides AMSR-E data, the model was able
to provide accurate predictions on data from other sources,
AMSR?2 and ASCAT, that had not been used for training. Our
proposed approach outperformed previous LSTM-based multi-
step prediction methods, and although being trained to mini-
mize only reference flow data of sparse resolution, it showed
promising results when evaluated against with precision buoy
vector data. The approach is, thus, a promising single-source

data-driven alternative or complementary approach to complex
numerical methods requiring multi-source data.
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