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Abstract  We present the IBM Smart Surveillance System that uses a distributed
architecture to manage a heterogeneous network of active cameras. This
system consists of a distributed network of cameras, each with local
processing that interprets video to detect and track moving objects.
The system performs multi-camera tracking as objects pass through
the fields of view of different cameras, and actively acquires rich, high-
resolution data by actively tracking objects of interest with Pan-Tilt-
Zoom cameras. The multi-resolution data is stored in a shared index
that can be browsed and searched live or post-hoc from a remote loca-
tion, visualizing very low bandwidth video or activity meta data.
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1. Introduction

Ambient intelligence involves putting information processing devices
into the world and delivering intelligently processed information to dis-
tributed information consumers — with the ultimate purpose of provid-
ing utility to human users. This process will see more and more devices
embedded into everyday objects and into the environment (e.g. cars,
buildings and street furniture). The aim of ambient intelligence is not
to make processing power ambient, for there are economies of scale in
putting as much processing as possible into dedicated farms, but to make
the sensors and actuators on these devices ambient and to deliver the
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power of information processing ubiquitously. Efficiencies of communi-
cation necessitate the processing power and thus the intelligence itself
being local to the sensors and actuators and thus equally ambient.

2. Sensing modalities

As myriads of small, specialized computing devices are deployed in the
world, we see them becoming markedly different from the traditional
computing paradigm of a processor box with invariable user interface
components of a visual display screen, mouse and keyboard. While many
specialist sensors will be developed — to detect biological agents, cos-
mic rays and the like, or perhaps to assist environmental regeneration
by controlled release of nutrients or organisms- it is likely that a huge
proportion of the devices that will be deployed will be for the purposes
of interacting with humans. These sensors will be a mix of active —
detecting communication directed at them by “users”— and passive —
sensing activity that is taking place within range.

Vision, we argue, is a very important sensing modality for both kinds
of sensors. Vision provides a rich source of information about the world-
and each sensor is able to receive data from a relatively long range. Vi-
sion can tell us about the shape of the world (from stereo and from a
wide range of other cues), and is sufficient for identifying people (par-
ticularly face recognition, but also gait, ear shape and lip motion [2]).
Vision can also capture a wide range of human communication (writing,
facial expression, gesture, and body language, even lip-reading [8]). In
interacting with people, vision is particularly important because it is
the predominant modality through which most humans acquire infor-
mation, and it is useful and in some cases necessary for machines to “see
the world as we see it”.

Sound is an important complementary sensing modality that is very
rich source of information when sensing human activity, because of the
importance of speech for human communication, and because of its om-
nidirectionality. As microphone arrays, beamforming and source sepa-
ration techniques improve, sound signal aquisition is improving in range
and quality.

An expanding host of other sensing modalities is available, sensing
motion, position, orientation, electric, magnetic and gravitational fields,
atmospheric chemicals, and biological agents.

The acquisition of this data provides a challenging fusion problem
in creating, and visualizing a rich, multi-modal model of the world.
However the complementary problem of filtering this torrent data down
to extract the interesting facts that can be usefully acted upon or are
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worth storing, then delivering the information to mobile users, provides
a greater, Ambient Intelligence, challenge

3. Vision for Ambient Intelligence

Because of the importance of vision, as a rich source of passively-
available, informative data about the world, as discussed above, we con-
centrate on vision as a modality for sensing. This modality is particu-
larly useful as a method of building up an understanding of the world
for an ambient intelligent system, though it is naturally most powerful
when combined with many other sensing modalities. The use of vision is
also driven by the growing demand for, and feasibility of, practical sys-
tems for visual understanding of the world, particularly in the domain
of visual surveillance.

Visual surveillance is an interesting domain inherently suited to am-
bient intelligence. Conventional surveillance systems have networks of
cameras (now beginning to number in the thousands at large installa-
tions such as airports) distributed over a wide area. The video from
these cameras has traditionally been centralized in a single control room
where the video is recorded and observed by a small number of security
guards. It is well known that security guards quickly lose alertness when
facing banks of monitors displaying empty scenes. The potential for a
relentless watcher of every single channel of video with perfect recall has
driven the development of intelligent systems tracking objects in surveil-
lance video. Increasingly there is also a demand to acquire such data
from mobile platforms (say police cars) and deliver the intelligence so-
gathered to a range of heterogenous, dispersed and often mobile devices.
The vast quantity of data and the expense of cabling already encourages
the distribution of the intelligence, putting the processing near the cam-
eras, and only broadcasting the relatively low-bandwidth information of
interest to a central repository.

Having started to process surveillance video with computers, a whole
range of further possibilies soon emerges. Several cameras in a given
installation will be able to view the same area or at least the events in
the view of one camera will correllate with the events seen by another
— at the very least in the form of the same people or vehicles being
seen more than once. It is clear that a richer understanding of the
goings-on in a surveillance site can be achieved by integrating the data
from multiple cameras. With multiple cameras comes a better, three-
dimensional understanding of the world. People and vehicles can be
tracked not just for short, unrelated timespans, but continuously over
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the entire time they are in the field of view of the cameras, and activity
models can also predict their behavior when out of sight.

Such multi-camera systems increase the need for ambient intelligence
as local processing systems need to communicate between themselves,
sharing data from their different viewpoints, and further refining their
representations before communicating to consumers of their information.

In the remainder of this chapter, we describe a number of the technical
challenges involved in building up this rich world view through networks
of cameras, as implemented and projected in the IBM Smart Surveillance
System. In section 4, we discuss the architectures for communication,
followed by single camera object detection and tracking algorithms in
Section 5.0. Section 6 describes object normalization for view-invariant
reasoning about objects, and Section 7 describes multi-camera strategies
for tracking. Section 8 describes work on active camera systems to ac-
quire high-resolution data of objects tracked in static cameras. Finally
Section 9 describes the delivery, storage and searching of the tracking
data for secure, privacy-protecting, distributed access.

4. Architecture

The IBM Smart Surveillance system is a complete architecture for
multi-camera, distributed surveillance video processing, comprising front-
end image processing and camera control, local processing to integrate
track information from nearby cameras, and a back-end database in-
frastructure that stores and redistributes the data. Client applications
and browse stations access the processed data by issuing queries to the
database system.

Figure 1.1 shows an overview of the complete system.

Figure 1.1. Architecture of the PeopleVision system, showing data flows between
components.
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Real-time video processing in the form of tracking and object de-
tection (Section 5) is carried out close to the camera, on conventional
computers or perhaps by embedded processors or specialised boards.
Encoding (and encryption) of video is also carried out on, or as close as
possible to, the camera, minimizing bandwidth and wiring requirements.
Optionally a privacy camera [9] may be used that preprocesses the video
and transmits only privacy-protected video.

Integration operations that exploit local knowledge are also carried
out close to the cameras. Such operations include track correspondance
between multiple cameras, whether overlapping or close, and active cam-
era control that requires a reliable fast feedback loop. Such systems are
described in Sections 7 and 8.

Data from all of these processes are communicated to a global data
repository in the form of a conventional, DB2 database for concise nu-
merical and string data and IBM ContentManager for rich media ob-
jects, in particular the compressed video streams. This back-end system
may be centralized or distributed. These commercial data management
products handle all the complex data management tasks (such as back-
up, security, expiration, distribution, scalability and fast indexing) that
are not specific to video surveillance data. Digital data distribution
throughout the system can be encrypted, with video using conventional
(e.g. MPEG4) video compression and a flexible XML schema for track
information and meta-data.

Client applications that may be registered autonomous programs (e.g.
elevator controllers, fire alarms etc.) or user-controlled browse sta-
tions access the database data through conventional means such as
SQL queries. Queries can be formed on database-stored metrics such as
colour, size, shape, movement, time, object class. Back-end data mon-
itors observe the data in the database and can be used to add further
inferred data, such as associating the recurrence of vehicles or people at
different locations or times.

5. Tracking and object detection

The PeopleVision Smart Surveillance Engine (SSE) is an automated
video surveillance system, constructed around algorithms for object de-
tection and tracking. Using a modular architecture, we have experi-
mented with a number of designs for each component. Object detection
and tracking are described in more detail elsewhere [4] but we here give
an overview of the principles of operation.
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Object detection

The core method for object detection is background subtraction. This
compares an automatically acquired reference image with incoming frames
of video. Differences between the two images are areas of change in the
image which are considered “objects”. A sequence of more sophisticated
processing attempts to refine the distinction between true objects and
other differences in the images, caused by camera-shake, trees blowing
in the wind, lighting changes and shadows.

We have experimented with a variety of object detection algorithms
and have two principal approaches: adaptive multi-Gaussian and salient
motion. The adaptive multi-Gaussian approach models each pixel as a
mixture of Gaussians in colour space, following [10], with refinements
that examine texture as a way of distinguishing shadows (that change
lightness without changing the texture) from objects (that change tex-
ture as well as the colour of a pixel). Additional mechanisms are em-
ployed for actively “healing” stationary objects into the background. A
preprocessor allows additional normalization mechanisms, for instance
detecting and correcting for camera vibration, camera automatic gain
controls and automatic white balance, as well as pixel noise correction
(to remove camera noise and compression artefacts).

An alternative method of object detection employs salient motion de-
tection to distinguish moving objects from motion in the background.
Traditional background subtraction fails when there is motion in the
“background” region of the image, for instance if there are trees blowing
in the wind, flowing water or waves. The multi-Gaussian approach han-
dles some of these situations, but the salient motion approach detects
objects moving infront of more severe distracting motion by detecting
consistency in the motion over a number of frames. Optic flow is carried
out over the whole image, and motion vectors over successive frames are
chained together. Regions of consistent motion over time are detected
as moving objects.

Tracking

Tracking can be seen as a problem of assigning consistent identities
to visible objects. Over time we obtain a number of observations of
objects (detections by the background subtraction algorithm) but need
to label these so that all observations of a given object are given the
same label. When one object passes in front of another, partial or total
occlusion takes place, with background subtraction detecting a single
moving region. By occlusion handling, we hope to be able to segment
this region, labelling each part appropriately, and correctly labelling the
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detected objects when they separate. In more complex scenes, occlusions
between many objects must be dealt with.

When objects are widely separated a simple bounding box tracker
is sufficient to associate a track identity with each foreground region.
Bounding box tracking works by measuring the distance between each
foreground region in the current frame and each object that was tracked
in the previous frame, a match being declared if the object overlaps the
region or lies very close.

If the foreground regions and tracks form a one-to-one mapping, then
the tracking is complete and tracks are extended to include the regions
in the new frame using this association. If a foreground region is not
matched by any track, then a new track is created, and if a track matches
no foreground region, it continues at a constant velocity, but is consid-
ered to have left the scene if it fails to match any region for a few frames.

Occasionally, a single track will be associated with two regions. For a
few frames this is assumed to be a failure of background subtraction and
both regions are associated with the track, but if there are consistently
two or more foreground regions, then the track is split into two, to model
such cases as when a group of people separate, a person leaves a vehicle,
or an object is deposited by a person.

Appearance models

More complex interactions where more than one track is associated to
one or more foreground regions are handled by a mechanism that uses
an appearance model of each tracked object.

An appearance model consists of an image of the object — a two
dimensional array of colour values with a mask indicating which pixels
belong to the object. An appearance model is initialized by copying
the foreground pixels of a new track. The appearance model can be
correllated with detected foreground regions to track the motion of the
centroid of an object being tracked by bounding box tracking. At each
frame the appearance is updated by copying the current foreground pix-
els. During an occlusion, the foreground models of all the tracks in

1 R

Figure 1.2. Appearance models from a PETS 2001video sequence, showing the ap-
pearance of model pixels, as one model recedes (left) and another approaches (right).
Pixels not in the model appear black.
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the occlusion are used to explain the pixels labelled as foreground by
the background subtraction mechanism. We assume a depth ordering
among the tracks and try to fit the models front-to-back, building up
evidence in an explanation map. The position of each object is predicted
with a velocity motion model, then the front-most is localized through
correlation. Pixels that fall within the foreground mask of the object
are entered into the explanation map as potentially being explained by
the track. Subsequent objects are correlated with only those pixels in
the foreground region which have no explanation so far, and are entered
into the explanation map in their turn.

The explanation map is now used to update the appearance models of
objects associated with each of the existing tracks. The depth ordering
is recalculated by examining those pixels where two objects overlap.
Models which account for these disputed pixels better are considered to
lie in front of models which match the colour of the foreground less well.
The initial depth ordering at the start of an occlusion is considered to
be arbitrary since such occlusions generally occlude only a small fraction
of the objects. Each model is only updated in those pixels where the
model was the front-most object. Regions of foreground pixels that are
not explained by existing tracks are candidates for new tracks.

Track data

With this inductive procedure, track records are created for each ob-
ject during the period it is visible. Track data is trickled to the database
for live visualization and real-time search. A series of post-processing
operations can also be carried out to filter out some false alarms and
other tracking errors.

In addition to object location and appearance, we also use a classifi-
cation system to decide the type of object (e.g. person or vehicle) which
is also stored in the database. Because of the variability in appearance
of objects, classification relies on normalization as described in the next
section.

6. Normalization

Normalization of image data is an important process in order to infer
physical properties of objects in the scene measured in invariant units,
such as meters or miles per hour. Even if only relative quanitities are
required, physical properties of objects, such as their height or size,
should be invariant to their location in the image. Measurements from
image data must take into account the perspective distortion due to the
projection of the world onto the image plane and other distortions such
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as lens distortion. In particular, for typical surveillance video with a
far field view (i.e., the camera has its viewing direction nearly parallel
to the ground plane), the farther aways an object lies, the smaller its
projected image size will be. On the other hand, for an overhead camera
looking down at a scene, a person standing more directly underneath
the camera will appear foreshortened (Figure 6).

Investigators in digital video surveillance have recently begun to ad-
dress this issue. Traditionally this has been done by semi-automatic cal-
ibration (relying on an expert) or rich geometric primitives in the image
(such as parallel or orthogonal lines in the image). But realistic digi-
tal surveillance, which can be generally deployed, needs an automated
solution.

Lv et al. [7] were the first to pioneer an effort to perform self-
calibration of a camera from the tracking data obtained of a walking
human. This method computes a 7 parameter transformation from 3D
points in the world to 2D points in the image. The parameters are the
focal length, the principal point (ug,vg), three rotation parameters, and
the height of the camera from the ground plane. These are computed by
finding three orthogonal vanishing points of the imaging system using
every pair of observations of a human’s projected height and location.
With sufficiently high quality data, this method can be used to perform
a full intrinsic and extrinsic calibration but in practice is somewhat un-
stable with realistic tracking data.

More recently, Bose and Grimson [3] proposed a method to perform
ground plane rectification based on tracked objects moving at a constant
velocity. The rectification can be either affine (making parallel world
lines appear parallel in rectified image) or metric (making angles in the
world plane equal to angles in the rectified image). This method assumes
the ground is planar and it is possible to acquire tracks of objects moving
at a constant velocity. In practice, these assumptions cannot always
be satisfied. The ground is often not planar and it is difficult observe
tracks of objects moving at a constant velocity, in particular for views
of pedestrians only or complex intersections/roadways.

Stauffer et al. [11] present a method in which projected properties
P; of a particular track j, are modeled by a simple planar system such
that the value of the property varies linearly with the distance from the
horizon line:

Pj(t) = sj(az;(t) + by; (1) + <), (1.1)

where ¢ represents an instance in time or the frame of the measure-
ment. For each track j, an individual scale factor parameter s; and



10

three global parameters of the planar model (a,b,c) are found as the
best fit to the observations (z;,y;) for all j. This method is applied to
all tracks regardless of the object type (vehicle, pedestrian, animal etc.)
The limitation of this approach is that object properties such as height
and width depend heavily on the viewpoint direction, particularly for
vehicles whose length and width vary greatly. Although in theory, the
change in the projected property should vary nearly linearly with dis-
tance, this also assumes a planar ground surface, no occlusion, and only
perspective distortion.

We propose a method which does not rely on a planar ground surface,
is not limited to certain camera viewpoint directions (far field), is not
linear /planar, nor does it require objects moving at a constant velocity.
Our system relies either on pedestrian data obtained from our classifier
or input into the system. In the former case, the classifier is run over a
few days, to obtain several sequences in which pedestrians traverse the
space. The classifier determines if the track is a person, a vehicle or a
group of people. In each case, a confidence measure is assigned to the
classification result. Over several days, sequences classified as humans,
whose confidence measures are relatively high are selected as input data
to the normalization system. This typically finds sequences of pedestrian
data without shadows, from decent imaging conditions (no precipitation
or wind) and simple pedestrian shape and motions (not carrying objects,
wearing hats, holding umbrellas, or performing odd behaviors.)

For each frame j, in the sequence, the position (x;,y;) of the foot of
the pedestrian (based on the location of the bottom of the major axis of
an ellipse which is fit to the data), the length, H, and orientation, 6, of
the major axis are used. Normalization is performed by a least squares
fitting of a second order polynomial to this data. For each property
p € (H,60), we minimize the sum of squares:

o PR . . 2
almn}l6 Z p; — p(xj,yj,a1,...,a6)] (1.2)
J

where a1,...,aq are the coefficients of the polynomial. For each po-
sition in the image, we can predict the height and orientation of the
projected image of a person (Figure 6).

From this information, we can also normalize any of a range of met-
rics used by the surveillance system. Normalized metrics include area,
length, major/minor axis length, major axis angle, and velocity mag-
nitude. For subsystems which rely on frame to frame alignment of the
detected object, such as appearance-based tracking or recurrent motion
estimation for the classifier, normalized metrics alleviate the need to
scale to an initial segmentation and to estimate a re-scaling on a frame-
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to-frame basis. It is also now possible to distinguish if a projected view
is getting larger for other reasons, such as change in 3D position.

Many subsystems of an automated digital surveillance system can
benefit from this normalization. The frame-to-frame tracker can predict
frame-to-frame size and orientation changes for appearance-based align-
ment, or even ignore objects which are smaller for their location than
objects of interests for that location should be.

An object classifier can better distinguish physical objects based on
properties which are invariant to image location such height, width
or speed. For a multi-camera system with either overlapping or non-
overlapping views, normalization information can be used to improve
matching of object tracks. Lastly, forensic retrieval systems can now
search based on absolute sizes and ignore the complex variations due
to perspective distortion and the range of viewpoints across different
cameras.

Size Orientation
(pixels) | (degrees)

11 85
18 80
21 95

Size Orientation
(pixels) | (degrees)

24 65
20 81
18 90

Figure 1.8. The top picture shows a typical surveillance far field view of a scene.
A person appears smaller the farther away they are. The table to the right shows
the change in size and orientation of a human at each of the three locations. The
bottom picture is an overhead camera looking down at a scene. A person appears
smallest when they are more directly underneath the camera. The table at right
shows the change in size and orientation of the corresponding person in the scene.
These size/orientation values are predicted for the given position based on prior data
and can be used to normalize the live data at each position and across camera views.
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7. Multi-camera coordination

Ambient intelligence becomes particularly valuable when a system
includes multiple cameras. Integrating information between image pro-
cessing systems that interpret the video locally requires local communi-
cation between intelligent devices. The representational power of such
systems increases far beyond the abilities of a system that replicates
independent video interpretation systems.

We can distinguish three kinds of intercamera relations according to
the proximity of the cameras fields of view:

e overlapping,
e close,

e distant.

Any or all of these relations may be found in a multi-camera sys-
tem. When cameras overlap, tracking systems can synchronously com-
bine information to disambiguate tracking and derive richer models of
objects seen from multiple viewpoints. As described in the next section,
resolutions of the two cameras might be radically different, enabling
significantly enhanced representations of tracked objects. Overlapping
cameras also allow unambiguous continuous tracking of objects over ex-
tended regions far beyond the field of view of a single camera. [1].
Overlapping fields of view can be explicitly coded into a system with
calibration, or can be learnt by watching the behaviour of tracks over
some extended training period, and detecting correllations [11].

When two cameras have non-overlapping but close fields of view, simi-
lar continuous tracking can also be carried out, but this requires a degree
of inference and a concomitant uncertainty. Training allows a system to
learn the interconnection between cameras fields of view [5, 6] — learn-
ing when and where objects leaving one camera’s field-of-view are likely
to be detected in another’s.

So far, in the peoplevision system we have only examined the case
of cameras with overlapping fields of view. The cameras are calibrated
with respect to one another using a homography (a linear transform from
image coordinates in one view to image coordinates in another view, that
applies to points lying on the ground plane). Objects are tracked using
our conventional 2D tracking algorithms in each view, but using the
homography, we can know when and where tracks in one view should
be visible in another’s. Matching tracks are then associated and given a
common label, allowing continuous tracking over extended regions.
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Figure 1.4. Overlapping views from two cameras. When the object in camera 2
(right) enters the field of view of camera 1 (left), the two tracks are registered and
tagged as relating to the same object.

8. Multi-scale image aquisition

In many camera installations, resolution limits the capabilities of the
system. Currently deployed surveillance system almost exclusively use
analog video, and are often monochrome and stored on poor-quality,
time-multiplexed analog video tapes. The blurred grey images of surveil-
lance footage are familiar from television, seemingly never clear enough
to identify a criminal. While quality is improving, and digital tech-
nologies promise higher quality and higher resolution, resolution will be
limited for years to come. Supposing that a face recognition system re-
quires 100 pixels across a face to perform recognition — to identify any
face in a 100m wide space would require a 40 gigapixel static camera- far
beyond current projections and data-handling capabilities. In practice,
surveillance systems requiring high resolution images use the foveation
principle seen in human vision — of directing a high-resolution sensor to
areas of particular interest. Security guards steer pan-tilt-zoom (PTZ)
cameras with a joystick, or use preset zoom positions to quickly examine
points of regular interest.

As with all video surveillance though, the guards are fallible. They
must be alert to detect an incident in the first place and then require
great skill to track when a person must be tracked continuously across
multiple cameras. (For instance, a continuous video record may be re-
quired to obtain a conviction for shoplifting.) There is the further prob-
lem that it becomes impossible to track more than one target at once.
Faced with these problems, we have developed several multi-scale video
acquisition systems that use automatically-controlled PTZ cameras to
acquire close-up images of tracked objects.
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Active Head Tracking and Face Catalogging

One such multi-scale acquisition system is the Active Head Tracker.
This uses three or more calibrated cameras to acquire high resolution
images of heads and faces. The system is conceived of as an image ac-
quisition or preprocessing system for a number of human understanding
systems, from face recognition to focus of attention determination and
audio-visual speech recognition.

The system, shown in Figure 1.5 is based upon independent two-
dimensional tracking in each of two static cameras. Typically the cam-
eras are wide angle to achieve joint coverage of a wide operational area.
Applying our tracking algorithms gives us the position of each indepen-
dently moving object in each image. 3-dimensional calibration of the
cameras allows triangulation of the two sets of object tracks to obtain
both a correspondance between the objects in the two sets, and a 3D
position for each object. To triangulate on a distinctive position, we tri-
angulate the 2D centroid of the head in each view, which approximates
to the projection of a 3D central point. The head is found by an algo-
rithm that analyses the contour of the segmented object looking for an
object part whose position and shape is consistent with being a head.

Figure 1.5. The active head tracker. Top left: a person seen by one of the fixed,
wide-angle cameras. Bottom left: a close-up view captured by the PTZ camera (seen
bottom right). Top right: the track of the person’s head projected into the horizontal
plane.

The 3D wide-baseline stereo triangulation gives a 3D position for ab-
solute spatial indexing of object tracks and the disambiguation of occlu-
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sions that might present difficulties to a single camera, or even narrow-
baseline stereo system. It also provides a target point for the active
image acquisition system. A calibrated Pan-Tilt-Zoom camera is di-
rected towards the target point and zoomed appropriately to capture
the whole head area, taking into account both positioning errors from
triangulation and the object speed — a wider zoom being necessary to
ensure that faster objects are kept in the frame. The active head tracker
provides a significant magnification compared to the static cameras.

In a refinement of this open-loop active head tracking system, a face
detection system is applied to the PTZ camera output. Should the
imaged head be facing the camera, a face is detected and the camera is
servoed in (with a negative feedback control loop now making the system
independent of any calibration, segmentation and triangulation errors)
until the face fills the video image. A still or video clip is recorded and
stored in a database, for human or machine face recognition.

A further extension to the system is the development of sophisticated
camera scheduling policies that control the assignment of multiple cam-
eras among the multiple people being tracked by the system. The choice
of camera policy is application-dependent. The addition of a multi-
camera head pose estimation system [12] that operates at head resolu-
tions as low as 8 x 8 pixels and thus can be applied in the wide-angle
views, allow us to determine, in an absolute, world coordinate system
the head orientation of the subjects allows the system to direct at each
subject the camera most likely to see the subject’s face.

Uncalibrated, multi-scale data acquisition

An alternative path that we have followed for the acquisition of multi-
scale data is to use a single, uncalibrated camera to trigger foveation by
one or more active cameras. In this system, a single fixed camera ob-
serves an overview, and an operator selects in the image a number of
regions of interest for which high-resolution images are desired (Fig-
ure 8.0). For each of these regions, a separate PTZ camera is steered to
zoom in on the area of interest, and the steering parameters are recorded
and associated with the region of interest. For each available PTZ cam-
era, a separate set of regions and zoom coordinates can be chosen.

After this simple training operation, the system runs autonomously,
tracking targets in the 2D view of the static camera (as in Section 5
and steering the corresponding PTZ camera to the associated PTZ co-
ordinates when any object enters one of the regions of interest. Again
camera assignment becomes an important, but application dependent
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Figure 1.6. Multi-Scale image acquisition. The top right pane shows the static,
“master”, camera’s view point. The other panes show the views of the steerable
“slave” cameras. Boxes in the master’s view show regions of interest for which steering
parameters of the other cameras have been set up.

aspect of the problem. A typical assignment policy might follow these
rules:

e For a single object steer all cameras at the target all the time.

e Assign one camera to each of multiple objects according to which
has the best view (for instance “best” might be interpreted as the
camera with target area whose centre the object is closest to, or the
camera which can be steered to point at the target in the shortest
time). Assign additional cameras evenly to the targets of which
they have the best views.

e After following an object for a given period of time, permute the
camera assignments so that alternate views of a target are acquired
(e.g. left and right sides).

e Steer all available cameras to certain designated targets, e.g. shoplifters.

Once a camera is in place looking at the intended target zone, cap-
tured images are taken immediately and periodically, and are sent with
tracking information to the central database. The track browsing and
query program allows the user to select a track and see all the zoomed-in
images associated with that track.
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Extensions

A refinement of the system allows it to operate with a single camera
acting as both the master (fixed) and the slave (PTZ) camera. As above,
the object detection and tracking are run on the video from the camera
with a wide-angle view. Regions of interest are drawn in this field of
view and associated with close-up PTZ parameters for the same camera
examining the area of interest. When a tracked object enters a region of
interest, tracking is suspended, the camera steers to the close-up view-
point, acquires images for some fixed period (or until some condition
is met, such as there being no motion in the close-up view), and then
zooms out and recommences tracking. In this way, we have designed
a system that autonomously captures licence plate images from every
vehicle driving up to an entry barrier, while maintaining an overview of
a wide area when no vehicle is at the barrier.

More complex scenarios can also be handled with the system, for
instance having multiple master cameras that can each be slaved to
acquire close-ups in each other’s fields of view when there is no activity
in their own.

Extensions to the system are being developed, including continuous
control of the PTZ camera based on tracking in the fixed camera; and
tracking within the moving PTZ camera view.

9. Indexing Surveillance Data

The vision and active camera control technologies described above
process torrents of video data to extract streams of useful information.
The information can be used to trigger real time alerts of events requiring
human attention, but also provides a rich data stream for delivery to
other devices, and for storage and post-hoc searching.

In our Middleware for Large Scale Surveillance (MILS) architecture,
individual smart surveillance engines, or groups of collaborating smart
surveillance engines that share information about common tracks, com-
municate tracking information to a database that may be centrally con-
trolled or decentralized. In our implementation SSEs trickle live track
data in XML data chunks to a DB2 database. The database aggregates
track information and summarizes that information in track summaries
that allow rapid searches over large quantities of surveillance data —
from long periods of time and multiple cameras.

Searches can be on any of the data stored in the database, from track
motion (position and speed at any time, or aggregated motion), to model
appearance (size, colour, type) to aggregate queries that describe multi-
ple attributes for a single track or combination queries involving multiple
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tracks. Larger scale queries can be statistical in nature or involve aggre-
gation of data over long periods of time. Some examples of the queries
that could be answered by such a database query engine are as follows:

Show all blue cars travelling north-to-south this morning.

Show the fastest vehicle track in a given time period.

Show who abandoned this luggage and where they are now.

Show the average speeed of people at a location.

Show all tracks that came close to a particular person (handoff
detection).

Visualization

Since the database contains the background appearance, and the ap-
pearance and motion of all objects, a highly compressed summary video
can be rendered from the database contents, allowing rapid visualiza-
tion of all incidents meeting search criteria, even over low-bandwidth
networks. In parallel to tracking and database storage, a typical system
will also encode and index a high fidelity digital video record that can
be played back to visualize query results. We have created browsing
applications that can deliver the summary information (e.g. to a hand
held device) or the full video in response queries or browsing.

10. Privacy

Since video surveillance is a powerful tool with considerable privacy
implications, we have also been investigating ways to protect privacy in
a video surveillance system. The techniques we have developed centre
on the idea of re-rendering video information according to the object ori-
ented representation extracted by our video understanding system. Our
ideas on video privacy are more fully explained in a separate paper [9)].

The tracking, detection and classification of objects results in a sep-
aration of the video into independent streams for the background and
each tracked object. Given this information, we can rerender the video
manipulating each of these streams independently, for instance replac-
ing each object by a solid rectangle that conveys the location, size and
motion of an object without carrying any information about appearance
and thus race, age, gender etc. Such rerendering can be tuned to the
application in question and governed by access control lists and privacy
policies that, for instance, allow security guards to override the obscu-
ration, and permit law-enforcement officers access to raw, unchanged
data.
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Such a capability has been added into our MILS infrastructure, with
tracked regions being blurred out in video playback for users with re-
stricted priviledges.

11. Conclusions

In this chapter we have presented the IBM Smart Surveillance System
that is a distributed system for the understanding of visual input from a
network of cameras. The system is an exploration of a particular kind of
ambient intelligent system with distributed sensors, local processing and
delivery of resulting data to mobile users over wireless networks. The
system extracts rich useful information that can drive real-time alarms
or be searched after-the-fact as an index to stored video.
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