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Abstract—This paper proposes a novel assistive navigation system 
based on simultaneous localization and mapping (SLAM) and 
semantic path planning to help visually impaired users navigate 
in indoor environments. The system integrates multiple wearable 
sensors and feedback devices including a RGB-D sensor and an 
inertial measurement unit (IMU) on the waist, a head mounted 
camera, a microphone and an earplug/speaker. We develop a 
visual odometry algorithm based on RGB-D data to estimate the 
user’s position and orientation, and refine the orientation error 
using the IMU. We employ the head mounted camera to 
recognize the door numbers and the RGB-D sensor to detect 
major landmarks such as corridor corners. By matching the 
detected landmarks against the corresponding features on the 
digitalized floor map, the system localizes the user, and provides 
verbal instruction to guide the user to the desired destination. 
The software modules of our system are implemented in Robotics 
Operating System (ROS). The prototype of the proposed assistive 
navigation system is evaluated by blindfolded sight persons. The 
field tests confirm the feasibility of the proposed algorithms and 
the system prototype.

Keywords-assistive navigation; semantic path planning; SLAM; 
wearable device

I. INTRODUCTION

According to the factsheets of the World Health 
Organization (WHO), 285 million people worldwide are blind 
or partially sighted [1]. People with normal vision orient 
themselves in physical space and navigate from place to place 
with ease. However, it is a challenging task for people who are 
blind or have significant visual impairment to access 
unfamiliar environment even with the help of electronic travel 
aids and vision techniques. Most of the existing travel aids 
transform the visual and/or range information to tactile display 
or audio guidance that informs the user of nearby obstacles. 
These devices can be cane fitted hand-held or wearable 
devices to warn of obstacles ahead [2]-[6] or provide ‘turn by 
turn’ guidance.

The ability of visually impaired people to access, understand, 
and explore unfamiliar environment will improve their 
inclusion and integration into the society. It will also enhance 
employment opportunities, foster independent living and 

produce economic and social self-�������	�
� �
�� We realize 
that visually impaired people demand an assistive technology 
that can provide them with safe and smooth way-finding 
capabilities. Unfortunately, existing related assistive 
technologies have various drawbacks and limitations.  

A number of work have been implementing inertial sensor 
to track and localize the users [8]-[11], however they lack 
accuracy and reliability for visually impaired user navigation. 
GPS/ GIS based approaches fit the navigation demands 
outdoors, but they are powerless in indoors [11]-[14].

SLAM is a process of building a map of unknown 
environment while at the same time localizing the robot within 
the map. As an extension of our previous works [15]-[18] to
further improve the existing techniques in visually impaired
user navigation, we propose the SLAM based wearable 
navigation system using multiple sensors which specifically fits 
the demand of visually impaired user navigation in terms of 
reliability. Fig. 1 shows the proposed prototype wearable 
system. Our system takes advantage of the SLAM technique to 
fuse the inputs from multiple sensors and localize the visually 
impaired user on the floor plan, and represents the information 
and guidance in a high level semantic map. 

This paper is organized as follows. Section II introduces the 
semantic navigation system architecture and work flow; section 
III illustrates the detailed algorithms in the SLAM based 
navigation system; section IV presents the system 
implementation as well as the experimental results and section 
V concludes the paper and discusses the future research 
directions.

II. SYSTEM OVERVIEW

Assistive navigations are challenging because the visually 
impaired user not only needs decent perception of the map of
surroundings, but also demands the suitable planned path and 
guidance to accomplish the navigation.

Fig. 2 illustrates the system architecture of the proposed 
SLAM-based navigation system. The hardware includes 
wearable sensors (i.e., camera, IMU and RGB-D camera), 
interactive devices (i.e., speaker and bone headphone.) and a
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processing unit (i.e., laptop). The software is composed by 
nine cooperative sub-modules. 

a

b c
Figure 1. The proposed wearable system is composed by backpacked laptops, 
a microphone, a speaker, a RGB-D sensor with IMU and a head mounted 
camera. 
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Figure 2.  System architecture of the proposed frame-work.
To clarify the functionality of them, we also present the 

navigation scene while introducing the software sub-modules 
as follows. As requested by the Fire Departments in most 
cities in US, floor plans shall be posted at the entrances to all 
required exit stairs, every elevator landing, and immediately 
inside all public entrances to the public buildings. Thus, a 
visually impaired user can use the head mounted camera to 
scan and extract the floor plan before digitalizing it into a grid/
semantic map, using the floor plan digitalization module,
right after he enters a building or leaves an elevator. The user 
needs to let the system know the destination room through the 
speech recognition module, so as to trigger the navigation. 
While moving, the user is localized by the visual odometry 
module using RGB-D camera [19]. The user can request the 
detection of room number by the door number extraction 
module using camera, when he touches the door. In the 
meantime, the corners will be automatically detected by the 
corner and wall detection module using depth images from 
RGB-D camera. The door numbers and corners are regarded 

as landmarks so as to match against the digitalized floor plan 
map as well as update the particles through SLAM module.
The IMU is equipped to complement the orientation errors. A
further orientation revising is performed through the corner 
and wall detection module. The path is planed through the 
path planning module, and be delivered to the user as motion 
commands and hints through the text to speech module. 

III. SLAM BASED LOCALIZATION

SLAM is a technology successfully used in robotic 
navigation, which maintains a probabilistic representation of
both the subject’s pose and the locations of landmarks (i.e., the 
“belief” of subject’s location and a “map” denoted with 
landmarks), and refine the pose representation and map in two 
steps (i.e., motion and correction steps) recursively. In the 
motion step, the robot pose is predicted using the robot motion 
model. In the correction step, observations of landmarks are 
used to refine the probabilistic pose representation against the 
map, while at the same time updating the map with latest
detected landmarks. 

The SLAM based navigation system is built on our previous 
work [15]-[18]. We introduce an approach to seamlessly feed 
inputs from multiple sensors to the SLAM framework, so as to 
localize the user in the navigation scenario.

A. Visual odometry and local planar mapping
We apply the previous work -- fast visual odometry using 

RGB-D camera [19] to provide raw pose of the user. It aligns 
sparse features observed in the current RGBD image against a 
model of previous features. The model is persistent and 
dynamically updated from new observations using a Kalman 
Filter. The algorithm is capable of closing small-scale loops in 
indoor environments online without any additional SLAM 
back-end techniques. 

B. Visual semantics
In order to make the user aware of their physical locations, 

contextual information from visual landmarks such as floor 
plan including signage, room number and corners are 
parameterized to the digitalized semantic map, as shown in Fig. 
4. 

1) Floor map digitalization
A heuristic method of extracting layout information from a 

floor plan, which employs room numbers and corners, etc., to 
infer landmarks and way points is used as our previous work 
[16]. We implement a rule-based method to localize the 
position of all room number labels as Fig. 5. As shown in Fig. 
4, the semantic data is organized in an adjacency matrix where 
the coordinates indicate the connectivity between two anchors. 
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Figure. 5. The room numbers are extracted during the map digitalization [18]. 

2) Landmark extraction and matching

The visual landmarks in the immediate vicinity of the user 
such as room numbers and corners are extracted to localize the 
user.

2.1) we use a novel optical character recognition algorithm 
[20] to localize the user, when the user travels to the 
corresponding physical locations. 

2.2) we use the real-time depth image from the RGB-D
camera to detect corners. Specifically, we align the 
consequential depth images from time to time using the raw 
poses obtained by visual odometry. Then, the border is 
extracted after projecting the depth image in to horizontal 
plane. 

C. Human machine interaction
Similar to most of the peer works, we use speech 

recognition and text to speech to bridge the perceptions of 
the user and system. Details of the implementation using open 
source libraries [21] [22] are illustrated in section V.

D. Localization using particle filter
Taking advantage of the integrated sensors, the prediction 

phase adopts motion estimations from visual odometry module 
and IMU, while the correction phase receives landmark 
confirmations from door number extraction module as well as 
corner and wall detection module.

1) Particle filter
Particle filter is used to estimate the pose distribution of the 

subject. The observation of landmarks is used to correct the
particles while the odometry is used in the motion model. 
Samples of consequential particle filer updates are shown in 
Fig. 6.

2) Floor map and landmark matching
Notably the localization is meaningful only if it successfully 

localizes the user on the floor map in global map (global frame) 
– e.g. the digitalized floor plan in this context.

We set up a global frame on the digitalized floor map which 
is regarded as the ground truth. At each step, the visual 
odometry algorithm [19] processes the RGB-D data to 
estimate the pose of the visually impaired user and represent it 
in VO frame whose origin is located at the initial position 
when the system starts. 
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Figure 4. The semantic map is created based on a captured floor plan image.  
The upper half shows an image contains the floor plan is captured near an 
elevator, and the floor plan area is extracted. The lower half shows the 
digitalized semantic map and its semantic data after extraction. 
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Figure 6. Samples of consequential particle filter updates on the global frame 
(floor plan): (a) shows the particle initialization; (b) shows the particles after 
the initial perception update after detecting a room by its room number; (c) 
shows the particles after a few steps of motion updates without knowing the 
heading orientation; (d) shows the particles after another perception update of 
another room; (e) shows the particle updates after a few steps motion updates
after acknowledging the raw heading orientation. 
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In our work, we use room numbers and corners as the 
landmarks to initialize and correct the translation and rotation 
matrix, and further refine the rotation matrix using the depth 
image collected by the RGB-D camera. Consequently, the 
accumulated drifts are eliminated periodically.

Noting that the visual odometry poses are on the VO frame 
A ; the floor map and its visual landmarks are on the global 

frame W ; the IMU’s poses are on the IMU frame B . As being 
widely accepted by the robotics society, we use L x to denote 
the pose in frame L , composed by the planar position L � and 
orientation L� . Give two frames W and L , we use W

LT to 
denote the 3 3� transformation matrix from L to W ,
composed by a translation vector W

L t and a 2 2� rotation 

matrix W

L R . Specifically, for a given rotation � , the 
corresponding rotation matrix is

cos sin
( )

sin cos
R

� �
�

� �
�

� � �
	 
� �

.    (3)

As shown in Algorithm 1, in the initial period, the system 
guides the user roaming around, so as to discover and detect 
landmarks. The user can actively trigger the room number 
detection of the system by verbal command after he touches a 
door, while the system passively detects corners. 

In the “preliminary” stage, the orientation difference 
between the VO frame and IMU frames is recorded, as in line 
3. While the user is roaming, the pose is updated accordingly, 
as in line 5~6. If a landmark is detected, and no prior landmark 
is recorded, it simply records this landmark’s positions in both 
the VO frame and the global frame, as line 8~10. When the 
next landmark is detected, its corresponding positions in both 
frames can also be recorded. Consequently, a correspondence 
can be obtained to calculate the raw pose of the user, as line 
12~17. The ( )
 � in line 15 denotes the angle of vector � ;

( )R � in line 16 denotes the rotation matrix of angle � . After 
that, the stage is updated from “preliminary” to “normal”.  
Note that, the door numbers are unique but the walls/ corners 
are not. Thus, in the preliminary stage, only the door numbers 
are accepted as landmarks. In line 21~24, the particles are 
updated based on new detected landmarks. 

There are two potential issues causing the orientation drifts. 
One is that the raw user pose obtained by matching the 
landmarks on the VO frame and global frame is not accurate. 
Another is that the particle updates which revises the user pose 
may incurs accumulative errors. IMU can limit the 
accumulative drift but cannot do anything with the initial 
estimation error. Recall that a local planar map (Fig. 3) is kept 
updating while the user is moving. It is easy to obtain the 
angle of wall in frame A by using border extraction and linear 
regressions. At the same time, it is feasible to find the 
surrounding wall’s angle in the global frame W . Projecting 
the two angles onto the same frame, it is straight forward to 
calculate the compensation for orientation correction, as line 
25~ 27 in algorithms 1. This orientation revising is not 

frequently triggered: on one hand, it needs to avoid the 
significant drift of visual odometry caused by lacking visual 
features; on the other hand, the accumulative orientation drift 
in a short period is limited since an IMU stays in the loop.
Line 29~31 denotes the motion model trans� and rot� update 
and the corresponding particles’ prediction.

Algorithm 1                                                                         

1:  Initialization
2:  stage preliminary                                           
3:  A A B� � �

�

� � �
4:   (undone)                                                        
5:       updateVisualOdom( , )                              
6:       

A A

A A B

�
� � ��� �� �

while
�

7:        (newLandmarkDetected & stage==preliminary)      
8:             ( ==null)                                                
9:                   landmark

W

W

�

� �

if
if �

�  position on                      
10:                                                             
11:                                                                       
12:              

A A

W
� �� �

else
   landmark position on           

13:                                                         
14:                 

15:                 (

W

A A

W W A
A

W

W

t
�

���

���

��� �

�


�
� �

� �
) ( )              

16:                 ( )                                               
17:                  stage Normal                                        
18:            

W A A

W
A R R �

�� � �� �� �
 �

�
�

� � � �

end
19:                                                                     
20:        (newLandmarkDetected & stage==Normal)      
21:       

- if
end - if
if
      (door||corner)                    

22:                 partileCorrectionPhase()                           
23:                 localizationStateUpdate(partileW

At �

if

s)      
24:                                                                       
25:             (wall)                  
26:                 (A w A

wall� � ��� �

end - if
if

)
27:                                                                                           
28:                                                              
29:       

A B
wall� � �� � �

end - if
end - if

trans

( , ) ( , )                    

30:       ( ,  ) ( , ) ( , )    

31:       partilePredictionPhase()         
32:  

W W W A A
current A

W W W W
rot current previous

T� �
� � � �

���

� �

� �
� �

end - while

E. Path planning and audio guidance
As long as the adjacency matrix is obtained (see sample in 

Fig. 5.), it is easy to draw a path to the destination, the details 
are not discussed here.

Note that there is no need to deliver the very detailed 
moving guidance to the user since he does not have to follow 
the optimized trajectory. Visually impaired user is prone to 
walk with safety, and they don’t like the robot style rigid 
commands. The audio guidance is good enough as long as it 
can guide the user along a raw path towards the goal. At this 
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moment, the system is unable to guide the user avoiding active 
objects.

IV. SYSTEM IMPLEMENTATION AND EXPERIMENTS

In this section, we first illustrate the system implementation 
in our experiment, and then discuss the conditions and results 
of the experiments. In order to verify the system, a blind user
is participated in experiments, but the data in the following 
analyses is based on repeated blind fold trials. The 
experiments are taken place on the ST-Hall sixth floor, groovy 
school of engineering of CCNY, as shown in Fig. 4.

A. System implementation
The sensors in the system include an ASUS Xtion PRO as 

RGBD senor, a Phidgets Spatial 3/3/3 as IMU and a Logitech 
C920 HD camera. We use a Samsung S3 laptop with speaker 
and microphone and a Lenovo Y510 laptop as processors. The 
reason of using two laptops is: the Xtion occupies 80% of the 
bus bandwidth such that the remaining bandwidth is unable to 
fulfill the demand of the rest devices. As described before, the 
IMU is sticking on the belt mounted RGBD camera; the 
camera is wearable as a hat; the laptops are placed in a 
backpack.

The software is implemented under the platform of the 
robotics operating system (ROS) in Ubuntu, we use our 
previous work the ccny-rgbd-tools which is available online to 
perform visual odometry [19], a wrapped and simplified 
character appearance and structure modeling [23] to extract 
room numbers. We use the CMU pocketsphinx-speech-
recognition [21] as the speech recognition tool, and use the 
sound_play in audio_common package [22] to deliver text to 
speech commands. 

In the experiment, the system is able to identify the 
following verbal commands from user: “start”, “verify door 
number”, and “destination XXX” where XXX denotes a 
decimal number. And the system is able to deliver the 
following audio commands: “system ready”, “ok, go to XXX”, 
“you are XX meters from the target”, “hold on for detection”, 
“you are in front of room XXX”, “turn left at the next corner 
in front”, “turn right at the next corner in front”, “left turn for 
XXX degree”, “you reach the target” and a number of simple 
commands, etc.

B. Experiment and results
1) Localization drifts

To quantify the drift in the localization, we have the 
evaluation designed as follows. An arbitrary path is given on 
the corridor, as the ground truth indicated on Fig. 7. The 
subject starts the system localization and walks along the path. 
The subject intentionally traverses all the landmarks on the 
path.  Finally, the trajectory belief is compared with the 
ground truth.

Figure 7. An arbitrary route is designed for the test. The blue segments 
indicate the landmarks to be passively detected alone the path.
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Figure 8. The localization drifts against the ground truth in five trial. 

As shown in Fig. 8, the localization drifts against the ground 
truth is collected in five trials. It appears that the drifts are 
within 0.2 meters in most of the time, which is accurate 
enough for the navigation. Whenever a new landmark is 
detected on the way, the drifts can be slightly reduced. The 
trial in black does not converge in the figure, because the door 
number detection gave a wrong number on the way. If the 
landmarks are mis-detected, it takes a while for the particles to 
re-converge.

2) Navigation trials

Figure. 9. The starting positions are marked in red and destinations are marked 
in blue. For example, the starting position and destination are noted as “1start” 
and “1dest.”, respectively.
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The navigation system is tested by blind folded users on the 
sixth floor of the City College Engineering Building. Three 
start-and-destination pairs are given as test cases as shown in 
Fig. 9. In these cases, the system is capable of providing 
simple command and guiding the user to the destination in the 
simple indoor environment. The video clip of a trial can be 
viewed at: http://youtu.be/pj7FO41sFHM. 

V. CONCLUSION

In this research, we have designed and implemented a 
wearable indoor navigation aid for visually impaired users. By 
integrating multiple sensors of RGB-D camera, IMU, and the 
camera, the localization and trajectory of the user are 
functionally achieved using particle filter. Visual odometry 
from the RGB-D is corrected with the IMU odometry, and 
door number landmark is detected by the SVM machine 
learning algorithms. We also have presented a novel approach 
to detect the user-wall angles as the ground truth for the 
orientation correction, which significantly improves the fusion 
performance for indoor localization. Based on the localization 
and the semantic digital map, the user is navigated to the 
desired room. The user can be guided by the audio output 
command to the destination easily and conveniently with 
usability humanistic audio interface. Our future work will 
focus on a more effective path planning for our interactive 
scenario for the visually impaired people indoor navigation 
based on the semantic map.
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