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Abstract

The object of autonomic computing is essentially to minimize human supervision, i.e. the computer
system must at some level manage all its processes and seek human attention only to resolve high level
issues. In today’s computer systems, interfaces are by far the most demanding aspect of computers— we
spend more time using the “backspace” key than changing broken disks. Thus for a computer system
to be truly autonomic it must possess an “autonomic user interface (AUI)". An autonomic user interface
must provide users with a much higher level of service than today’s interfaces while at the same time
being self-aware, aware of its environment, adapting to changes and being self-healing. While tasks
like wordprocessing and programming can be carried out efficiently with today’s inflexible keyboard
and mouse interface, many tasks that involve querying, controlling and instructing a computer can be
completed more easily with an autonomic, multi-modal interface, including speech and visual inputs,
and more complex output modes than the traditional monitor. The paper discusses a natural interface to
a computer through the use of multiple cameras and microphones as sensors while focussing on ways of
achieving autonomic characteristics in such interfaces through the use of multiple sensors, cross modality
in input and output, learning algorithms and models of system architecture, the user and the environment.

1 Introduction

Autonomic computing essentially revolves around the concept of “don’t bother me”, i.e, the computer sys-
tem must at some level manage all its processes and seek human attention only to resolve high level issues.
A “botherless” interface should achieve efficient communication: with the computer understanding what
the user wants to communicate, the computer effectively presenting information to the user and this two-
way communication being accomplished efficiently. Communication between a user and computer can be
achieved through engineered devices like today’s keyboards, or through emerging speech based interfaces or
through natural interfaces. Natural interfaces are those which allow users to communicate with computers
as they would with other humans. The key to enabling natural interfaces is a synergistic combination of
natural communication channels (like speech and vision) with context awareness. For instance, consider the
following scenario. My coworker and | walk into my office discussing the design draft, as | walk in | realize

| should check on the important note | am expecting, and say “Do | have any mail from John?”, and the
computer responds with “Yes two notes from John Doe”. We continue discussing our design draft, and my
coworker remarks, “We should change the web interfaces.” | turn towards my computer and say, “please



make a note of that.” The meeting ends, and as soon as my coworker leaves, | ask for John’s email which
gets projected onto my white board so | can dictate a response to John.

What may empowering computers with context involve? Since the human-centric contexts typically
revolve around a 4-dimensional space of answers to the questions who, what, where and when, it may entalil
enabling the computer to sense, understand and relate these attributes of the users and of the world, possibly
at different scales of time and space. Specifically the computer system must have the capabilities to answer
the following questions:

e What is the physical space in which the interface operates? Knowledge of the type of environment in
which the interface is situated (office vs lobby).

e What are the objects in this space? Knowledge of key objects in the space, (monitors, chairs, white-
boards, etc).

e Are there people in the space? Presence Detection is used to signal potential command input and to
activate monitoring processes.

e Where are the people? Location Determination is used to perform automatic device selection, i.e.
which cameras to use for tracking, which microphones to use for audio input.

e Who are the people in the space? Automatic ldentification is used to authenticate the user to the
system. This could be achieved through a combination of face and speaker recognition technologies.

e What are they paying attention to? Attention Tracking is used to detect when a user issues a speech
command as opposed to talking to another person.

e Is anyone talking? Speech Detection used to prime the recognition engine.
e Where is the speaker? Speaker Location used to direct attention of the computer.
e What are they saying? Speech Recognition from a set of distant microphones.

e Are they happy with my performance? Interaction Quality Assessment is used to automatically obtain
feedback about the users’ satisfaction with the computers performance through facial expression and
voice analysis.

e What do they mean? Natural Language Understanding to interpret the spoken commands.

A computer thus empowered with context through the use of multimodal inputs will have to process the
user’s service request and respond to him in an appropriate manner. Effective communication of information
from a computer to the user is in itself a very involved process which will be only lightly touched upon in
this paper.

Autonomic interfaces have much in common with the multimodal user interfaces that have been written
about in the past, Weiser's Computer of 21st Century [51], Smart Rooms [36] at MIT, the Future Computing
Environments effort at Georgia Tech[17], EasyLiving at Microsoft [2], and several other efforts[39, 26].
They allow interaction with the user through a variety of modes of communication- primarily visual, auditory
and tactile. In using this array of options, particularly for input, the aim is to achieve a natural user interface
that is intuitive and easy to use for the user, whether a novice or an expert. However, by using the term
autonomic we wish to stress particular attributes that can be designed into the system, and go beyond the
aims of mere multi-modality.



Autonomic user interfaces do not simply allow the intuitive and transparent switching between modali-
ties expected in multi-modal interfaces, but they can exploit the redundancy in modalities to achieve greater
accuracy and greater ability to detect, diagnose and be resilient to, equipment failures and unforeseen cir-
cumstances. A system equipped with cameras and microphones for instance, can use both face recognition
and speaker identification to identify users with enhanced accuracy, and robustness to both background noise
and visual occlusion. Very high accuracy can be obtained by integrating even more identification modali-
ties, such as gait, lip motion, typing and ‘badging-in’ by linking together multiple identification instances
across time with visual tracking, and exploiting the continuity of identity of a person across a visual track.
Furthermore, such a system can verify that the speech and vision are correctly correlated, and from the same
source, thus preventing ‘replay’ attacks that attempt to defeat the system by playing back recorded biometric
data.

Cross-modal resilience is also seen when, for instance, a user continues to give voice commands when
there is an unusually large amount of background noise. Here, the system can gracefully begin to rely more
heavily on visual speech (lip-reading) than is normally useful in a quiet environment. If a device, such as
a keyboard or mouse, fails, the system can tell (from camera observation) that the user is attempting to use
it, and infer that the device has failed, and inform the user, possibly while simulating the device’s behavior
by interpreting the visual input. Such autonomic interfaces are also have capabilities of self-design and self-
configuration. A system should be able to correlate inputs from multiple cameras and microphones and infer
the relationships between them, without an extensive calibration procedure, and also warn, as the system is
being installed, of areas that are not observed by the current camera configuration, suggesting changes in
the current set-up, or predicting the potential benefits of adding more input devices.

Section 2 presents an operating scenario which provides a context for further discussions. Since auto-
nomic user interfaces are based on pervasive sensing of the users, privacy is a critical issue, this is discussed
in section 3. A number of advanced technologies like speech recognition and visual tracking are necessary
to enable an AUI, all the component technologies for an AUI are discussed in section 4. We propose a black
board architecture which coordinates the diverse set of component technologies, this is discussed in section
5. Section 6 discusses how an AUI can be made self-aware and self-healing. Thoughts on evaluating an AUI
are presented in 7 followed by the conclusions.

2 Operating scenario

An autonomic interface can be deployed in a variety of spaces, some of which are discussed later. The
following scenario of a work environment with an autonomic interface is used as a running example through
the document.

Figure 1 shows a plan view of a typical office environment. Once such an environment is equipped with
an autonomic interface, here are some of the possible ways in which the autonomic interface could assist
the user who could choose to interact with the system using voice commands.

1. S1: Computer, where did | park my car? The system tracks cars as they arrive in the parking lot and
associates the parking space to the particular user upon entering the building.

2. S2: Computer,is John Doe in today? The system can identify people as they enter the building.

3. S3: Computer, set privacy level to “high”. The privacy level can be configured by each user to suit
their requirements, for instance user identities can be masked by the system.
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Figure 1:Left: An Office Environment equipped with an autonomic interfaight: Plan and Side views
of a room instrumented with multiple cameras and microphones.

4. S4: John Doe is meeting with me in my office, and wants to schedule a follow up next Tuesday at
10 AM. I turn, to the computer and say, Am | free Tuesday at 10? The computer recognizes the
command, checks the calendar and responds.

5. S5: My friend calls me at on my office telephone number, and the computer knowing that | am
currently in the lab automatically forwards the call to the lab.

Autonomic user interfaces may be situated different spaces and serve a variety of purposes. The office
environment discussed in section 2 is one possible place for an autonomic interface. Following are some of
the other potential places for an autonomic interface.

Home: The autonomic interface would optimally control several devices at home while learning the per-
sonal preferences of the occupants, like controlling lights, music. The AUl would also keep track
of activities of people in the home acting like a scratch pad. Several other functions monitoring and
providing support to elders have been explored in the Aware Home project [29].

Vehicle: Autonomic interfaces in vehicles are already being implemented for cell phone control and climate
control. Additionally, AUI can aid in navigation and in tracking driving behavior for safety purposes.

Public Spaces: The role of autonomic interfaces in public spaces is more observation than interaction.
However an autonomic interface based solely on cameras can keep track of traffic, space usage [20],
measure the effectiveness of displays and perform several other functions. Consider the following
example.

| am walking around a mall and pause by a product display. The display sensing my presence says,
“Hello, welcome to Spectrum Sports.” Tracking my gaze, the system identifies that | am looking at
the tennis racquet and says “Could I give you more information about our line of tennis equipment?”

| say, “Yes,” and the system starts a promotional video.



3 Privacy issues in natural interfaces

In order that interfaces exhibit meaningful autonomic behaviors, it may often be necessary that they acquire,
store and learn a significant amount of personal user information. The subjects of this observation, whether
users of the system or individuals who are unknowingly exposed to the system’s sensing mechanisms, must
have the rights and mechanisms to know what information is being gathered, how it is used, and there must
be mechanisms for assuring that the information is used only in ways permitted by law and agreed to by the
users.

Users will be concerned about how the stored information could be abused for purposes other than those
for which it was originally gathered from the users, whether the novel purpose was merely unforeseen, or
the result of a new technology enabling a novel use of thought to be innocuous when previously gathered. In
either situation, the users would like to know their choices in correcting the existing unsatisfactory situation.
Clearly, the scope of privacy issues is very broad and these issues are just beginning to be addressed, mostly
in the restrictive context of the voluntarily disclosed information and much remains to be done to formulate
clear guidelines for more diverse content. The purpose of this section is to discuss these privacy issues
within the context of the autonomic interfaces.

Autonomic interfaces will be equipped with an array of sensors, some of which provide very rich infor-
mation (e.g. cameras) and others could be potentially very intrusive (e.g. mm radar). Further, the inputs to
autonomic interfaces are often implicit, the interfaces could be physically pervasive, disembodied and in a
position to observe the users over extended periods of time, in many situations and with perfect recall. Con-
sequently the users of an autonomic system may be largely unaware of what information is being gleaned
by the system, what is being stored and how is it being used.

Given that autonomic systems could be using extended sophisticated learning capabilities, it will be
difficult to identify and understand what information is being used by the system in its modelling of and
reaction to the users. In particular, it may be difficult to prevent a system from capturing subtle, extraneous,
objectionable, or even illegal correlating experience (e.g. shabbily clad customer may imply poor returns on
service), or subsequently prove that this was taking place.

On the other hand, the existing manual/semi-automatic systems are scarcely above reproach when it
comes to use of fair use of personal information. If existing laws and lawsuits are any guidance, we cannot
help but reach the conclusion that these systems are ridden with many problems involving (un)conscious,
unconscionable and unfair biases of people.

The advantage of having a concrete automated system is that the system behavior can be modelled
deterministically, the (inter)actions of the systems can be meticulously logged, and thus provide an objective
basis for investigation. In an increasingly automated world, then, the issues are more concerned with whether
all the concerned parties have fair access to the information and designs which ensure how these properties
of the system can be effectively guaranteed. While we are very far away from accomplishing these lofty
goals, right now it appears that closed system designs supporting fool-proof access accountability could
provide a possible interim solution.

More positively, given our preference for the interface being sensitive to human issues and that some
of the communication media are secure and others less so, the progressive interfaces are expected to au-
tomatically determine the best possibly methods communicating different messages conveying information
of different human nature. With access to multiple modalities of communication and to the user model,
autonomous interfaces are in a position to be more sensitive to its users’ privacy needs.



4 Component technologies

In this section we review the major technological components that would provide information to the au-
tonomic user interface. The primary sensing modalities, echoing the primary human senses, are acoustic
and visual. These provide the richest sources of data, but will be supplemented in many cases by other
modalities.

4.1 Detecting and locating people

Detecting and locating people are of fundamental importance to the activity of autonomic interfaces. Know-
ing that people are present is a minimum requirement for useful interaction, and knowing how many people
are present may be required by a variety of processes, from usage monitoring to directing fire rescue.

Knowing peoples’ locations enables the interface to focus attention on the users, both for input and
output. For example, a pan-tilt-zoom camera can be directed towards the speaker to capture a better image
of his/her face (for face recognition, facial expression analysis, lip tracking, or simply for transmission);
microphone arrays can be steered toward a speaker to pick up his/her speech signal with high fidelity for
subsequent analysis by a speech recognition system or simply for transmission; directional loudspeakers can
be used to spatially direct sound output towards the user [49] ; visual output can also be directed towards the
user (by projecting the display at the user’s location [30], or rendering graphical objects on a monitor with
the user’s location as the focus, or turning a synthetic avatar towards the user).

Both detection and location of people can be carried out by a number of technologies. The most direct
and reliable of these are explicit presence tags such as active badges [50] or active bats [21] which broadcast
their presence or location using infra red or radio. A survey of location technologies can be found in [22].
An obvious disadvantage of such possession-based systems is that they entail the inconvenience of having
users remember to these contraptions and misplaced tags result in failure of the system.

The second category of the technologies used for human detection are based on what humans do: Hu-
mans are vocal and mobile; they can be detected based upon when they speak, move or act. Some specific
acts, such as swiping a badge through a reader or hitting a key on a keyboard give clear indication of the pres-
ence of a user, but are clearly limited in scope. Detecting speech or motion are do not necessarily indicate
human presence, but are useful cues that can be exploited in constrained circumstances, or in conjunction
with other cues.

A number of human physiological characteristics (such as pulse, breathing, heat, exhalation of carbon
dioxide) have been used to detect humans in adversarial situations, but are not generally applicable to the
user interface scenarios. Sensing of human presence using near and far infra-red has received some attention
lately [53, 40]. The near infra-red sensing of humans is an emerging technology which is mostly restricted
to low resolution imaging of humans (e.g. 1 sq. ft. pixels) and therefore, it may be difficult to differentiate
humans from other warm bodies using this technology. The far infra-red imaging systems offer detailed im-
agery but is prohibitively expensive for widespread deployment. Both technologies suffer from interference
from other sources of infra-red irradiation. One of the strengths of these technologies is that no illumination
is required, and combining these sensors with other modalities broadens the range of conditions that can be
handled, and can make person detection and location more robust.

Vision is the sense that provides us with our richest source of information about the world. Many auto-
nomic user interfaces will need to have computer vision not only because it is a practical way of acquiring
the information that they need, but to achieve natural (i.e. human-like) abilities we would wish them to have
the same sensing capabilities as a human, and see the world the way we do.



Human detection using visible light cameras has some obvious strengths. First and foremost is the
richness of information available from the sensor. Not only can people be detected and located, but details
of their appearance can be measured, and inanimate objects can be sensed in the same way. At a basic
level, computer vision can be used to detect the presence of people. The popular technique of background
subtraction [25], by modelling the appearance of the static objects in a scene, is able to segment out the
moving or previously unseen parts of a scene. Since people are constantly moving, this or the simpler frame
differencing, can signal the presence of people in the scene, and their location within the acquired image.

If a person is within the field of view of more than one camera, stereo or triangulation can be used
to accurately determine the person’s position in a three-dimensional coordinate system, assuming that the
cameras are calibrated. Even without multiple views, knowledge of the geometry and the assumption that
the person is standing on the ground plane gives a good idea of the person’s location.

There are some obvious disadvantages to using vision: (i) occlusion and camouflage Occlusion from
other objects or humans can often become problem for effective detection. Similarly, insufficient contrast
with the background may also cause failures in detection. (ii) complexity: human form unfortunately comes
in all shapes and forms. Our understanding of independent visual detection of humans with different cloth-
ing, hair styles, jewelry, disfigurements is at best limited. (iii) illumination: sufficient ambient illumination
is necessary for sensing of human beings; (iv) privacy concerns: In addition to presence/absence informa-
tion, the visual appearance provides many other pieces of information and may potentially be objectionable
to the subjects.

Given that any particular modality for human detection may be (occasionally) prone to failure, one of
the favorite methods of human detection uses both the human form appearance as well as their motion.

4.1.1 Speaker Location

Knowing the location of the speakers in a space may be more important than knowing where all the people
are, and is clearly a valuable source of information for such general person location. Acoustic source local-
ization methods can be broadly classified as steered beam-former based, spectral estimation-based, and time
delay estimation-based. Of these, the time delay estimation-based locator is by far the most popular. Acous-
tic source localization techniques have the advantage of operating in poor lighting conditions, performing
omni-directional sensing, and ability to localize in spite of visual occlusion.

Time delay estimation-based locators use the difference in time of arrival of a speech signal at different
microphones, along with knowledge of geometry of the microphones, to estimate the location of the speech
signal. With two microphones, the time delay in arrival of speech defines a three-dimensional hyperbolic
surface on which the source can lie, commonly referred to as the cone of confusion. Three or more micro-
phones can be used to localize the sound source in 3D. The biggest challenge in time delay estimation is
reverberation in real world environments. As a result, numerous technigues have been proposed in the liter-
ature for optimal estimation of time delay. One of the earliest and popular techniques is generalized cross
correlation [31]. The principle was extended in [18] to better separate direct sound from reverberant sound
and use the characteristics of speech to avoid picking up other sounds. Others have employed cross-power
spectrum phase techniques with large arrays of microphones [41]. A closed-form solution for quadruples
of microphones was presented in [5] as an alternative to compute-intensive optimization techniques needed
with microphone arrays. Another approach for dealing with reverberation is the adaptive eigenvalue decom-
position algorithm [3]. Here, instead of correlating the two signals, the technique tries to directly determine
the relative delay between the direct paths of two estimated channel impulse responses.

Attempts at combining visual and acoustic processing to estimate speaker location have started ap-



pearing only in recent years [38, 39], although there has been a longer history in multimodal systems that
combine speech recognition with visual lip-reading [37]. Combining acoustic and visual processing for
speaker localization can result in a more robust and more accurate system. This is particularly important in
an autonomic interface. An autonomic interface should have both visual and acoustic localization systems,
and the ability to integrate these systems, or use them individually. The autonomic system should continu-
ally associateonfidence factoraith acoustic and visual modalities. The system should be able to switch
between modalities or integrate modalities based on these confidence factors.

4.2 Determining the user’s pose

Within an autonomic user interface, it is important in many circumstances for the interface to be able to
determine the focus of the user’s attention. In human interaction, our gaze, head pose and gestures all
transfer important information about the person being spoken to, the object referred to, a spatial location
and so on. The user interface must be able to pick up these cues and interpret them correctly.

In case the user, is reading something off a monitor, change in attention could be detected by change
in eye gaze [56]. In the case of autonomic interfaces one of the critical requirements is to allow distant
interaction with devices, in such a case, head orientation is the most significant cue for attention tracking.
Specifically, for the task of attention tracking the most critical head parameters are the azimuth or pan
followed by the elevation or tilt.

Estimating the head orientation of a person can be done by various means and has been used mainly in
VR systems[1]. However most of these require the user to wear a special head tracking device which is not
desirable in the majority of interfaces. Tracking head orientation based on camera input provides the ad-
vantage that it does not encumber the user. There have been several research systems for head tracking[48].
The techniques that can track head azimuth and elevation rely on three distinct techniques, namely feature-
, appearance- and template-based. Feature-based techniques rely primarily on locating known landmarks
on the face and using their geometry to determine pose. Appearance-based techniques typically learn the
relationship between the pixel appearance of the face and the orientation using a technique such as neural
networks or principal component analysis. Template-based methods rely on doing a pixel by pixel match
between a known template and the current image to determine the pose. Most of the techniques in literature
operate on fairly high resolution face images, typically where the user is 2—-8 feet from the camera. Also,
most techniques can measure face orientation only in a limited range of azimuth, rarely mote@ian
In the case of autonomic interfaces the the face orientation can vary through 360 degrees and the subject is
likely to be much farther away from the camera, resulting in much lower resolution head images. Detecting
features in low resolution images is very challenging, hence an attention tracking system for distant inter-
action will be appearance-based and use additional cues from the body shape and motion to estimate head
orientation.

4.3 Acoustic signal acquisition

Speech is of fundamental importance for person-to-person communication, and as such people have long
aspired to making speech a mode of interaction with computing devices. Research over the last thirty years
has begun to make this dream a reality. In an autonomic interface, the system should be able to react to
spoken information in a natural manner, with understanding comparable to that of another human. To make
this possible, a number of problems must be solved by the autonomic infrastructure. In the first place, simply
detecting whether someone is talking is a difficult problem. The traditional method of detecting acoustic
energy at a microphone, works only for microphones close to the speaker’'s mouth and in quiet environments.
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To work in more challenging conditions with background noise, several speakers and with microphones
built into the infrastructure, rather than held close to the speaker’s mouth, then the problem becomes much
harder, and we look to humans for ways to find who is talking. Firstly, people are good at recognizing types
of noises, and research has been carried out on, for example, distinguishing music from speech [44]. In
addition to using multiple microphones to limit spatially the signal acquisition, blind source separation and
auditory scene analysis can be used to tune the signal to a particular sound source.

Stationary background noise can also be modelled (e.g. Parallel Model Combination [19]) or subtracted
from the signal (cepstral means subtraction [52]) to leave more interesting parts of the signal present, but
further research is necessary to endow the autonomic interface with the human powers of distinguishing a
human voice from other sounds, including, say, knowing the difference between a voice on a radio and a
live voice. Clearly, though, humans use visual cues to solve this problem. We know someone is talking,
and which person, by seeing their lips move. A system that determines if a person is speaking is described
in [12]. This system combines person detection, head pose (for focus of attention) as well as lip motion
and acoustic energy to determine if a user is speaking. Thus far, such a system works only under controlled
circumstances, such as a desktop computer user, or [42] the user of a kiosk, but with the techniques described
in section 4.1 for acquiring high resolution face and far-talking speech signals, it should be possible to extend
this to allow an autonomic interface acquire such information throughout its domain.

4.4 Person identification

Knowing who the people in the space are is of fundamental importance in many applications. We can define
two types of identity— relative and absolute. Absolute identity is an identification of a person tying them to a
known individual record in a database, perhaps containing name, employee number and an index of security
clearances. Usually the user has been pre-enrolled and some biometric data (such as a photograph) captured
at enrollment so that identification can be carried out. Relative identity merely consists of maintaining
continuity of identity— tracking a person so we know that the person tracked at#imeist be the same

person tracked at timebecause they've been well tracked throughout the interval. This requires continuous
tracking, or methods (as simple as recognizing someone’s clothing) to associate tracks at different times
with one another. Similarly, some biometric data (e.g. face or voice as discussed below) could be acquired
at timet and verified later.

Absolute identity requires acquiring enough information about the user from the sensors in the environ-
ment to identify him or her unambiguously. The information can be solicited from the user (for instance
requesting a user name at a terminal, or a badge-swipe at a doorway) or derived from measured data (sens-
ing an active badge, recognizing a face). To prevent users from trivially impersonating one another, such
identification should involve a unique personal possession (such as an employee badge or credit card); proof
of secret information (a password or PIN); or biometric verification (face, voice, fingerprint recognition).

In many autonomic installations, where we wish the interface to be minimally intrusive, the system
should acquire reliable knowledge of the identity without making demands on the user. In this case acquiring
biometric data at a distance is highly desirable. Here there are two biometrics that stand out as being
particularly applicable— face recognition and speaker identification. A space equipped with cameras can
passively acquire face images from the people in the space as described above, and these can be identified
using a face recognition system. Similarly, if the user is speaking, or can be requested to speak, the user’s
voice can be captured with microphones, and recognized with a speaker ID system.

Clearly the problem is not so simple. Acquiring facial images or speech with sufficient quality to de-
termine identity is no trivial matter in an unconstrained situation. Acquiring such signals is dealt with in



sections 4.3 speech. However, it is worth mentioning here that most face recognition systems are designed
to work from frontal images, with performance degrading as the subject turns away from the frontal view.
Some research has investigated the recognition of profile images, or recognition from 3-dimensional data.
Also there has been some research on integrating information from many frames of video to give a better
determination of identity.

Another biometric of relevance for passive acquisition is gait recognition. This is still in its infancy, and
has a relatively low discriminative power, but it may help distinguish among a small group of subjects, or
provide additional information for maintaining continuity of identity. Lip motion identification — recogniz-
ing the unigue way an individual’s lips move while speaking — has also been used for identification, though
principally this is used in combination with speaker identification and face recognitionmilittisbiometric
system uses three different biometrics to determine an individual’s identity, providing a lower error rate and
much greater resistance to replay attacks by impostors.

An autonomic interface that determines the user’s identity will use just such a combination of methods
to determine and corroborate the identification. A single biometric may be susceptible to noise, failure or
deliberate deceit, but having multiple modes of identification makes the system much more reliable, accurate
and trustworthy. The corroboration process, where multiple sources of biometric informatitusede
together has received some interest in recent years [24, 33] though the adaptive reweighting according to
dynamic reevaluation of the perceived reliability of each of the information sources is still an open problem.

Since it may only be possible to identify individuals at certain times (such as when the pass in front
of a camera, speak or swipe a badgentinuity of identityis important even in absolute identity systems.
Having identified a person, we must track them to know their identity at a later stage when the identity
can not be verified directly. The tracking can, of course, precede the identification operation, so that, for
instance, we track a person leaving a car and crossing the car park before they badge into a secure building,
or can be seen by a face recognition system. At that point they can be identified, and we can retrospectively
associate the car with the individual. Likewise shopping habits (Which products were browsed but not
bought? How long did the shopper spend in the store?) can be constantly monitored, and finally associated
with an individual’'s record when the person shows their loyalty card at the checkout.

Further, continuity of identity allows the fusion of evidence across time. We may see a user’s face, and
then track them, later hearing them say something, all the while acquiring gait information and successively
building up a more confident estimation of their identity, until they log in at a computer with a password
and fingerprint, putting their identity beyond doubt. Such evidence accumulation must, of course, take into
account any inaccuracy of the tracking, to recognize that there are circumstances when continuity of identity
cannot be assured, as when two people go out of range or sight of the tracking sensor.

4.5 Speech recognition and understanding

Hitherto, speech recognition has largely been confined to users in quiet rooms speaking directly into micro-
phones. Recently it has become possible to voice dial a cell phone in a car, though on a vocabulary larger
than ten to fifty words such a system would be unusable, and the performance relies to some extent on the
regularity of the noise in a car.

In an unconstrained, challenging environment the autonomic interface of the future will marshal a wide
range of complimentary techniques to provide good, and potentially superhuman speech recognition capa-
bilities. As with the other tasks, described in this paper, one of the keys to robust, reliable speech recognition
is the combination of different modalities, and in this we can mimic the well-known human ability [46] to
use visual information to enhance the comprehension of heard speech. Lip images can be acquired by a
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telephoto lens steered onto the user’s lips, and used to improve the decoding accuracy through joint mod-
elling — ideally adapting the relative reliance on the two signals according to their perceived reliability, just
as 2001's HAL is able to lipread when the acoustic signal is unavailable.

Another powerful way of improving the usability of a speech system is by controlling the language
that the system is able to understand. In a difficult, noisy environment, limiting the vocabulary to digits,
results in acceptable performance, but in very good conditions, the user should be able to converse naturally
with the machine, using spontaneous (and thus poorly pronounced and ungrammatical) natural language.
Strong modelling and continuous re-estimation of the domain can simplify the speech task (by reducing the
perplexity, a measure of the branching factor or uncertainty in a conversation) without imposing artificial
constraints on the user.

Recognizing speech is, for some applications such as dictation, an end in itself, but most of the time,
the autonomic interface needs to interpret the speech, and act appropriately according to what was said.
Some of the speech that the autonomous interface hears, must simply be transcribed (say to record the
minutes of a meeting), but some of the speech consists of commands directed at the computing infrastructure.
Distinguishing the two situations is of crucial importance, and depends largely on the speech content, but
this can be combined with other cues (eye contact with an embodiment of the interface, change in tone of
voice) to determine the user’s intention underlying the speech act.

Interpreting the commands involves the understanding of natural language, itself an extremely difficult
task. So far practical systems with humans interrogating a machine system have restricted themselves to
limited domains, such as a virtual travel agent [27] although recent years have seen these systems progress
from constrained grammar, limited vocabulary systems to systems capable of understanding natural lan-
guage within the chosen domain. For the foreseeable future, any autonomous interface is liable to have a
restricted domain, or at best be able to model a small number of domains, perhaps switching between them
based on explicit or implicit cues. Further into the future, systems should be able to understand anything
that we would expect a human to, using domain constraints to understand otherwise ambiguous sentences,
but able to switch domains abruptly as the speaker changes topic.

5 Operation of a natural interface

An autonomic interface involves the interaction of multiple software processes — some which observe the
user and others which respond to user requests. These processes are inherently distributed, for example, the
speech recognition will run independently of the visual person tracking, but both of them need to interact
in the context of the autonomic interface. There are several mechanisms which facilitate such distributed
process interaction. Basically we require an architecture containing a set of autonomous processes operating
independently on their own domain of expertise and making available results for use by other experts.

At a high level, we could consider this like a blackboard systems [8], with all experts’ results available to
all other experts though in practice, looked at at a finer scale, the communication can be much more directed
and local, and is more likely to be implemented with message-passing between components that discover
each other through a hierarchically organized registry scheme.

Figure 2 shows a global architecture for an autonomic interface. It consists of a shared solution space
which is accessible to all the knowledge sources for both reading and writing. Each knowledge source can
post a set of known events and reacts to a events from some of the other knowledge sources. The events
posted vary in complexity ranging from simple events [iegson detectedrhich could be a boolean variable
throughperson track statavhich could be a complex measurement of various aspects of a person’s motion
or a speech transcript. Several of the knowledge sources shown in figure 2 have already been discussed in
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the previous sections, details of other knowledge sources are presented below. In fact several of these KSs
are themselves complex systems consisting of a number of separately operating knowledge sources.

Person Tracker KS: This knowledge source performs the tracking of multiple people in the AUI space
using typical multi camera tracking techniques [45]. The trackers used here typically estimate the
parameters of a full body person model. This typically includes the position of the person in the space
and various body parameters like head orientation, joint angles for the limbs, etc.

Gesture Recognition KS: Depending on the application the AUl may use several visual gestures as input.
For example, the head orientation may be used to determine the users attention and his hand pose may
be used for pointing gestures. The gesture recognition knowledge source uses the output of the person
tracking KS in conjunction with the world model 6.1 to recognize the users gestures.

Command KS: This knowledge source uses the outputs of the speech recognition knowledge source in
conjunction with the gesture recognition knowledge source, natural language understanding and the
command vocabulary to interpret the user input to generate commands to the system.

Output Generation KS: This knowledge source selects the appropriate modality and device for responding
to the user interactions with the AUL. It uses information from the world model, user preferences and
context information in communicating the system output to the user. For example, if the output is
response to a the query, “How are the traffic conditions on 1287”, the system may respond with audio
output if the user is not near a monitor. In the case of displaying an email, the system may project the
email onto a projection display.

Autonomic Behavior KS: This knowledge source is responsible for managing the autonomic behaviors of
the system, which include error detection, adaptation and error recovery. A detailed discussion of the
autonomic behaviors is presented in section 6

Implicit Communications KS: One of the unique aspects of autonomic interfaces is their ability for im-
plicit communication. Implicit communication is the ability of the computer “to know” things which
the user has not explicitly communicated to the system. For example, screen savers would be an im-
plicit communication in today’s systems, i.e, the system observes the lack of keyboard activity for a
period if time and turns on the screen saver based on this observation. In autonomic interfaces this
capability is more advanced and uses cues of human behavior to drawing inferences based on the
users action.

Figure 3 shows an example of the interactions between the knowledge sources and the blackboard during
a single user interaction. When a person first enters the scene the person detection KS detects and posts a
new person evernto the blackboard. Theew person everig observed by the person tracker and person
id KS’s. The person tracker KS tracks various body parts of the person and estimates a set of body pose
parameters. The person ID source uses a combination of face and voice (if the person is speaking) to
identify the person. This results in the blackboard being updated by getisen IDand theperson track
state The user preference KS observes pleeson idposted and posts the usgrsrsonalization datanto
the blackboard. The posting of tipersonalization datas used by the person tracker KS to update its
privacy settings, the output generation KS updates its personalization data (for example, a particular user
may not want to use audio outputs). The speech recognition KS loads a personalized vocabulary and training
data. The posting of thepeech everiy the speech detection KS causes the speech recognition engine to
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start the recognition process which posts the speech transcript onto the blackboard. Simultaneously, the
gesture recognition KS and the world model KS are observing the person track state, resulting in the world
model posting autput device proximity eveass the user approached a output device. In the meantime,

the command KS acts on the speech transcript to parse it for commands and gasismiand everdnto

the blackboard. The output generation KS observes the command and acts on it to send the response to
the appropriate output device. This interaction clearly illustrates the parallel distributed processing that is
necessary for an autonomic interface which is provided by the blackboard architecture.

6 Autonomic behaviors

Explicitly managing/maintaining large complex hetereogenous interfaces is very cumbersome and labor
intensive. Systems capable of exhibiting autonomic behaviors — those which are aware of their environment,
their own state and are able to adapt to changes and heal themselves are desirable from the perspective of
effective management as well as transparency. The following are the most important autonomic behaviors.

Environment Awareness: In the case of a AU, this entails the system having knowledge of the environ-
ment in which it is installed. For example, in order to automatically forward a phone call, the AUI
must be aware of the location of the user in the building and the telephone closest to the user. Such
environment aware services require the system to have a model of the world with geometric reasoning
capacities. Section 6.1 presents the details of a world model.

Self Awareness: Self awareness is the foundation for a error detection and self healing. In addition, self
awareness is essential in various functions such as tracking across multiple camera’s, automatic
switching between audio and visual modalities, etc. Self awareness is achieved through a combi-
nation of the world and system models (section 6.2).

Error Detection and Correction: Error detection can be classified into two types, namely component fail-
ures (like camera, microphone, server or software failures) and performance degradation (like reduced
confidence in person identification or speech recognition, etc). Component failures will involve using
alternative sensors, servers etc, while performance degradation will involve system tuning. Section
6.3 discusses the various aspects error detection and correction.

Learning and Adaptation: The autonomic interfaces should have ability to adapt to different users and
different usage situations by learning differences in the environment, and knowledge, style, and pref-
erences of their users. There are three central features for an adaptive interface. First, the interface
needs to maintain a user model which can be easily inspected and modified. Second, the interface can
learn the environment and users’ behaviors to improve its performance in some task domain based on
partial experience with the domain. Finally, the interface can adapt its behavior by using the learned
knowledge and make recommendations to the user. Details are discussed in section 6.4.

6.1 The world model

The world model is a representation of the “world” in which the autonomic interface is situated. The model
includes a representation of space, objects in the space, function etc. The model should support queries of
the following kind.
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Proximity queries: Given a spatial location, find all objects in the world with a certain distance, given an
object find where it is.

Visibility queries: Given a spatial location and gaze direction and field of view, find all visible objects.
Attribute queries: Find all objects that can be used as a projection surface. Find all exits from the space.

Constraint queries: Is it OK to perform function X at a given location. Can | forward a telephone call to a
meeting room?

The requirements of the world model can be satisfied by an object-oriented geometric representation.
Figure 4 shows a geometric representation of the world. The world is represented as a set of objects, each
object has a base coordinate system which is defined with reference to its parent object. Ultimately each
object in the model can be expressed in the world coordinate system. The following shows an example of
the structure of an object.

Object( \

Transform: ; Transform with reference to
parent\\

Link to Parent ; A link to parent object\\
Object ID: ; Unigue Identifier\\
Dimension: WxLxH ; Bounding volume\\

Object Count: N ; Number of contained objects\\
Contained Object Pointers[N] ; Pointers to contained objects\\
Connection Count: C ; Number of entry-exits \\
Connection Object Pointers[C] ; Pointers to connected objects\\
Renderable Description: ; Facet model of object\\
Mobility: ; Fixed, Semi-permanent\\
Functions: ; Enumerated Type\\

Audio Visual Properties: ; Enumerated Type\\

Interaction Status ; Enumerated Type\\

)

Functions (\\
MONITOR, PROJECTION SURFACE, TELEPHONE, CAMERA, MICROPHONE, UNKNOWN) \\

In the proposed model, the object oriented representation allows for extensibility while the geometric
basis allows for geometric reasoning. In order to increase the efficiency of access, the bounding volumes
of the objects can be indexed using a spatial indexing structure like the R-Tree [43]. The issue of acquiring
a model for a large space can be fairly expensive. A method of bootstrapping is described in section 6.1.1.
Several of the research efforts in context aware computing have proposed the use of similar models [6, 23, 2].

6.1.1 Model acquisition

Model acquisition can be a time-consuming step in the installation of any user interface of the kind we are
describing. In the past the creation of the world model has been a laborious manual operation requiring
extensive measurement, calibration, labelling and meticulous organization.
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One of the advantages of the future autonomic user interface is, however, the relative ease with which
the world model can be constructed, much of it being acquired through an automatic process, with minimal
supervision and external input.

While the component technologies are not yet fully developed, and integration is even further into the
future, the following is the scenario that we envisage for a self-installing autonomic user interface.

e The system designer chooses the areas that need to be covered by cameras, microphones or other
sensing modalities

e The cameras and microphones are temporarily installed in the actual space, or in a computer model of
the space, so that the system can analyze the actual coverage achieved and determine where sensors
need to be moved or added to achieve specified performance requirements.

e Cameras and microphones with pre-calibrated intrinsic parameters are installed in the space. Overlap-
ping fields of view for the cameras are hypothesized based on background appearance, and confirmed
by observing people moving around the space. In a densely instrumented space, the spatial geome-
try can be learned in this way, but in sparser installations cameras’ interrelationships may need to be
acquired from another source, such as GPS in the cameras or a human designed CAD model.

e Microphones are likewise calibrated, semi-automatically with reference to audio-visual events.

e Fine calibration can be carried out by a human or robotic agent traversing the space with an object of
known size and a device for emitting noise pulses.

e Objects in the world model may be identified by sophisticated object recognition technologies, or
manually labelled by the designer. Self-labelling will involve techniques such as sending known
patterns to a specific display and observing where those patterns appear, dialling particular telephones
etc.

e The system may have to learn much other information either explicitly or experientially over a period
of time. For instance learning that a particular room is known as “the lab” can either be explicitly
taught; can be learnt by association; or the information can be explained in response to the system
asking for an explaination of an unknown term.

Clearly much of this automation lies in the far future of artificial intelligence, so in the short term,
much more manual intervention will be required. Dimensions and layout of rooms must be acquired from
digitizing building plans; furniture and objects must also be measured and inserted into the CAD model, and
labelled explicitly. Cameras must be individually and collectively calibrated and registered with the model.

[9]

6.2 The system model

The goal of the system model is to provide the necessary representation which allows the system to be “self-
aware” and “self-healing”. Automatic reconfiguration for both hardware and software components and the
ability to localize faults and isolate affected system components are essential prerequisites to self awareness
and healing.
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Plug and Play: The AUI should have the architecture to support resource discovery and management for
both hardware and software components. This can be accomplished by augmenting the blackboard
architecture with plug and play capabilities. Plug and Play architecture has been used to set up,
configure and add peripherals to a PC’s [54]. A similar approach can be used to provide dynamic
reconfiguration capabilities to the AUI. Figure 5 shows the device abstraction for a camera, server and
the person id service. The abstractions provide a set of standard services which provide information
about the device and also allow for controlling the device.

For example, an AUl installation has been using face recognition technology to achieve person iden-
tification. A new speaker recognition module (SRM) is added to the AUI. The SRM starts to add new

speaker identification results into the blackboard. This information is automatically recognized by the

person ID module which uses the information to improve person identification accuracy.

Fault Localization: Given that an error is detected in the functioning of the AUI, the diagnosis procedure
will be required to localize the error to a particular component. This requires a representation of the
information flow within the AUI. Figure 6 shows the system configuration graph for a portion of the
AUI. As discussed in the camera failure scenario, this graph is used to isolated dependent components.
The system configuration graph is a dynamic structure which is updated as the configuration changes
due to various autonomic behaviors.

6.3 Error Detection and Correction

In this section we discuss the error detection and correction processes in an AUI. The errors in AUI's can be
classified intacomponent failureandperformance degradation

6.3.1 Component Failures

Component failures can be detected using a query-response mechanism in combination with an interrupt
on error mechanism. Each component (both hardware and software) in the AUI will have an addressable
software module called the component monitoring module (CMM) which responds to a central monitoring
module called the autonomic behavior manager (ABM). For example, associated with each camera is a
CMM which monitors the image stream to detect camera failures. If a camera failure is detected, the CMM
sends a message to the ABM. The ABM can also query the CMM for status, this allows for the detection of
catastrophic failures (like the crashing of the machine running the CMM).

Once a malfunction in one of the cameras is detected by the Autonomic Behavior Manager. The ABM
uses the the system configuration graph to isolate all he KSs that receive input from the camera and shuts
them down. The ABM initiates a resource discovery call to locate another camera with similar space cov-
erage as the failed camera. Once the camera is located, the ABM restarts all the affected processes on a
machine which can receive the camera input.

6.3.2 Performance Degradation

Unlike traditional error detection and correction techniques in which the transmitted signal is coded to
achieve error detection and correction, in the case of signal interpretation (speech, face reco, visual tracking
etc) the challenge is to measure the error in the “estimation process”. Most signal interpretation algorithms
have model parameter estimation as one of their steps. The parameter estimation process typically produces
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aresidual error which is an indication of how well the data fits the model. Algorithms can use residual errors
along with several other internal parameters to produce a confidence measure for the results they produce.
A threshold on the confidence can be used to detect errors.

Performance monitoring is achieved through a mechanism similar to component failures. Each signal
interpretation module has a attached to it a performance monitoring module (PMM) which reports a nor-
malized performance metric to the ABM. Once the ABM detects a performance problem with a particular
component it can take one of take one of the following actions through the PMM.

Adapt Algorithm Parameters: For example, in case the visual tracking module has a low performance
due to changing lighting, the background estimation rate can be increased to make the tracking adapt
faster to the changing lighting.

Adapt Modality Weights: In the case, that speech recognition performance drops due to background noise,
the visual features in the speech recognition can be weighted more than the audio features.

Adapt Signal Acquisition: An alternative way to address the drop in speech recognition performance could
be through switching to the closest microphone, or be steering a microphone towards the location of
the speaker.

6.4 The user model

Naturally, since the purpose of the autonomic interface is to make the user’s life simpler, the interface must
have a model of the user in addition to a model of the inanimate objects that make up the space in which the
user operates. There are several components to a world model: generic user traits; specific user traits; and
current user state. We address each of these in turn.

The generic user traits capture general information that can be used as priors to guide estimation of
specific user traits, and which can be assumed in the absence of data. Such a model will comprise such
anthropometric data as the size, shape and articulation of people, how fast people move. It may also comprise
assumptions of preferences: what tasks are likely to be performed in which locations in the space, how is a
user most likely to configure the lighting in the space etc. Further, it can be considered to comprise more
specialized data such as the models for speaker-independent speech recognition.

As a system observes a particular user, and tracks that user over a period of time, tdumtirgkity of
identity, the system can build up a considerable knowledge base about the person- the person’s appearance,
specifically clothing appearance and face appearance for identification, and specific values for the anthro-
pometric data such as height and limb length; the person’s voice- the system can adapt individual models
to give enhanced speech recognition, and create a speaker identification model. As the user controls the
interface- changing the lighting, carrying out specific tasks in specific places etc., the interface can learn this
information and passively acquire preference data to be used in making future decisions.

6.4.1 Affective state

One particular aspect of user state that it is desirable for the user model to contain is the user’s affective
state. Being aware of how the user is receiving a piece of information provided is very valuable. Is the user
satisfied, confused, frustrated, or simply sleepy? Being able to know when the user needs more feedback, by
not only keeping track of the user’s actions, but also by observing cues about the user’'s emotional experience
also has advantages. Based on the user’s reaction, the autonomic interface can be adapted by the user or self-
adapted to the user’s preferences. To achieve this, ideally an integration of multiple cues will be used. For

17



example, the interface can recognize the user's emotion through body language, voice and facial expression.
Also the user can give explicit information through speech.

Although voice can express some human emotional states [35, 28], acoustic information does not pro-
vide as much information as vision for emotion analysis. Recent progress in computer vision brings the
possibility of using facial and hand information to find if the user is satisfied. Since faces are at the cen-
ter of human-human communication, conveying a person’s internal emotional state, intentions or social
communications, it would seem natural and desirable to give faces an important position at the center of
human-computer interaction. The face can express emotion sooner than people verbalize or even realize
their feelings. Facial expression analysis has been being an active research topic for psychologists since
1872 [11]. Within the past decade, significant efforts have been made in developing methods of automatic
facial expression analysis [4, 13, 16, 32, 34, 47, 55]. For automatic facial expression recognition, having
located the user’s face, individual facial features need to be tracked and their motion measured. Finally the
expressions represented must be recognized.

There are two big challenges need to be stressed. One of the important challenges for the autonomic
interface is whether the facial expression reveals the true emotions of the user, which may require higher
level knowledge. The interpretation of facial expression is dependent upon contextual information such as
the user’s culture, the setting and accompanying body gesture or speech. Another important challenge is that
emotion is often communicated by subtle changes in one or a few discrete facial features, such as a tight-
ening of the lips in anger or obliquely lowering the lip corners in sadness [7]. Change in isolated features,
especially in the area of the eyebrows or eyelids, is typical of paralinguistic displays; for instance, raising
the brows signals greeting [14]. To capture such subtlety of human emotion and paralinguistic communi-
cation, automated recognition of fine-grained changes in facial expression is needed. Several systems were
developed to recognize subtle facial expressions [10, 13, 47].

Hand gesture is another important information of the autonomic interface to find if the user is satisfied.
To achieve a natural and intelligent interaction, there are three important issues: gesture modelling, gesture
tracking, and gesture recognition.

In order to evaluate if the user is satisfied, all or part of the voice, facial, and hand gesture information
can be used. For example in S4, when the computer checks the calendar and displays the response on the
computer screen, if | frown with displeasure and point to the wall, the computer might then project the
response on the wall.

In addition to speech and vision, there is a wide selection of other ways of measuring affective state (in-
cluding such indicators as heart rate, skin resistance, eye movemements) though in general measuring these
requires special sensors attached to the user, making them inappropriate for most user interface situations.

7 Performance evaluation

An interface is designed to achieve effective communication/interaction between the system and its users.
The performance evaluation of a generic interface is based on how effectively the user can interact with the
system for performing the specified tasks and how efficiently system utilizes its resources [15]. Effectiveness
of an interface can quantified using metrics such as appropriate invocation of outputs associated the given
inputs, speed of execution, ease of use, ease of user learning, system adaptation to user etc. Efficiency
metrics may include cost of the system, percentage utilization of individual components, etc. Relative
significance of each these individual performance components to overall performance obviously depends on
the specific tasks user interface is performing and on the costs of achieving user acceptable system behavior
in each of the individual performance dimensions. For instance, interface in a volatile workspace may
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place more importance on ease of learning where as a healthcare situations may emphasize more on system
adaptation to users. Derivation of the appropriate quantitative performance models of the interface typically
relies on user inputs and the reader referred to literature on user studies [15] related to user interfaces for
further reading. The specific issues related to the autonomic interface evaluation arise primarily because of
the imperfect behaviors of underlying emerging technologies.

An autonomous interface relies on many pattern recognition technologies mentioned elsewhere in this
work. Performance of the individual modules depends upon the inherent discriminative information avail-
able in the input signal presented to the module and world/user/signal models of the module. Itis well known
that error rates of existing practical user identification systems, speech recognition systems, user localiza-
tion systems, gesture recognition systems are not insignificant and could themselves be a direct cause of the
unacceptable overall performance of the system. Similarly, the existing state-of-the-art integration technolo-
gies (e.g., audio-visual, speaker-speech) also suffer from imperfect behaviors because of the limited models
or limited information in the overall signal presented to the system.

Building the models of the individual components and modelling the system performance in terms of the
component models is intractable for even most simple pattern recognition systems and the evaluation studies
have predominantly relied on empirical data for estimating the system performance. For any empirical
performance evaluation experiment to be able to precisely generalize to the entire population of interest, the
test data needs (i) to bepresentativef the population and (ii) contain enough samples from each category
of the population. In the context of the autonomous systems both components present a huge problem.
Often, the system measurements themselves may in-deterministically change the user behavior and hence
capture of realistic inputs may not be trivial. For instance, the Further, due to implicit nature of the inputs,
capturing realistic set of samples (e.g., asking user to frown may be significantly different from the realistic
user frown) may need thoughtful experimentation. The issues of realistic capture is further exacerbated in
case evaluation of the security performance of system under adversarial attacks with unknown threat model.
Because of the rich and multidimensional nature of inputs, capture of sufficient number of samples may be
very expensive and an intractable problem in itself. The complex interaction between system adaptation to
user and user adaptation to the user may imply different system operating points for different users. Issues
related to user habituation and system event histories may pose further challenges to sample size estimation.

Emergence of technology depends upon a number of related entities: need for a functionality which
provides a value; the application of a technology to obtain the value; and the perceived performance of the
technology to provide that value. Bother-less human computer communication provides a genuine value
to a user. With increasingly inexpensive computing power and sensors, audio-visual technologies appear
appear to be the only candidates for providing a bother-less, convenient, pervasive, and natural interface.
Whether this will indeed happen, will depend upon how quickly the overall performance natural interfaces
are characterized and compared against other alternatives.

8 Conclusions

In this paper we presented a vision for an autonomic user interface which provides a natural human com-
puter interaction. The interface relies on advanced speech recognition, visual tracking and multi-modal
technologies operating in a blackboard like architecture. The combination of speech and visual technologies
provides the interface with both human awareness and context awareness both of which are essential for
natural human computer interaction. In addition to providing natural human computer interaction, the AUI
also uses a combination of the world model and system model to achieve self awareness, and self healing
properties.
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The vision of an autonomic user interface presented in this paper can be realized today in many limited
situations. For example in a well defined space like an automobile, a combination of limited vocabulary
speech recognition and visual tracking using stereo could be integrated into the automobile control system
to generate fairly advanced autonomic behaviors. However the more general case of instrumenting a larger
space like an office environment (where the range of activities is much larger) with a AUI is further off into
the future.
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The System Model
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The System Model
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