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Abstract — In this paper, we propose a texture representation framework to map local texture patches into a 

low-dimensional texture subspace. In natural texture images, textons are entangled with multiple factors, such 

as rotation, scaling, viewpoint variation, illumination change, and non-rigid surface deformation. Mapping local 

texture patches into a low-dimensional subspace can alleviate or eliminate these undesired variation factors 

resulting from both geometric and photometric transformations. We observe that texture representations based 

on subspace embeddings have strong resistance to image deformations, meanwhile, are more distinctive and 

more compact than traditional representations. We investigate both linear and non-linear embedding methods 

including Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving 

Projections (LPP) to compute the essential texture subspace. The experiments in the context of texture 

classification on benchmark datasets demonstrate that the proposed subspace embedding representations 

achieve the state-of-the-art results while with much fewer feature dimensions.    
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1. Introduction 

The automated analysis of texture is widely applied in a number of real-world applications, e.g., image 

and video retrieval, object recognition and segmentation, and natural scene classification [5, 8, 19, 22, 26]. 

However, it is a challenging problem to represent texture images due to scaling changes, affine 

deformations, and lighting variations. A desired texture representation is thus supposed to handle both 

geometric and photometric variations. There has been extensive research in the literature on designs of 

robust texture representations. Early work for modeling texture includes filter banks [23] and co-occurrence 

features [11]. They mainly concentrate on global 2D transformations such as rotation and scaling. Most 

recent work further captures the effects of 3D transformations such as viewpoint change and non-rigid 

surface deformation. The representation methods based on fractal analysis [30, 33] have also been proposed 

to model spatial distribution properties of textons with impressive recognition performance. In addition, 



most recent state-of-the-art results in texture recognition are obtained by using histograms of local image 

features as distributions of textons [9, 16, 35]. Therefore, the effective computations of textons are crucial 

for robust texture representations. 

 

Figure 1: Texture images are generated from interactions of multiple factors including textons, geometric 

transformations, and photometric transformations, among which, textons are the essential factor for texture 

representation. 

 

It is common to define texture as a visual pattern with the repetition of a set of basic primitives named 

textons. Accordingly, a histogram or distribution of textons can be used as an effective representation of 

texture images. For nature textures, textons can be approximated by the prototypes from clustering local 

texture patches. However, natural texture images are generated from interaction of multiple factors related 

to rotation, scaling, lighting, viewpoint, and non-rigid surface deformation, as illustrated in Fig. 1. The 

multiple factor variations result in severe difficulties for accurately capturing the essential factor, i.e., 

textons. In this paper, we propose to employ both linear and non-linear embedding approaches to map 

normalized local texture patches into a texture subspace for analysis. In our framework, the low-

dimensional structures hidden in high-dimensional texture observations correspond to the essential factor 

for texture representation. In this way, the unwanted variation modes resulting from geometric and 

photometric transformations can be reduced or removed from the essential factor. 



The approaches of subspace embedding have been demonstrated effectiveness in mining meaningful 

low-dimensional structures hidden in original high-dimensional feature space [24, 27]. They are based upon 

the biological observation that human brain extracts a manageably small amount of perceptually relevant 

features from high-dimensional sensory inputs (about     auditory nerve fibers or     optic nerve fibers) 

[27]. On the other hand, it also has been explored to transfer the design of local image descriptors to a 

dimensionality reduction problem in the context of image matching [13, 15]. Our proposed method of 

subspace embedding textons is mainly inspired by the appearance-based face recognition. As discussed in 

[3, 12, 20, 28], face images varying in rotation, pose, illumination, and expression reside in a manifold of 

original data space. Mapping face images into a face subspace is able to conserve the essential factors of 

person identity but suppresses other factor variations. Eigenfaces, Fisherfaces, and Laplacianfaces are the 

state-of-the-art embedding algorithms in face recognition literature [3, 12, 28]. Eigenfaces and Fisherfaces 

are linear methods which are used to effectively model the Euclidean structure of original feature space. 

Laplacianfaces is a non-linear approach that is able to preserve local data relationships and to discover the 

subspace of essential factor. Motivated by the success of subspace embedding methods in face recognition, 

in this paper we explore texture subspaces detected by PCA, LDA, and LPP, and then evaluate our 

approach in the context of texture classification. Following the conventions in face recognition, we name 

textons embedded by PCA, LDA, and LPP as EigenTextons, FisherTextons, and LaplacianTextons. 

The remainder of this paper is organized as follows. Section 2 reviews existing approaches for texture 

representation and subspace embeddings. Section 3 describes PCA, LDA, and LPP methods. In Section 4, 

we provide the detailed procedures of representing texture images using the proposed methods. A variety of 

experimental results and discussions are presented in Section 5. Finally, Section 6 summarizes the remarks 

of this paper.   

2. Related Work 

A major challenge of texture representation is to achieve invariance under a wide range of geometric and 

photometric variations. Early research work [11, 23] in this domain mainly focused on the analysis of 

global 2D image transformations including in-plane rotation and scaling. Because of lacking invariance to 

general geometric transformations, these approaches however cannot effectively model texture images with 



large 3D transformations such as viewpoint change and non-rigid surface deformation. Multi-fractal 

analysis has recently been proposed and achieves good resilience to 3D deformations [30, 32, 33]. Texture 

representations based on this method benefit from the invariance of fractal dimension to geometric 

transformations. For example, MFS proposed by Xu et al. [32, 33] combined fractal dimensions of pixel 

sets grouped by density functions and orientation templates.   

In order to make texture representations more robust to 3D image transformations (e.g., viewpoint 

change and non-rigid surface deformation) as well as illumination variations, most of recent methods on 

texture representation rely on extracting local features by local image detectors and descriptors [9, 16, 35]. 

A textons dictionary is then generated by clustering the extracted local features. For example, Lazebnik et 

al. [16] proposed a texture representation method based on affine-invariant detectors (Harris and Laplacian) 

and descriptors (RIFT and SPIN). Zhang et al. [35] represented textures by combining multiple local image 

features (SIFT, RIFT, and SPIN). Extensive experiments in texture classification and retrieval have 

demonstrated that histogram of local image feature is well adapted for texture representation. This is 

mainly because these textons inherit the resistance to geometric and photometric transformations of local 

image detectors and descriptors. However, computations of most local image descriptors [1, 2, 10, 18, 25, 

31] are complicated and some choices behind their specific designs are not clear. Most descriptors are 

carefully crafted by hand with many parameters to be manually tuned, such as the number of orientation 

bins, the number of grids in each support region, and grids sampling schemes (e.g., Cartesian or log-polar). 

Another limitation is their high dimensions that result in expensive computations in the clustering process 

to generate textons dictionary. Instead of using manually designed local image descriptors, some research 

work attempted to employ the data-driven approach to compute texture representations. You and Cai [34] 

applied a family of PCA subspace decompositions to recognize the very specified wood texture. A null-

space based LDA in [17] was used in the frequency domain to perform texture recognition.   

Similar to texture images resulting from multiple factors of geometric and photometric transformations, 

facial images are also formed by interactions of multiple modes related to facial geometry (e.g., person 

identity and expression), pose, and illumination. In order to disentangle and extract the essential factor, i.e., 

person identity, for robust and fast face recognition, face images are usually mapped into a face manifold 

by subspace embedding techniques. Turk and Pentland [28] proposed to use PCA to represent face images. 



Belhumeur et al. [3] used LDA with the class specific linear projection to compute a face subspace. Both 

PCA and LDA are linear embedding methods. A number of research efforts have developed to discover the 

non-linear structure hidden in original image space, e.g., Isomap [27], Local Linear Embedding (LLE) [24], 

and Lapacian Eigenmap [4]. However, these non-linear approaches suffer the out-of-sample problem, i.e., a 

subspace yielded by such techniques is only defined on training data but is not able to extend to new testing 

data. LPP proposed by He et al. [12] explicitly addressed this problem. LPP models a subspace by a 

nearest-neighbor graph where the local structure of original image space is preserved. 

Motivated by the similarity of image formation between texture images and face images, we propose to 

use subspace embedding methods to map texture images into a texture subspace. This enables us to 

disentangle and extract essential factors of texture images. Compared to representations of local image 

descriptors, the data-driven textons based upon subspace embeddings are more distinctive, more compact, 

and with less parameters to tune. 

 

 

 

Figure 2: Visualization of normalized texture patches in texture subspaces with top three dimensions 

computed by PCA (a), LDA (b), and LPP (c). Each color is encoded according to one texture class. For 

figure clarity, four texture classes from UIUC Texture dataset are visualized. 



3. Subspace Embedding Methods 

We investigate both linear and non-linear embedding methods to compute a texture subspace. PCA 

effectively models the Euclidean structure and the variance of entire data. LDA incorporates class specific 

information and finds the projection that actively discriminates between different categories. LPP preserves 

intrinsic local structure and detects a non-linear subspace hidden in original data space. 

As an illustration, Fig. 2 shows the distributions of normalized local texture patches mapped into a 

texture subspace with the top three dimensions. In this figure, (a-c) correspond to subspaces obtained by 

PCA, LDA, and LPP, respectively. The mapping of PCA tends to spread data to capture the factor of the 

maximum variance. The projection of LDA is based on the factor of texture identities, i.e., to cluster texture 

patches from the same class close while to separate the ones from different classes far from each other. The 

embedding of LPP also forms reasonably separated clusters. It maintains the similarities of local patches in 

the texture subspace and in the original data space. 

Let us consider a set of    -dimensional local texture patches                belonging to   classes. 

       represents the embedding that maps original data to a new      -dimensional texture 

subspace, where new data       are defined by                  . 

3.1. EigenTextons of PCA 

PCA is an eigenvector approach to model linear variations in the data with high dimensions. The goal of 

PCA is to construct a series of mutually orthogonal basis that are able to capture the maximum variance 

directions. It performs embedding by projecting original feature vectors with   dimensions to a  -

dimensional linear subspace spanned by   leading eigenvectors of the covariance matrix. The objective 

function      is defined as following: 
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The optimal embedding    in Eq. (2) is the EigenTextons, which correspond to the basis that maximizes 

the above objective function. 

3.2. FisherTextons of LDA 

LDA is a supervised linear subspace embedding algorithm. By encoding class specific information, 

LDA seeks a projection basis on which data points of different classes are separated far from each other 

while simultaneously clustering feature points of the same class close to each other. Therefore, the 

subspace yielded by LDA is efficient for discrimination. The objective function of LDA is: 
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where   is the mean vector of local texture patches in training set,    is the average feature vector of the 

 th class,    is the number of local texture patches in the  th class,   
 
 is the  th local texture patch in the  th 

class,   is the number of classes.    and    are between-class scatter matrix and within-class scatter 

matrix, where the class specific information is incorporated. The optimal mapping basis    is the 

maximizer of the objective function in Eq. (3). It can be solved by a generalized eigenvalue problem 

defined in Eq. (6). Note the upper bound of reduced dimension       as there are at most     nonzero 

generalized eigenvalues. 

   
        (6) 

 

In the case of face recognition,    usually becomes singular. This stems from the fact that the rank of 

   is less than or equal to    , but the number of training images   is much smaller than the number of 

pixels   in each image. In texture representation, this difficulty however can be avoided. In our framework, 



  is the number of local patches in texture images of training set. This number is much larger (   ) than 

the amount of images. In addition, the dimension   of each local texture patch is far smaller than the 

dimension of the entire image. 

It was observed in [7] that the coefficients of    used to map spatially smooth features (e.g., local 

texture patches) tend to become spatially rough. We take the scheme of spatially smooth regularization in 

[7] to smooth and stabilize the mapping coefficients. Spatially smooth regularization takes advantage of the 

spatial relationships between pixels within each local texture patch and makes the embedding coefficients 

smoother and more stable. The regularized optimal embedding    is the FisherTextons. 

3.3. LaplacianTextons of LPP 

LPP is a non-linear subspace embedding approach that aims to preserve intrinsic geometry of original 

data space. It concentrates on discovering the manifold structure hidden in original space by modeling an 

adjacency graph. LPP addresses the out-of-sample problem of most non-linear embedding techniques. The 

embedding obtained by LPP is defined on both training and testing data. The objective function of LPP is 

defined as: 
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where   is the adjacency matrix that measures the similarity between each pair of local texture 

patches        .  defines the range of local neighborhood.  is a constant scalar value. The intrinsic 

geometry of original data space is captured by  . The objective function incurs heavy penalty if a pair of 

neighboring texture patches are mapped far apart. So it seeks to obtain such an embedding that, if    and    

are close, they will be mapped to a subspace where    and    are close as well. The optimal embedding    

that minimizes Eq. (7) can be solved by the generalized eigenvalue problem: 

             (9) 

 



where   is a diagonal matrix with          .      is the Laplacian matrix. The minimum 

eigenvalue solution    of Eq. (9) is the LaplacianTextons. 

4. Texture Representation Framework 

Our proposed framework to build effective texture representations is described in this section. A 

keypoint detector is first used to localize texture regions. We then normalize detected regions to make local 

texture patches invariant to scaling and rotation. The normalized texture patches are then mapped to a 

texture subspace using the embedding approaches described in Section 3. A textons dictionary generated 

from training set is employed to quantize embedded normalized texture patches. A texture image is in the 

end represented as a histogram of textons. 

4.1. Region Detection and Normalization 

We begin with a keypoint detector to search salient local image structures. The keypoint detector 

provides support regions of local texture patches. In this paper we adopt Harris-Laplace detector and 

Hessian-Laplace detector [21] as keypoint detectors. Both of them are rotation and scaling invariant. 

Harris-Laplace detector responses to corner-like structures, and Hessian-Laplace detects blob-like 

structures. They provide salient, complimentary, and sufficient local texture regions. 

The support regions are three times larger than the detected regions in order to include more signal 

changes. All the support regions are first smoothed to reduce noise and aliasing and then normalized to a 

fixed patch size of       that provides sufficient resolution. A similar patch size was used in [21]. As 

most state-of-the-art local image descriptors [2, 10, 15, 18], a dominant orientation of a patch is computed 

based on gradient information. The dominant orientation corresponds to the largest bin of a histogram of 

gradient orientation weighted by gradient magnitudes and smoothed by a Gaussian window. A patch is then 

rotated to align its dominant orientation to a canonical direction. This normalization process simplifies the 

subspace modeling problem for embedding algorithms as variations of rotation and scaling are significantly 

suppressed. 



4.2. Offline Computation of Embeddings 

We compute embeddings    using the algorithms described in Section 3. For texture recognition, the 

embeddings can be pre-computed once and stored. It is important to note that the embeddings are computed 

based upon normalized local image patches rather than the entire images as used in face recognition. We 

explore two channels of normalized texture patches to compute embeddings: (1) image channel, i.e., local 

image patch with            dimensions; (2) gradient channel, i.e., horizontal and vertical gradients 

with              dimensions. By using two channels of training set, we learn three embeddings: 

EigenTextons, FisherTextons, and LaplacianTextons. As discussed in Section 3, the upper bound of 

reduced dimension of LDA is    . We make this number as the reduced dimension for LDA. To keep 

good performance and consistency with LDA, we also use the first     dimensions of PCA and LPP. 

5. Experiments and Discussions 

The proposed texture representation approaches are evaluated in the context of texture classification. 

As discussed in Sections 3 and 4, we have three embedding methods and two feature channels. So there are 

6 different combinations of texture representations that are investigated in our experiments as shown in 

Table 1. We extensively compare the performances of our proposed methods with the existing state-of-the-

arts. They are tested on two public available datasets: UIUC Texture [16] and UMD Texture [33]. In 

addition to in-plane rotation and scaling change presented in traditional datasets [6, 8, 29], the two datasets 

as shown in Fig. 3 capture more challenging variations including viewpoint, illumination, and non-rigid 

surface deformation.   

 

Table 1: Texture representations based upon different combinations of embeddings and feature channels. 

 

Embeddings Image Channel Gradient Channel 

EigenTextons PCA-Img PCA-Grad 

FisherTextons LDA-Img LDA-Grad 

LaplacianTextons LPP-Img LPP-Grad 

 

 

 



 

 

Figure 3: Two sample images of 25 texture categories in UIUC and UMD Texture Datasets. 

 

5.1. Experimental Setup 

The UIUC dataset includes 25 texture classes and 40 images with the resolution of         in each 

class. These images present strong rotation, scaling, viewpoint variation, non-rigid surface deformation, 

and lighting change. The UMD dataset consists of 1000 uncalibrated and unregistered images with the 

resolution of 1280×960 pixels. It contains 25 texture categories with 40 images for each class. These 

images are also taken under significant geometric and photometric transformations. We downsample 

original images of UMD dataset to the resolution of 640×480. 

In order to facilitate a fair comparison, we follow the standard experimental setting to randomly select 

a portion of images from each class as the training set. The remaining images are used as the testing set. 

The training process is based on each corresponding randomly generated training set. The reported 



recognition accuracy rates in the following experiments are the average results over 50 runs by the random 

generated training and testing sets. K-means clustering (     ) is employed to build the textons 

dictionary. We employ Support Vector Machines (SVMs) with RBF kernels as the classifier. The optimal 

parameters of RBF kernels are obtained by 5-fold cross-validation. The SVMs classifier in essence finds 

the hyperplane that separates two-class data with maximal margin. In order to apply SVMs for multi-class 

problem, we take the one-versus-one strategy. 

We compare the proposed methods against the state-of-the-art approaches including VG [30], MFS 

[33], Lazebnik [16], Zhang [35], SIFT [18], SURF [2], DAISY [31], ORB [25], CARD [1], and MROGH 

[8]. VG makes use of local density function properties of a set of image measurements. MFS combines the 

fractal dimensions of pixel sets grouped by three local density functions. Lazebnik extracts local image 

features by RIFT and SPIN from affine regions. Zhang combines local features by multiple local image 

detectors and descriptors. SIFT, SURF, DAISY, ORB, CARD, and MROGH are the most recent developed 

local image descriptors. They achieve the state-of-the-art performances in the context of object, texture, and 

scene classification.   

5.2. Evaluations of Different Combinations of Embeddings and Feature Channels 

The classification accuracies for different combinations of embeddings and feature channels on UIUC 

dataset and UMD dataset are shown in Fig. 4. The numbers of training images for each class are from 1 to 

20 and the rest images are used for testing. Similar conclusions can be drawn from experiments on the two 

datasets.   

As shown in the two figures, for each embedding method, the performances based on gradient channel 

outperform the ones based on image channel. This is probably because gradient is more resistant to lighting 

variations and preserves relative changes in intensity. Thus, gradient feature simplifies embedding methods 

to model the essential factor of texture images. The difference between two channels of LPP is more 

evident. As shown in Eq. (8), LPP measures pair-wise similarities of local texture patches. So the adjacency 

matrix   is more sensitive to illumination, which results in that LPP is relatively less robust to handle 

lighting change. 

 



 

 
 

Figure 4: Recognition accuracy for different combinations of embedding methods and feature channels on 

(a) UIUC dataset and (b) UMD dataset. 

 

LDA-Grad dominates the recognition rates when the training number is small. By explicitly encoding 

class labels in computing the texture subspace, LDA is forced to concentrate on the essential factor of 

texture identities, i.e., textons. PCA-Grad and LPP-Grad also demonstrate impressive performances. When 

the training images are sufficient (e.g., > 10), the performances of PCA-Grad and LPP-Grad are 

comparable to LDA-Grad. But LPP-Grad is more sensitive to the number of training images because non-

linear methods require denser sampling of a manifold to reasonably recover the intrinsic structure. 

5.3. Comparisons with the State-of-the-arts 

Based on the evaluation results from different combinations of embedding methods and feature 

channels, we choose LDA-Grad to compare with the state-of-the-art methods for texture recognition on 

UIUC dataset and UMD dataset. The experimental results are shown in Table 2.    denotes the number of 

training images in each class. The best recognition rates of various training numbers are the numbers in 

bold. We can also obtain similar conclusions on both datasets. 

 

 



Table 2: Recognition rates of proposed method compared with the state-of-the-art approaches on (top) 

UIUC dataset and (bottom) UMD dataset. Nt is the number of training images in each class. 

Nt 
VG 

[30] 

MFS 

[33] 

Lazebnik 

[16] 

Zhang 

[35] 

SIFT 

[18] 

SURF 

[2] 

DAISY 

[31] 

ORB 

[25] 

CARD 

[1] 

MROGH 

[10] 

Our 

method 

5 82.86 82.24 91.12 88.62 91.96 90.73 86.80 79.03 73.99 88.76 90.86 

10 87.85 88.36 94.42 93.17 95.42 95.15 92.54 86.26 83.00 94.13 95.55 

15 90.62 91.38 96.64 95.33 96.87 96.14 94.16 89.40 87.18 95.93 97.07 

20 92.31 92.74 97.02 96.67 97.84 96.75 95.21 90.73 89.69 96.82 97.91 

 

Nt 
VG 

[30] 

MFS 

[33] 

Lazebnik 

[16] 

Zhang 

[35] 

SIFT 

[18] 

SURF 

[2] 

DAISY 

[31] 

ORB 

[25] 

CARD 

[1] 

MROGH 

[10] 

Our 

method 

5 90.92 85.63 90.71 91.56 91.68 90.41 90.81 81.85 84.38 90.39 91.23 

10 94.09 90.82 94.54 96.00 96.01 94.49 94.92 87.87 90.41 94.54 96.06 

15 96.22 92.67 96.29 96.79 97.21 96.13 96.47 90.87 93.05 96.01 97.59 

20 96.36 93.93 96.95 97.62 97.64 96.98 97.58 92.84 94.23 97.03 98.20 

 

The results in the two tables show that our proposed method outperforms the state-of-the-art 

approaches in most cases. For example, our method significantly and consistently outperforms ORB and 

CARD, both of which are the most recent state-of-the-art local image descriptors. The performance of our 

method is also much better than texture representations based on fractal analysis, i.e., VG and MFS. In 

most cases, our approach achieves better performances than the remaining methods that are based on the 

state-of-the-art local image descriptors. The impressive performances based on sophisticated descriptors 

originate from the resistance to photometric and geometric transformations of local image descriptors. 

Compared local image descriptors that are carefully crafted by hand, out methods are totally data-driven. It 

is based on the construction of a texture subspace where the essential factor (textons) is manifested but 

unwanted variation factors are reduced or removed. Our method is inferior to SIFT when     . This is 

probably due to the fact that only 5 training images cannot provide sufficiently dense sampling of a texture 

subspace. The computation of embeddings is therefore biased by the rough sampling.    

5.4. Computational Cost of Textons 

The experimental results have demonstrated that textons-based methods are well-adapted for texture 

representation. In natural texture images, textons can be generated by clustering local texture features. 

However, the clustering process is always time consuming. If the clustering problem is exactly solved, the 



computational cost of K-means is              [14], where   is the number of local texture features to be 

clustered;   is the number of centers; and   is the dimension of feature. So when   and   are fixed, feature 

with fewer dimensions are able to reduce the computational cost and speed up clustering process. 

The local image features computed by most descriptors are with high dimensions which result in 

expensive computations. As discussed in Section 3.2, the upper bound of reduced dimension of 

FisherTextons is    , where   is the number of classes. Both UIUC dataset and UMD dataset contains 25 

classes. So we use 24 as the reduced dimension of textons. Fig. 5 compares the running time in each 

iteration of clustering on UIUC dataset on an Intel Core2 CPU 2.13GHz computer. We use 20 images of 

each class as the training set and extract approximately 3000 local patches from each image. We set the 

number of clustering centroids      . In the experiments, our method significantly reduces the running 

time compared with most state-of-the-art descriptors. Note the running time difference can become huge 

when a clustering needs a large number (e.g., 1000) of iterations. 

 

Figure 5: The running times of different methods in each iteration of K-means clustering. The numbers in 

parenthesis under each method denote corresponding feature dimensions.   

5.5. Discussions 

The experimental results in the context of texture recognition have validated the effectiveness of our 

proposed texture representation methods. They also reveal a number of interesting points:  

First, in all embedding methods, gradient channel consistently performs better than image channel, 

especially for LPP. These experimental results demonstrate that gradient channel is more suitable for 

embedding approaches to model the texture subspace as gradients suppress lighting variation but preserve 

relative intensity change.  



Second, both of the linear embedding methods with gradient channel achieve the state-of-the-art 

classification results. PCA provides the benefits of capturing the maximum variance of original data space 

but reducing noisy variations. This also confirms that the major factors, i.e., the leading eigenvectors, of 

texture images correspond to texture identities even though significant variations are presented. LDA 

encodes the class specific information in the texture subspace which enables the mapping actively 

discriminates between different texture classes.  

Third, the non-linear embedding method, i.e., LPP-Grad, also achieves impressive performance on 

both datasets but is inferior to LDA-Grad when the training samples are insufficient. This is different from 

the observation in face recognition domain where non-linear methods consistently outperform linear ones. 

This might be explained by the difference of data sampling. Facial images are always densely sampled, 

which forms smooth variations in terms of pose and expression. The smooth changes make the Euclidean 

distance         in Eq. (8) more accurate as they are small enough to preserve the geodesic distance or 

the intrinsic geometry hidden in a facial manifold. In contrast, images in texture datasets always present 

drastic changes which are not smooth enough to capture local structures in original texture manifold.  

6. Conclusion 

In this paper, we have proposed several texture representations by subspace embeddings. To the best of 

our knowledge, this is the first work on texture representation that systematically and explicitly considers 

the texture subspace using both linear and non-linear embedding algorithms. The experimental results on 

benchmark texture datasets have demonstrated the texture subspace computed by embedding methods is 

effective to disentangle and extract the essential factor of texture images from the interactions of multiple 

factors resulting from geometric and photometric transformations. The experimental results also show that 

the state-of-the-art performances on existing texture classification datasets are now near ceiling (e.g., > 

97%). But in addition to classification accuracy, our methods significantly improve the computational costs 

and are totally data-driven with much fewer parameters to tune. The experiments have validated that 

textons mapped into a texture subspace have strong resistance to image deformations, meanwhile, are more 

distinctive and more compact. The future work will focus on effective combinations (e.g., through Multiple 

Kernel Learning) of texture representations computed from different embedding methods.  
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