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Abstract

Estimation of sea ice motion at fine scales is important for a number of re-

gional and local level applications, including modeling of sea ice distribution,

ocean-atmosphere and climate dynamics, as well as safe navigation and sea

operations. In this study, we propose an optical flow and super-resolution

approach to accurately estimate motion from remote sensing images at a

higher spatial resolution than the original data. First, an external example

learning-based super-resolution method is applied on the original images to

generate higher resolution versions. Then, an optical flow approach is applied

on the higher resolution images, identifying sparse correspondences and inter-

polating them to extract a dense motion vector field with continuous values

and subpixel accuracies. Our proposed approach is successfully evaluated on

passive microwave, optical, and Synthetic Aperture Radar data, proving ap-
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propriate for multi-sensor applications and different spatial resolutions. The

approach estimates motion with similar or higher accuracy than the original

data, while increasing the spatial resolution of up to eight times. In addition,

the adopted optical flow component outperforms a state-of-the-art pattern

matching method. Overall, the proposed approach results in accurate motion

vectors with unprecedented spatial resolutions of up to 1.5 km for passive mi-

crowave data covering the entire Arctic and 20 m for radar data, and proves

promising for numerous scientific and operational applications.

Keywords: Arctic sea ice, drift estimation, maximum cross-correlation,

motion tracking, optical flow, super-resolution

1. Introduction1

Sea ice motion is a critical factor in climate models and local-level human2

activities in the polar regions. It significantly affects the thickness distri-3

bution of sea ice, causing leads—open water areas—or ridging in cases of4

divergent or convergent motion, respectively. These dynamic processes co-5

act with thermodynamic ocean-atmosphere processes and affect the ice mass6

balance and thickness which determine the survival or summer melting of7

sea ice in a region (Haas, 2017). Convergent motion creates thicker ice and8

enhances sea ice survival, whereas divergent motion promotes energy and9

moisture fluxes (Meier, 2017; Gettelman and Rood, 2016). In fact, sea ice10

motion has been a major factor in the loss of multi-year ice in the Arctic11

through its advection out of the region (Meier, 2017; Smedsrud et al., 2011).12

Given these facts, it is an important component for the calculation, initializa-13

tion, fine-tuning, or validation of climate models that quantify exchanges of14
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energy and mass between the ocean and the atmosphere and predict polar ice15

pack conditions (Kræmer et al., 2015; De Silva et al., 2015; Berg et al., 2013;16

Kimura et al., 2013; Meier et al., 2000). Besides, sea ice motion can signifi-17

cantly affect, or even endanger, human activities on a local level, including18

ship navigation, fisheries, and oil/gas drilling. Considering the increasing19

trends on average sea ice drift speed during the last decades (Spreen et al.,20

2011; Rampal et al., 2009), accurately monitoring sea ice motion at a fine21

scale is of great importance.22

Data from a variety of satellite sensors have been employed to estimate23

sea ice motion. They include i) passive microwave sensors, e.g., Special Sen-24

sor Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer25

- Earth Observing System (AMSR-E), Advanced Microwave Scanning Ra-26

diometer 2 (AMSR2) (Tschudi et al., 2016b; Girard-Ardhuin and Ezraty,27

2012; Lavergne et al., 2010); ii) microwave scatterometers, such as QuikSCAT28

(Girard-Ardhuin and Ezraty, 2012; Haarpaintner, 2006); iii) Synthetic Aper-29

ture Radars (SAR), e.g., ENVISAT Advanced SAR (ASAR), RADARSAT-2,30

European Remote Sensing 1 (ERS-1) SAR (Karvonen, 2012; Komarov and31

Barber, 2014; Berg and Eriksson, 2014); and iv) optical, such as Advanced32

Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging33

Spectroradiometer (MODIS) (Ninnis et al., 1986; Emery et al., 1991; Tschudi34

et al., 2016b; Petrou and Tian, 2017). Although passive microwave and scat-35

terometer sensor data can provide daily coverage of the entire Arctic, their36

typical spatial resolution of around 5–25 km makes monitoring of small leads37

and ridges difficult and is prohibitively coarse for any fine-scale applications,38

such as ship navigation. The resolution of optical data used in sea ice moni-39
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toring studies can be one order of magnitude higher, between 250 m and 1.140

km. Even in the case of SAR data which have higher resolution of several41

tens to hundreds of meters, tasks such as estimating motion at a scale of a42

ship size still remains challenging.43

Sea ice motion between two time instances is typically represented through44

a motion vector field. Each motion vector quantifies the displacement, or ve-45

locity, of a sea ice parcel in a pixel or patch in the image from the first to46

the second time instance. This makes the spatial resolution of sea ice motion47

described as a two-parameter problem: the first parameter is the density48

of the vector field, i.e., the number of vectors originating from a unit area;49

the second is the minimum detectable motion, i.e., the minimum possible50

non-zero motion that a vector can describe. Both parameters are restricted51

by the inherent spatial resolution of the satellite images used. Several sea52

ice motion estimation approaches have attempted, implicitly or explicitly,53

to improve one or the other parameter, but rarely both. In addition, most54

proposed approaches have been evaluated in solely one, or sometimes two,55

types of sensor data, mainly of similar spatial resolution and nature.56

In this study we propose an approach that attempts to accurately esti-57

mate sea ice motion, by both increasing the density of the calculated mo-58

tion field and reducing the minimum detectable motion. An example-based59

super-resolution technique is explored to increase the inherent resolution of60

the employed satellite images. Then, an optical flow-based approach is ap-61

plied to estimate motion in a dense per-pixel field, providing vectors that62

describe continuous subpixel displacements. In addition, to demonstrate its63

robustness and transferability in local and regional level studies, the method64
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is extensively evaluated on passive microwave, optical, and SAR data of dif-65

ferent spatial resolutions. To our best knowledge, it is the first sea ice motion66

methodology applied in satellite data of such high diversity in sensor types67

and spatial resolutions. In addition, it produces the highest resolution mo-68

tion vector fields ever generated from each sensor type, reaching up to around69

1.5 km for passive and 20 m for SAR data.70

This paper is organized as follows. Previous work related to sea ice mo-71

tion and super-resolution is presented in Section 2. Section 3 details the72

data employed in this study and Section 4 describes the proposed methodol-73

ogy. Experimental results and discussions on the outcomes are presented in74

Sections 5 and 6, respectively. Main conclusions are drawn in Section 7.75

2. Related work76

The vast majority of sea ice motion estimation studies have been based77

on pattern matching—or template matching—approaches. Given a template78

on an image, i.e., an image patch, these approaches search for the candidate79

template in a second image, captured later in time, with the most similar80

pattern to the first one. Based on the relative distance and orientation of81

the two templates, the motion of the patch—and of the underlying sea ice82

parcel—during the time interval between the two images can be estimated.83

The motion has been expressed either as displacement or as mean velocity,84

by dividing the displacement with the time interval.85

Normalized cross-correlation (NCC) has been a pattern similarity mea-86

sure widely employed to be maximized by several studies with satellite data87

(Ninnis et al., 1986; Emery et al., 1991; Kwok et al., 1998; Meier et al.,88
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2000; Meier and Dai, 2006; Haarpaintner, 2006; Lavergne et al., 2010; Girard-89

Ardhuin and Ezraty, 2012; Tschudi et al., 2010, 2016b), and airborne data90

(Hagen et al., 2014). For a template A centered in position p = (x, y) in one91

image and a template B centered in position p + u = (x + ux, y + uy) in a92

second image, NCC is calculated as NCC(u) = cov(A,B)/[σ(A)σ(B)] (Gao93

and Lythe, 1996), where cov(A,B) stands for the covariance between A and94

B, σ(A) and σ(B) for the standard deviations of the pixel values of A and B,95

respectively, and u = (ux, uy) for the motion vector. More recent approaches96

employed Phase Correlation (PC) as a pattern similarity measure alternative97

to (Karvonen, 2012; Berg and Eriksson, 2014) or in combination with NCC98

(Thomas et al., 2008, 2011; Hollands and Dierking, 2011; Komarov and Bar-99

ber, 2014), to counterbalance the inherent shortcoming of NCC in rotational100

motion. For templates A and B, PC is calculated in the Fourier domain as101

their normalized cross-power spectrum and transformed back to the spatial102

domain as PC = F−1(F ∗AFB/|F ∗AFB|) (Berg and Eriksson, 2014; Karvonen,103

2012), where F ∗A represents the conjugate Fourier transform of A, FB is the104

Fourier transform of B, and F−1 is the inverse Fourier transform operator.105

PC is expressed as a matrix in the spatial domain, with the relative motion106

of the templates estimated from the location corresponding to the maximum107

value of the PC matrix. In their conceptual form, both NCC and PC ap-108

proaches are able to express displacements at least equal, or larger, than one109

pixel of the image. Thus, the estimated motion in each of the two Euclidean110

axes is quantized to the pixel resolution.111

A number of studies attempted to provide subpixel motion estimation112

through modifications of the original pattern matching approaches. Linear113
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oversampling by a factor of four has been applied in the vector field in order114

to approximate displacements four times smaller than the original maximum115

cross-correlation algorithm (Tschudi et al., 2016b; Meier and Dai, 2006; Meier116

and Maslanik, 2003; Meier et al., 2000). Oversampling on the image data117

by a factor of six was applied by Kwok et al. (1998) to provide subpixel mo-118

tion estimation, followed by a biquadratic surface fitting in the correlation119

value domain. Lavergne et al. (2010) expressed the search for a matching120

template as a continuous maximization problem, with subpixel motions be-121

ing estimated using bilinear interpolation. Despite the attempts to decrease122

the motion quantization error, none of the studies explicitly attempted to123

increase the density of the motion vector field.124

Optical flow has been an alternative approach to pattern matching for125

sea ice motion estimation. The approach is mainly based on the brightness126

constancy assumption that the intensity of a pixel remains the same during127

its motion between two images (Fleet and Weiss, 2006). The relative dis-128

placement of each pixel between the images is calculated, thus, optical flow129

approaches result in a dense motion vector field. They usually involve a vari-130

ational minimization process which results in motion vectors estimated in131

the continuous domain. Although some early studies on sea ice motion esti-132

mation employed optical flow (Sun, 1996; Leppäranta et al., 1998; Gutiérrez133

and Long, 2003), pattern matching remained the most popular choice. In134

a recent study, an optical flow method applied to MODIS imagery outper-135

formed a state-of-the-art pattern matching approach in both accuracy and136

processing speed (Petrou and Tian, 2017). Despite the fact that optical flow137

approaches provide dense motion vector fields, none has attempted to im-138
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prove this density beyond the boundaries imposed by the image resolution.139

Example-based image super-resolution has been popular in recent stud-140

ies. Different from other approaches where the prior or model is learned141

in a parametric form regularizing the whole image, this group of methods142

utilizes the dependencies of small exemplar patches across scales to upscale143

the low-resolution instances. Learning of the dependencies can be performed144

via an external dataset (Dong et al., 2015; Kim et al., 2016), within the145

input image only (Huang et al., 2015; Xian and Tian, 2016), or from com-146

bined resources (Yang et al., 2013; Xian et al., 2015). Image super-resolution147

manages to enhance the image quality for further analysis in a variety of ap-148

plications such as medical imaging, video surveillance, and remote sensing.149

A super-resolution variable-pixel linear reconstruction method was described150

by Merino and Núñez (2007) to obtain high spatial resolution satellite im-151

ages utilizing multiple lower resolution input images. Ardila et al. (2011)152

presented a probabilistic method using Markov random field based super-153

resolution mapping to detect tree crowns in urban areas from remote sensing154

datasets. In Li et al. (2014), a spatial-temporal Hopfield neural network based155

super-resolution mapping was proposed to produce land cover maps with a156

finer spatial resolution than the remotely sensed images. Super-resolution157

has been recently effectively applied on reconstructing downsampled passive158

microwave and infrared images for motion estimation and tracking of sea ice159

floes (Xian et al., 2017).160
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3. Data161

The proposed optical flow with super-resolution approach is evaluated on162

datasets from sensors of different nature and spatial resolutions. The extent163

of the AMSR2 data and the regions enclosing the selected areas are drawn164

in Fig. 1. The precise coordinates of each study area are described in the165

Supplementary Material. To encourage reproduction of or comparison with166

our results, all data employed in this study will be publicly released. In167

particular, these data include all original and super-resolved satellite images,168

i.e., the finer-scale images generated by the super-resolution algorithm, as169

well as the validation data described in Section 5.2.170

3.1. AMSR2171

Passive microwave AMSR2 data are provided by the JAXA Earth Obser-172

vation Research Center1. The data offer daily coverage of the entire Arctic,173

being insensitive to weather or sun illumination conditions. In particular,174

daily averaging level 2 brightness temperature swath data of horizontal po-175

larization at 36.5 GHz are employed. The daily images range from January176

1–7, 2013, i.e., six pairs in total, and cover the entire Arctic. The data are177

gridded on a 12.5 km polar stereographic grid tangent to the Earth’s surface178

at 70 degrees northern latitude (NSIDC, 2016). The size of these images is179

608×896 pixels, i.e., covering an area of approximately 85 million km2.180

1http://suzaku.eorc.jaxa.jp/GCOM_W/data/data_w_dpss.html
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Figure 1: The entire depicted area represents the extent of the AMSR2 data used in the

study. The solid-line rectangle regions, MOD1 and MOD2, enclose the two selected areas

covered with MODIS images. The SEN1 dashed-line ellipse encloses two out of the total

nine selected areas covered with Sentinel-1 data, whereas SEN2 encloses the rest seven

areas. All data are projected on a polar stereographic grid (NSIDC, 2016).
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3.2. MODIS181

MODIS data have only been used recently in sea ice motion estimation182

(Petrou and Tian, 2017), mainly due to the restricted availability under lack183

of sun illumination (polar winter) and cloud contamination in the atmo-184

sphere. In this study, MODIS images from two non-overlapping areas nearby185

the Beaufort Sea (Fig. 1, regions MOD1 and MOD2) are employed, from the186

period between March 4 and April 20, 2014. Based on the outcomes by187

Petrou and Tian (2017), level 2G atmospherically corrected images from the188

Terra satellite gridded into a sinusoidal map projection are used, i.e., the189

MOD09GQ surface reflectance product (Vermote and Wolfe, 2015). In par-190

ticular, data from the near-infrared band 2 (841–876 nm), with a spatial191

resolution of 231.66 m, are used. The data are reprojected to a polar stereo-192

graphic grid (NSIDC, 2016), using nearest-neighbor interpolation to preserve193

intensity values and minimize any edge-smoothing effects. To reduce cloud194

affected pixels, that appear brighter, a 3×3 pixel medium filter and a 5×5195

pixel minimum filter are applied. Overall, a set of 23 images with minimal196

cloud contamination are selected, organized in 12 pairs with one-day interval.197

The sizes of the images of the two areas are 360×360 and 512×360 pixels,198

covering areas of approximately 6955 km2 and 9891 km2, respectively.199

3.3. Sentinel-1200

In addition to the coarse resolution passive microwave and medium resolu-201

tion optical data, high resolution SAR data from Sentinel-1 are also employed202

to evaluate the proposed approach under different datasets. Sentinel-1A data203

from nine areas, with some overlaps, are selected, from different parts of the204

Arctic region (Fig. 1, two areas enclosed within region SEN1 and seven areas205
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withing region SEN2) between January 1 and May 31, 2015. Level-1 Ground206

Range Detected products with horizontal-horizontal (HH) polarization from207

the Extra Wide Swath (EW) sensor mode are retrieved from the Coper-208

nicus Open Access Hub2. To enhance consistent detection of sea ice edge209

characteristics, only ascending orbit images are selected. The images are ra-210

diometrically calibrated, speckle filtered with a 7×7 pixel window Lee Sigma211

filter (Lee and Pottier, 2009), and orthorectified using Average Height Range212

Doppler Ellipsoid (Small and Schubert, 2008). Similarly to the previous prod-213

ucts, the images are reprojected to a polar stereographic grid (NSIDC, 2016),214

using nearest-neighbor interpolation. The calibrated sigma values are then215

converted to dB. The spatial resolution of the original images is 40 m per216

pixel. However, in order to monitor sea ice motion among sequences of im-217

ages, the size of the images would be significantly large, and would get even218

larger after the super-resolution upsampling is applied. For computational219

purposes, we do not directly apply super-resolution to the original images of220

40 m spatial resolution, but first downsample them to generate images of 160221

m resolution using Lanczos filtering. We use the latter images as the primary222

SAR data in our approach, i.e., we apply the super-resolution algorithm on223

the images of 160 m spatial resolution. Most of these images have a size of224

360×360 pixels, covering an extent of around 3318 km2. Overall, 75 images225

organized in 66 pairs are selected, with intervals ranging from one to five226

days.227

2https://scihub.copernicus.eu/
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3.4. Additional data228

In order to train the super-resolution model described in Section 4.1, a229

set of 6152 natural images (non-satellite images) are used. The images are230

collected from the Berkeley segmentation (Martin et al., 2001) and LabelMe231

(Russell et al., 2008) datasets, including a variety of natural images with232

different objects and scenes.233

4. Methods234

Fig. 2 draws the flowchart of the proposed approach, which consists of two235

main components. The super-resolution component creates higher resolution236

images that serve as input to the optical flow component, which calculates237

the motion vectors between each image pair.238

4.1. Super-resolution239

In our framework as illustrated in Fig. 2, we adopt an external exam-240

ple learning-based super-resolution approach presented by Xian et al. (2015),241

which relies on learning multiple regression models from an external image242

dataset to ensure a stable super-resolution performance. Different from the243

hybrid attempt in Xian et al. (2015, 2017), the self-awareness step is not per-244

formed in the proposed system. It is based on the observation that since large245

scaling factors are needed in the aforementioned applications, the gradient246

level self-awareness step takes relatively longer time as the scaling factor gets247

larger and additional reconstruction process is needed. Besides, contrary to248

ordinary super-resolution applications where performance is evaluated based249
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Figure 2: Flowchart of the proposed optical flow with super-resolution approach. Input

and output data are shown in pink blocks, intermediate results in green, mandatory pro-

cessing steps in blue with solid-line border and optional steps, depending on processing

requirements, in blue blocks with dashed-line border.

on signal-to-noise ratio measures or how visually pleasing the generated im-250

ages are, in this application performance is based on the accuracy of the mo-251

tion vectors. Experimental results indicate that skipping the self-awareness252

step provides similar or more accurate vectors overall for the variety of sen-253

sor data than including it. Therefore, we adopt an external example-based254

approach to ensure the efficiency and maximize the practicality.255

A group of pre-trained regression models is firstly generated utilizing a256

large external image dataset. The input feature space is modeled with Gaus-257

sian Mixture Models (GMM) to ensure a targeted and effective learning.258

GMM is selected since it is a generative model with the capacity to model259

any given probability distribution function when the number of the Gaussian260

components is large enough. During the offline training, low-resolution/high-261
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resolution patch pairs in the training dataset are associated with the corre-262

sponding Gaussian component, and later within each Gaussian component263

a regression model is trained and saved. During the online super-resolution,264

each low-resolution patch in the input image is assigned to a Gaussian com-265

ponent according to the posterior where the corresponding regression model266

is applied to obtain the high-resolution patch. Simple averaging is adopted267

to blend overlapping pixels to generate the final high-resolution output.268

4.2. Optical flow269

An optical flow approach is employed to estimate sea ice motion between270

each image pair. The approach is based on the methodology implemented271

by Petrou and Tian (2017), that has shown advantageous properties over a272

state-of-the-art pattern matching approach using MODIS images. Motion is273

calculated on a dense field, i.e., for each pixel of the images. This means that274

for each upscaled version of the images generated by the super-resolution275

approach, the same increase in the density of the calculated motion vector is276

achieved.277

The motion estimation approach begins with the detection of edges in the278

first image of an image pair. Edges mainly represent the boundaries between279

neighboring ice floes, and indicate areas, i.e., ice parcels, where motion can280

be considered rigid. The edges are detected following a structured learning281

approach (Dollár and Zitnick, 2015). The image is split into patches and ran-282

dom forests are employed to assign structured labels, i.e., local edge masks,283

to each patch. The patch level masks are then aggregated and form the final284

edge mask of the image, in a computationally efficient manner. Indepen-285

dently to the edge detection process, the image pair is employed to detect286

15



sparse correspondences. This step is applied to detect distinct matching fea-287

tures in the two images that will facilitate the flow estimation at a later step288

of the process. The correspondences are calculated following a multi-stage289

approach (Weinzaepfel et al., 2013). The first image of the pair is split into290

small non-overlapping patches and the Scale Invariant Feature Transform291

(SIFT) descriptor (Szeliski, 2011) is calculated. Each patch is split into four292

quadrants and their best matching correspondences in the second image are293

detected. The process is repeated increasing at each step the dimensions of294

the patches by a factor of two and using the information from the previous295

step. This hierarchical approach discourages locally inconsistent matching,296

which allows at the same time discovery of matches that correspond to inho-297

mogeneous motion or non-rigid transformations, e.g., creation of leads and298

ridges, in ice floes. Finally, a number of sparse correspondences with a high299

density are detected. Additionally to Petrou and Tian (2017), an upper300

distance threshold to look for a matching correspondence is applied in this301

study, that considerably speeds up the detection process without sacrificing302

the accuracy. The threshold is selected to be 2.5 times the theoretical max-303

imum daily motion for sea ice of 60.48 km, as adopted in previous studies304

(Tschudi et al., 2016b). This threshold is small enough to restrict the search305

for matching correspondences to only the possible motion range that signif-306

icantly speeds up the process, and large enough to safely capture even the307

maximum motions.308

The outcomes of the edge detection and sparse correspondence estimation309

steps are used as inputs to calculate the optical flow. Sparse-to-dense inter-310

polation is performed on the image pair to estimate correspondences for every311
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pixel. Each pixel, p, of the first image that does not belong to the sparse312

correspondences detected in the previous step is assigned to its closest pixel,313

pc, in the sparse correspondence set, C, based on a geodesic distance. The314

geodesic distance is calculated as the minimum distance among all paths be-315

tween p and pc, penalizing the paths that involve crossing the edges detected316

at the first step, as described in Eq. 3 in Revaud et al. (2015). For each pixel,317

p, on the first image, its nearest neighbors, pc ∈ C, are identified, together318

with their matching pixels, p′c, in the second image. The matching pixel of p319

in the second image, p′, is found as a locally-weighted affine transformation320

p′ = App + tp, where Ap and tp are the affine transformation parameters321

for p. The parameters are estimated by forming a least-square system of322

equations using the matching correspondences of the closest neighbors of p323

in C. Based on the solution of the system, the correspondences of all pixels324

p /∈ C on the first image are detected on the second one. Then, variational325

energy minimization is performed on the resulting dense correspondences to326

calculate the final optical flow for the image pair (Revaud et al., 2015).327

An additional processing step is introduced to account for cases of super-328

resolved image pairs, mainly by four or eight times, where the optical flow329

cannot be directly calculated because of computational memory constraints.330

In such cases, the images are split into 9 (3×3) or 49 (7×7) overlapping331

subimages and the optical flow is calculated for each subimage separately.332

Two side-by-side subimages overlap by half their size, e.g., when splitting an333

original image of size W ×H into nine subimages (three at each direction),334

the size of the subimages is W/2×H/2, and the overlapping area between two335

side-by-side subimages is W/4×H/2 for the horizontal direction (W/2×H/4336
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for the vertical direction). The rationale behind overlapping subimages is to337

attenuate discontinuities near the edges of a subimage after merging the in-338

dividually calculated optical flow subimages to a single flow image of the339

original size. The subimages are weighted element-wise with 2D rotation-340

ally symmetric Gaussian lowpass filter with the same size as the subimage.341

Thus, in the merging process, the optical flow value of a pixel where two342

or more subimages overlap is calculated as the normalized weighted sum of343

the corresponding overlapping pixels, where each pixel is weighted inversely344

proportionally to its distance from the center of the subimage it belongs to.345

This favors optical flow values calculated near the center of the corresponding346

subimage and assigns less confidence to the values close to the edges. Thus,347

this approach encourages the calculation of a smooth and consistent optical348

flow field after merging the individual subimages, and attenuates discontinu-349

ities in the subimage edges. After experimentation, the standard deviation of350

the Gaussian filters is set equal to minimum(w, h)/8, where w and h stand351

for the width and height of the subimages in pixels, respectively.352

Finally, same as in previous studies (Petrou and Tian, 2017; Tschudi353

et al., 2016b), a maximum daily motion threshold is applied. In particular,354

any optical flow vectors exceeding a magnitude equivalent to 60.48 km/day,355

are cropped to 60.48 km.356

5. Results357

5.1. Comparison with pattern matching358

The proposed optical flow approach is compared against a state-of-the-art359

pattern matching approach, described by Petrou and Tian (2017), and noted360
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hereafter as “MCC” (Maximum Cross-Correlation) approach. MCC is based361

on a multi-resolution hierarchical approach (Thomas et al., 2011; Hollands362

and Dierking, 2011) involving both NCC and PC as similarity measures to363

estimate motion between images.364

5.2. Validation strategy365

The motion vectors calculated by the optical flow and MCC approaches366

are evaluated against buoys from the International Arctic Buoy Programme367

(IABP) (Tschudi et al., 2016a). Their estimated position accuracy is ap-368

proximately 0.5 km/day (Meier and Dai, 2006; Tschudi et al., 2016a). Buoy369

positions are reported every 12 hours. In this study, the reported positions370

at 12:00 GMT are used to estimate the ground-truth daily motion. Due371

to the limited number of buoys, especially for the Sentinel-1 images which372

may have only one buoy for reference, the motion vectors from the National373

Snow and Ice Data Center (NSIDC) gridded Polar Pathfinder daily 25 km374

EASE-Grid (Equal-Area Scalable Earth Grid) version 3 product (Tschudi375

et al., 2016b) are additionally used to evaluate the proposed motion esti-376

mation approach. The vectors are produced using information from buoys,377

AVHRR, and passive microwave data. Their spatial resolution of 25 km is378

significantly coarser than the estimated motion and the reported accuracy379

lies in 3.29–5.24 cm/sec (Tschudi et al., 2016b), i.e., around 3–4 km/day.380

However, the product is employed here as an additional source of evaluating381

mainly the consistency in the direction of the estimated vectors. Besides,382

the availability of a larger number of vectors than the IABP buoys further383

enhance the statistical analysis. Both the IABP and Polar Pathfinder vectors384

are reprojected to the adopted polar stereographic grid (NSIDC, 2016).385
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For consistency of the optical flow and MCC evaluation, the optical flow386

vectors in the same position as the MCC motion vectors are considered.387

Following the commonly adopted approaches (Meier and Dai, 2006; Lavergne388

et al., 2010), and in order to avoid interpolating neighboring MCC motion389

vectors that would require potentially erroneous distribution assumptions,390

the closest motion vector to each buoy or grid motion vector is employed391

for the evaluation. It is noted that all evaluations are performed based on392

the drift, or displacement, rather than motion velocity. Average velocity393

vectors for each image pair can be extracted through a simple division of394

these displacements by the time interval between the image pair.395

5.3. AMSR2 motion vectors396

The AMSR2 images are upscaled by two, four, and eight times using397

the proposed super-resolution approach, resulting in 6.25 km, 3.125 km, and398

1.5625 km resolution images, respectively. Optical flow and MCC are calcu-399

lated for each of the six image pairs in each resolution and compared against400

the ground-truth buoy and grid vector data.401

Table 1 presents the average performance of the different resolution and402

method pairs under various evaluation measures, in particular mean-absolute403

error (MAE), root mean-squared error (RMSE), relative squared error (RSE),404

and Pearson correlation coefficient (P), for both the horizontal and verti-405

cal motion directions. The proposed optical flow approach with the super-406

resolved images by two (X2) and four (X4) times provides more accurate407

results than the optical flow applied in the original images. That is, besides408

the increase of the density of the motion vector field by 4 (2×2 for the two409

directions of the X2 images) and 16 (4×4) times, increase in the accuracy of410
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the detected motion is additionally achieved. Even further, comparing MCC411

results on the original and X8 images, it appears that super-resolution leads412

to both more accurate results and an increase in vector field density by 64413

times (8×8). Optical flow outperforms MCC for the original as well as the414

X2 and X4 super-resolved images. The optical flow on the X8 super-resolved415

images is calculated separately in the overlapping subimages of an image and416

then merged together (Section 4.2). For these images MCC provides more417

accurate results. Moreover, all super-resolved images under both optical flow418

and MCC provide more accurate results compared with the current state of419

the art, i.e., the application of MCC on the original images. The results420

are consistent among the different evaluation measures employed, further421

supporting these observations.422

Fig. 3 offers a close look on the calculated motion vectors on the central423

Arctic region for a X2 super-resolved indicative image pair. The optical flow424

vectors (Fig. 3a) appear to correlate significantly better with the reference425

buoy vectors than the MCC ones (Fig. 3b), both in the motion direction and426

magnitude. This can be observed more clearly on the left part of the images,427

where the MCC motion vector field has several changes in magnitude and428

direction within the same and across the spatial resolution images, whereas429

the flow vectors appear more consistent. The results are similar for the430

original as well as the X4 and X8 super-resolved images which are drawn in431

the Supplementary Material.432

In the aforementioned results, the MCC vector nearest to each buoy is433

used for the evaluation, since MCC vectors are not calculated for each pixel.434

For a fair comparison, the optical flow vectors on the same position in the435
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Table 1: Accuracy evaluation of the optical flow (“Flow”) and pattern matching (“MCC”)

vectors, for all six image pairs of AMSR2 data, against IABP buoys, 122 vectors for the

overall period. Super-resolved images by two, four, and eight times are indicated as “X2,”

“X4,” and “X8,” respectively. Evaluations are performed on both the vertical (“δx”) and

horizontal (“δy”) axes, through mean-absolute error in km (MAE), root mean-squared

error in km (RMSE), relative squared error (RSE), and the Pearson correlation coefficient

(P). For MAE, RMSE, and RSE the smaller numbers indicate more accurate results, while

the opposite holds for P. The best results for each measure are highlighted in bold.

δx δy

MAE RMSE RSE P MAE RMSE RSE P

Flow 1.944 3.090 0.387 0.803 1.917 2.728 0.110 0.944

Flow-X2 1.487 2.524 0.258 0.883 1.382 2.103 0.065 0.967

Flow-X4 1.720 3.204 0.416 0.812 1.284 2.000 0.059 0.970

Flow-X8 2.651 4.696 0.893 0.481 3.198 5.156 0.393 0.792

MCC 3.571 5.234 1.110 0.490 4.724 7.054 0.735 0.702

MCC-X2 2.836 4.270 0.739 0.628 2.880 4.528 0.303 0.856

MCC-X4 2.209 3.886 0.612 0.676 2.176 3.163 0.148 0.927

MCC-X8 2.560 4.185 0.710 0.627 3.060 4.642 0.318 0.843

image with the selected MCC vectors are employed. It is noteworthy, though,436

that evaluating the optical flow vectors on the exact position of the buoys,437

instead, can slightly further decrease the estimation errors, as shown in Fig.438

4.439

The evaluation against the 25-km NSIDC grid vectors (overall 127,428440

vectors for the entire six-pair image set) provides in general consistent indi-441

cations with the buoys. A subset of the results is shown in Table 2, with the442
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(a)

(b)

Figure 3: Close-up look of the calculated motion vectors on the super-resolved AMSR2

images by a factor of two from Jan. 2 to Jan. 3, 2013. For better illustration, only subset

of the vectors are drawn. (a) Optical flow vectors. (b) MCC vectors.
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Figure 4: MAE of optical flow vectors for AMSR2 of the entire period (122 buoy vectors),

when the optical flow vectors on the exact position of each buoy (“At-buoy”) and the ones

at the position of the MCC vector nearest to the respective buoy (“NN”) are used for

evaluation. “F-Xi” stands for optical flow on the super-resolved images by a factor of i.

rest shown in the Supplementary Material. Optical flow consistently out-443

performs MCC in all image resolutions, with MCC in the original image set444

providing the least accurate results. Optical flow calculated on the original445

image resolution appears slightly more accurate than the super-resolved ver-446

sions in this case. However, the super-resolved images still lead to increased447

density in the calculated vector field compared with the original images by448

up to 64 times (in upscaling by eight in the two dimensions) without signifi-449

cantly sacrificing accuracy. It can be observed that some fine scale motions450

captured in the super-resolved images might not be appropriately expressed451

by the coarser 25-km resolution grid vectors.452
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Table 2: Accuracy evaluation of the optical flow and MCC vectors for AMSR2 data against

25-km NSIDC grid vectors, 127,428 vectors for the overall period. MAE in km is shown

for the vertical (“MAE-x”) and horizontal (“MAE-y”) axes.

MAE-x MAE-y

Flow 1.970 2.240

Flow-X2 2.090 2.389

Flow-X4 2.425 2.475

Flow-X8 2.737 2.484

MCC 4.656 5.698

MCC-X2 3.794 4.115

MCC-X4 3.815 4.081

MCC-X8 4.403 4.579

5.4. MODIS motion vectors453

Similar to the AMSR2 data, the MODIS original resolution images are454

super-resolved by a factor of two, four, and eight, resulting in images with455

115.83 m, 57.92 m, and 28.96 m spatial resolution, respectively.456

Table 3 presents the evaluation accuracy results on the 12 image pairs457

compared with the IABP buoys (81 buoy vectors in total). Vectors calculated458

with the original images are more accurate than the super-resolved sets both459

for the optical flow and MCC methods. However, the performance with the460

super-resolved images remains similarly high, especially for the X2 and X4461

versions, increasing the density of the motion vector field without significantly462

sacrificing accuracy. As far as the estimation methodologies are concerned,463

optical flow consistently outperforms MCC for all image versions, apart from464

the motion on the vertical axis captured with the X8 images.465
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Table 3: Accuracy evaluation of the optical flow and MCC vectors, for all 12 image pairs

of MODIS data, against IABP buoys, 81 vectors for the overall period. MAE and RMSE

errors are in km.

δx δy

MAE RMSE RSE P MAE RMSE RSE P

Flow 1.092 1.811 0.262 0.860 0.942 1.383 0.445 0.850

Flow-X2 1.136 1.823 0.265 0.859 0.983 1.369 0.436 0.833

Flow-X4 1.313 2.104 0.354 0.809 1.330 2.360 1.295 0.670

Flow-X8 3.044 4.197 1.407 0.395 1.582 2.084 1.010 0.518

MCC 1.242 1.984 0.314 0.836 1.091 1.579 0.580 0.812

MCC-X2 1.303 1.975 0.312 0.833 1.417 2.044 0.972 0.708

MCC-X4 1.572 2.228 0.396 0.786 1.606 2.244 1.171 0.664

MCC-X8 1.773 2.620 0.548 0.700 2.058 3.117 2.259 0.562

Fig. 5 illustrates an indicative example of the calculated motion vectors466

for the second area of MODIS images (area M2, see Supplementary Material,467

enclosed within region MOD2 in Fig. 1) and the image pair of March 28468

and 29, 2014. In line with the quantitative results, the optical flow vectors469

are more consistent than the MCC ones, especially on the right part of the470

image. On the same part of the image, some optical flow vectors from the471

X8 image with incorrect direction or underestimated magnitude can also be472

observed. On the largest part of the area, though, including the limited473

area where buoys fall, the resulting vectors are similar for the original and474

the super-resolved versions, for both the optical flow and MCC methods,475

indicating that no significant loss in accuracy is observed for even the X8476
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super-resolved images.477

Comparison with the 25-km resolution NSIDC grid data provides over-478

all consistent results. In fact, under this evaluation dataset, optical flow479

vectors in the X2 super-resolved images provide the best overall results, out-480

performing even the optical flow on the original images, under almost all481

accuracy evaluation measures (Table 4). The grid vectors are almost double482

in number than the buoy ones, and are spread more uniformly in the area483

(on a 25-km orthogonal grid) contrary to the buoys whose positions follow484

more randomized patterns (e.g., Fig. 5). Thus, they apply different spatial485

sampling and contribute complementary information to the statistical errors486

measured with the buoys. The evaluation with the grid data further sup-487

ports the advantages brought by the super-resolution approach. It is also488

noteworthy that the MAE and RMSE errors are overall larger in grid data489

than with buoys (Table 3), due to the coarse resolution of the former that490

heavily quantizes motion that can be captured in more detail by the buoys491

and the MODIS images.492

5.5. Sentinel-1 motion vectors493

As previously, super-resolved versions of the Sentinel-1 images by a factor494

of two, four, and eight are created. These result in images with 80 m, 40 m,495

and 20 m spatial resolution, respectively.496

The calculated motion vectors are first evaluated against the IABP buoys497

(Table 5). For each specific spatial resolution, the calculated motion vectors498

with optical flow and MCC appear to have similar accuracies, with the latter499

slightly outperforming the former. The overall best results are achieved when500

MCC is applied on the super-resolved images by a factor of two. In fact, the501
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(a) (b)

Figure 5: Calculated motion vectors on the original and super-resolved MODIS images for

the second of the two areas from Mar. 28 to Mar. 29, 2014. For better illustration, only

subset of the vectors are drawn. (a) From top to bottom, optical flow vectors from the

original and super-resolved images by a factor of two, four, and eight. (b) The respective

MCC vectors.
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Table 4: Accuracy evaluation of the optical flow original and X2 super-resolved image

vectors, for all six image pairs of MODIS data, against NSIDC grid vectors, 150 vectors

for the overall period. MAE and RMSE errors are in km.

Flow Flow-X2

δx

MAE 1.292 1.279

RMSE 1.798 1.768

RSE 0.270 0.261

P 0.856 0.862

δy

MAE 1.137 1.151

RMSE 1.649 1.642

RSE 0.792 0.785

P 0.880 0.894

super-resolved X2 images provide better results than the original images for502

both optical flow and MCC, whereas the X4 images provide similar results.503

This demonstrates the fact that, besides the increase on the density of the504

motion vector field of even up to 16 times (4×4), insignificant loss or even505

an increase in accuracy is also achieved by the proposed super-resolution506

approach.507

Due to the high resolution of the Sentinel-1 images, the covered area is508

smaller than the MODIS images, and significantly smaller than the AMSR2509

images. This results in having only one or two buoy vectors present on510

each image, 75 in total. In order to artificially double the number of sta-511

tistical samples, we additionally consider the horizontal and vertical com-512

ponents of the vectors as individual vectors, as has been applied in sea-ice513

motion studies with limited number of vectors (Hollands and Dierking, 2011).514
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Table 5: Accuracy evaluation of the optical flow and MCC vectors, for all 66 image pairs

of Sentinel-1 data, against IABP buoys, 75 vectors for the overall period.

δx δy

MAE RMSE RSE P MAE RMSE RSE P

Flow 0.378 0.599 0.050 0.976 0.437 1.047 0.124 0.971

Flow-X2 0.362 0.590 0.049 0.977 0.435 1.017 0.117 0.972

Flow-X4 0.368 0.637 0.057 0.972 0.742 2.340 0.622 0.651

Flow-X8 0.653 1.746 0.427 0.761 0.732 2.040 0.472 0.750

MCC 0.339 0.476 0.032 0.985 0.432 0.927 0.097 0.977

MCC-X2 0.312 0.449 0.028 0.987 0.354 0.620 0.044 0.987

MCC-X4 0.360 0.694 0.068 0.974 0.439 1.009 0.116 0.948

MCC-X8 0.420 0.813 0.093 0.966 0.503 1.072 0.130 0.943

Two-sample Kolmogorov-Smirnov test confirms—does not reject—the null-515

hypothesis that the horizontal and vertical components come from the same516

distribution at the 5% significance level. Analysis of the 150 vectors together517

provides consistent results with the ones reported in Table 5.518

Evaluating the calculated vectors against the NSIDC grid data (311 vec-519

tors overall), optical flow on the original resolution images provides the best520

overall accuracy. This is an indication that the proposed optical flow and521

MCC vectors perform similarly well on the Sentinel-1 data. Due to the fact522

that the distribution of buoys and grid data is very sparse, with only around523

one and five vectors per image pair, respectively, the evaluations cannot sta-524

tistically capture potential diversity in the entire image area. Fig. 6 provides525
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an indicative example of the calculated vectors on an image pair on the first526

of the selected areas (area S1, see Supplementary Material, enclosed within527

region SEN2 in Fig. 1). As observed, the vectors calculated from both optical528

flow and MCC in all image resolution versions are similar and well aligned529

with buoy and grid data. Only one buoy and four grid vectors fit inside this530

area, so a large part of the image is not adequately sampled. For instance,531

some inconsistent vectors are generated from optical flow and MCC on the532

bottom-left and the bottom-right parts of the image, respectively. A buoy533

or grid vector in the position of one such inconsistent vector may influence534

the statistical evaluation in favor of the optical flow or MCC and may favor535

one or the other in the overall statistics. However, in general, both methods536

provide similarly high quality vectors in all super-resolved versions. As an537

indicative example, MCC vectors on X8 images are the second most accurate538

compared with the NSIDC grid vectors. This further demonstrates that the539

accuracy of the vectors remains high even by upscaling images to 20 m spatial540

resolution, i.e., eight times finer than the original ones, or even outperforms541

results with coarser images.542

As mentioned in Section 3.3, due to computational constraints and lack543

of density buoy vectors for validation, the originally acquired SAR images544

of 40 m spatial resolution are first downsampled to 160 m before our SR545

approach is applied. Thus, the X4 super-resolved images have the same546

resolution with the originally acquired SAR images. As a further evaluation547

step of our approach, we additionally calculate motion using the original548

SAR images. Table 6 presents the evaluation results. Comparing with Table549

5, it is observed that the motion calculated by the original 40 m images falls550
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(a)

(b)

Figure 6: Calculated motion vectors on the original and super-resolved Sentinel-1 images

for the first of the nine areas from Jan. 3 to Jan. 6, 2015. For better illustration, only

subset of the vectors are drawn. (a) From left to right, optical flow vectors from the

original and super-resolved images by a factor of two, four, and eight. (b) The respective

MCC vectors.

between the results obtained with the X2 and X4 super-resolved images. The551

original image results are similar with the optical flow X4 results for the x552

axis, whereas outperforming the latter for MCC and the optical flow on the553

y axis. The results are promising for the performance of the proposed SR554

approach. It is also noteworthy that the motion calculation on the 80 m555

X2 super-resolved images is more accurate than the original SAR images,556

whose spatial resolution is doubled. This is an indication of the ability of557

the proposed SR approach to maintain the structure of the original images558

32



Table 6: Accuracy evaluation of the optical flow and MCC vectors, for the 40 m resolution

66 image pairs of the originally acquired Sentinel-1 images, against IABP buoys, 75 vectors

for the overall period.

δx δy

MAE RMSE RSE P MAE RMSE RSE P

Flow-orig 0.352 0.620 0.054 0.974 0.442 1.129 0.145 0.928

MCC-orig 0.317 0.504 0.036 0.983 0.409 0.686 0.054 0.984

and their sharpness to the degree appropriate for the detection of edges and559

shapes required for the accurate calculation of motion between image pairs.560

6. Discussions561

The experimental results demonstrate that the proposed combination of562

optical flow and super-resolution provides better or comparable results with563

finer scale images of two, four, or even eight times than the original ones.564

Comparison with previous studies, although not always straightforward due565

to variations in the study area, sensors, or validation sources, can further566

support this outcome. Table 7 reports the accuracies by previous state-of-567

the-art methods with similar validation means to this study, together with568

indicative results from the proposed approach that demonstrate its efficiency.569

Employing similar 36.5 GHz horizontal polarization AMSR-E data with 12.5570

km spatial resolution, Meier and Dai (2006) reported RMSE of 4.5–4.83 km571

for the two motion directions. Our proposed approach provides almost half572

error values applying optical flow, while achieving up to four times upscaling,573

and similar results when upscaling by eight times. The results outperform574

even genuinely higher resolution AMSR-E data (Girard-Ardhuin and Ezraty,575
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2012). Regarding optical data, the super-resolved MODIS images provide ac-576

curacies on par or higher than previously reported accuracies, while increas-577

ing the spatial resolution of the motion vector field up to 29 m. Highly accu-578

rate motion estimation has been achieved in some previous studies (Thomas579

et al., 2011; Karvonen, 2012) with SAR data. However, despite the high580

resolution original images, the resulting motion vector field resolution is in581

the order of several hundred meters. On the contrary, the proposed approach582

manages to provide comparable performance while increasing the resolution583

of the final vector field, and is able to provide accurate estimation in up to 20584

m spatial resolution; to our knowledge, this is the highest resolution reported585

in sea ice motion studies with satellite imagery.586

As shown in the experimental results, optical flow outperforms the pat-587

tern matching method in most cases. However, in certain images, mainly at588

the highest super-resolved levels, MCC appears to provide more accurate mo-589

tion vectors. This is mainly attributed to two reasons: i) In some images with590

texture with repetitive patterns or edges sharpened during super-resolution,591

the sparse correspondences detected in the second step of the optical flow cal-592

culation are not spatially consistent. These mis-calculated correspondences593

are then fed to the sparse-to-dense interpolation step, providing a weaker594

initialization input for the dense optical flow calculation. ii) Splitting large595

images into subimages, as necessary step due to memory limitation to cal-596

culate optical flow, provides weaker results than the ones where the entire597

process could run at once. This is explicitly tested by applying splitting598

into smaller images where direct processing is also feasible. In such cases,599

optical flow calculated on the entire image at one pass is more accurate than600
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Table 7: Comparison of the proposed approach with previous state-of-the-art studies,

evaluated mainly with buoys. aEvaluated with 25-km NSIDC grid vectors. bEvaluated

with sea ice beacons. cSpatial resolution of the final vector field is 400 m. dSpatial

resolution of the final vector field is 800 m. ∗Error in vector magnitude.

Method Data Res. MAE RMSE

Passive microwave

Meier and Dai (2006) AMSR-E 12.5 4.50–4.83

Emery et al. (1997) SSM/I 12.5 ≈6.00∗

Girard-Ardhuin and Ezraty

(2012)

AMSR-E 6.25 6.20–8.20∗

Flow-X2 AMSR2 6.25 1.38–1.49 2.10–2.52

Flow-X4 AMSR2 3.125 1.28–1.72 2.00–3.20

Flow-X8 AMSR2 1.563 2.65–3.2 4.70–5.16

Optical

Petrou and Tian (2017) MODIS 0.232 2.88–4.72a 5.71–8.12a

Flow-X2 MODIS 0.116 1.15–1.28a 1.64–1.77a

Flow-X4 MODIS 0.058 1.55–1.81a 2.33–3.39a

Flow-X8 MODIS 0.029 1.58–3.04a 2.08–4.20a

SAR

Komarov and Barber (2014) RADARSAT-2 0.100 0.43b∗

Thomas et al. (2011) RADARSAT-1 0.050c 0.20–0.40

Karvonen (2012) RADARSAT-2,

ASAR

0.1–0.15d 0.14–0.85∗

Flow-X2 Sentinel-1 0.080 0.36–0.44 0.60–1.05

MCC-X2 Sentinel-1 0.080 0.31–0.35 0.45–0.62

Flow-X8 Sentinel-1 0.020 0.65–0.73 1.75–2.04

MCC-X8 Sentinel-1 0.020 0.42–0.50 0.81–1.07
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flow from merging the split images. This shortcoming is more evident in601

super-resolved images of a factor of eight, where splitting is more intense.602

Having adequate processing resources that would allow direct calculation in603

the entire image, the optical flow results are expected to be more accurate.604

It is noted that MCC is unaffected by this process, since no splitting is ap-605

plied and all images are processed at one pass. Although our proposed SR606

methodology can be applied for an arbitrarily large upscaling factor, we limit607

upscaling to eight times in this study due to the memory constraints.608

Application of super-resolution increases the density of the motion vector609

field by several times, i.e., 4, 16, and 64 times for the X2, X4, and X8 upscal-610

ing, respectively. This increase applies equally to both optical flow and MCC611

methods and is a main benefit of the proposed super-resolution component612

over previous approaches where upsampling was attempted implicitly on the613

resulting motion vector field. However, a further improvement brought by614

the optical flow is on the minimum detectable motion. As expected, MCC is615

able to capture one-pixel motion as the minimum non-zero motion. Although616

this improves as the resolution of the images increases, it is still coarser than617

the subpixel motion estimated by optical flow in the continuous space. It is618

also noteworthy that the calculation of optical flow is in general faster than619

MCC, especially when no image splitting is conducted. As an indicative ex-620

ample, it takes around 79 sec to calculate optical flow on an image pair of621

720×720 pixels using a four-core Intelr Xeonr CPU E5506 at 2.13 GHz,622

while the computing time for MCC is around 263 sec, i.e., almost four times623

slower.624

As a final note on the theoretical strengths and limitations of the proposed625
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SR approach, it is reminded that the approach uses a number of natural im-626

ages to learn dependency relations between high-/low-resolution exemplars,627

through small patch instances. The motivation behind this is that natural im-628

ages hold certain priors and small image patches (after normalization) tend to629

repeat themselves. Based on this observation, generic image super-resolution630

methods, trained with natural images, are suitable for images captured by631

imaging systems, as opposed to synthetic images. This is also confirmed in632

this paper. In situations where the target images do not obey such priors,633

e.g., in synthetic images, microscopy images, etc., the current generic image634

super-resolution approach is not expected to be appropriate.635

Overall, the proposed approach is able to generate accurate daily motion636

vectors at a spatial resolution of up to 1.5 km for the entire Arctic using637

AMSR2 data. This resolution largely benefits enhancing large-scale modeling638

of climate and ocean-atmosphere interactions. On the other side, vector639

estimations at a resolution of 20 m, as achieved with the Sentinel-1 data,640

open the floor to more accurate fine-scale monitoring of sea ice at the level641

of the size of a ship, and safer navigation and sea operations. In this study,642

because of processing limitations, the SAR data are first downsampled by four643

times, whereas the maximum upscaling attempted by the SR algorithm for644

all sensor images is eight. Without such limitations, the proposed approach645

can be effective in estimating motion at an even higher resolution.646

7. Conclusion647

In this study, we have proposed a super-resolution and optical flow ap-648

proach to estimate sea ice motion at fine scales. The approach managed to649
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increase both the density of the calculated motion vector field and the min-650

imum detected motion at subpixel levels. The effectiveness of the proposed651

method is evaluated on data from three different types of sensors and spatial652

resolutions, namely coarse-resolution passive microwave, medium-resolution653

optical, and high-resolution SAR data. The proposed approach achieves in-654

crease of up to eight times in image resolution without sacrificing or even with655

increasing the accuracy of the estimated vectors compared with the original656

data. Comparison with a state-of-the-art pattern matching approach demon-657

strates the advantages brought by optical flow. The results support the use658

of the approach for regional and local level applications and its potential for659

further improvements.660
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