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Abstract

Objects in the world exhibit complex interactions. When
captured in a video sequence, some interactions manifest
themselves as occlusions. A visual tracking system must
be able to track objects which are partially or even fully
occluded. In this paper we present a method of track-
ing objects through occlusions using appearance models.
These models are used to localize objects during partial oc-
clusions, detect complete occlusions and resolve depth or-
dering of objects during occlusions. This paper presents
a tracking system which successfully deals with complex
real world interactions, as demonstrated on the PETS 2001
dataset.

1. Introduction
Real world video sequences capture the complex interac-
tions between objects (people, vehicles, building, trees, etc.
). In video sequences these interactions result in several
challenges to the tracking algorithm. Distinct objects cross
paths and cause occlusions. A number of objects may ex-
hibit similar motion, causing difficulties in segmentation.
New objects may emerge from existing objects (a person
getting out of a car) or existing objects may disappear (a
person entering a car or exiting the scene). Maintaining ap-
pearance models of objects over time and using them to deal
with complex interactions is key to a successful tracking
system.

In this paper we present a tracking system which uses ap-
pearance models to successfully track objects through com-
plex real world interactions. Section 2 presents a short re-
view of related research. Section 3 presents the overall ar-
chitecture of the system and its components: background
subtraction, high-level tracking and appearance models are
discussed in sections 4, 5 and 6 respectively. Section 6 dis-
cusses the appearance models. We have developed an inter-
active tool for generating ground truth using partial tracking
result which is discussed in section 9. Section 10 discusses
our method for comparing automatic tracking results to the
ground truth. Section 11 presents results on the PETS test

sequences. We summarize our paper and present future di-
rections in section 12.

2. Related work
A video image will change over time due to object or cam-
era motion, illumination variation, complex occlusion, and
other variations. The analysis of appearance changes can be
used to detect and track moving objects in video sequences.
Many systems have been developed for video surveillance
to detect and track people, vehicles and moving objects
[5, 13, 15].

Occlusion is a significant problem in moving object de-
tection and tracking. Some previous work does not deal
with occlusion at all, or minimizes occlusions by placing
the cameras at a high angle, looking down on the plane of
motion of the objects [3, 4].

Methods to solve the occlusion problem have been pre-
viously presented [1, 2, 5, 8]. Chang et al. [1] and Dock-
stader et al. [2] use the fusion of multiple camera inputs
to overcome occlusion in multi-object tracking. Khan and
Shah [8] presented a system to track people in the presence
of occlusion. First, they segmented a person into classes
of similar colour using the Expectation Maximization algo-
rithm. Then they used a maximum a posteriori probability
approach to track these classes from frame to frame.

Lipton et al. [9] describe a simple method based on tem-
plate matching and temporal consistency via object clas-
sification and motion detection. Their method can deal
with partial occlusions. Template matching plays a simi-
lar role to appearance-based models but does not take into
account the variable appearance of the object due to lighting
changes, self-occlusions, and other complex 3-dimensional
projection effects.

Several methods use Kalman filtering or probabilistic ap-
proaches to perform robust tracking which can deal with
some instances of occlusion [7, 12, 14] These methods re-
quire estimation of prior distributions for modelling motion
and appearance. Tao et al. [14] use a dynamic layer ap-
proach which relies on an appearance model. Their system
can deal with partial occlusion of passing vehicles as seen



from above. Isard et al. [7] have built a system for tracking
people walking by each other in a corridor. Each foreground
object is statistically modelled using a generalized cylinder
object model and a mixture of Gaussians model based on
intensity. Rosales et al. [12] present an approach to de-
tect and predict occlusion by using temporal analysis and
trajectory prediction. In temporal analysis, a map of the
previous segmented and processed frame is used as a pos-
sible approximation of the current connected elements. In
trajectory prediction, an extended Kalman filter provides an
estimate of each object’s position and velocity. These meth-
ods make several assumptions about the types of objects in
the scene and their shape and motion characteristics.

The works most closely related to this paper are those
of Haritaoğlu et al. [5] and Roh et al. [11] since they use
appearance models to handle occlusion problem. The for-
mer combine the gray-scale texture appearance and shape
information of a person together in a 2D dynamic template,
but do not such appearance information in analyzing multi-
people groups. Roh et al. use an appearance model based
on temporal colour to track multiple people in the presence
of occlusion. They use temporal colour features which com-
bine colour values with associated weights. The weights are
determined by the size, duration, frequency, and adjacency
of a colour object.

3. Tracking system architecture
In this paper we describe a new visual tracking system de-
signed to track independently moving objects, and using the
output of a conventional video camera. Figure 1 shows the
structure of the tracking system.

The input video sequence is used to estimate a back-
ground model, which is then used to perform background
subtraction, as described in section 4. The resulting fore-
ground regions form the raw material of a two-tiered track-
ing system.

The first tracking process associates foreground regions
in consecutive frames to construct hypothesized tracks. The
second tier of tracking uses appearance models to resolve
ambiguities in these tracks that occur due to object inter-
actions and result in tracks corresponding to independently
moving objects.

A final operation filters the tracks to remove tracks which
are invalid artefacts of the track construction process, and
saves the track information (the centroids of the objects at
each time frame) in the PETS XML file format.

In this paper we describe results using the PETS 2001
evaluation dataset 1, camera 1. For reasons of speed and
storage economy, we have chosen to process the video at
half resolution. The sytem operates on AVI video files
(Cinepak compressed) generated from the distributed JPEG
images. Naturally, higher accuracies and reliability are to be
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Figure 1: Block diagram of the tracking system

expected from processing the video at full size and without
compression artefacts.

4. Background estimation and subtrac-
tion

The background subtraction approach presented here is sim-
ilar to that taken by Horprasert et al. [6] and is an attempt
to make the background subtraction robust to illumination
changes. The background is modelled statistically at each
pixel. The estimation process computes the brightness dis-
tortion and colour distortion in RGB colour space. Each
pixel � is modelled by a 4-tuple ( ���������	��
��	�
��� ), where ��� is
a vector with the means of the pixel’s red, green, and blue
components computed over � background frames; ��� is a
vector with the standard deviations of the colour values; 
��
is the variation of the brightness distortion; and ��� is the
variation of the chromaticity distortion. We have also de-
veloped an active background estimation method that can
deal with moving objects in the frame. First, we calculate
image difference over three frames to detect the moving ob-
jects. Then the statistical background model is constructed,
excluding these moving object regions.

By comparing the difference between the background
image and the current image, a given pixel is classified into
one of four categories: original background, shaded back-
ground or shadow, highlighted background, and foreground



objects. thresholds are calculated automatically, details can
be found in the original paper [6]. Finally, a morphology
step is applied to remove small isolated spots and fill holes
in the foreground image. The current algorithm works rea-
sonably well indoors and outside without adapting the back-
ground after initial estimation, but we are currently adapta-
tion to the system.

5. High-level tracking
The foreground regions of each frame are grouped into con-
nected components. A size filter is used to remove small
components. Each foreground component is described by
a bounding box and an image mask, which indicates those
pixels in the bounding box that belong to the foreground.
For each successive frame, the correspondence process at-
tempts to associate the foreground regions with one of the
existing tracks. This is achieved by constructing a distance
matrix showing the distance between each of the foreground
regions and all the currently active tracks. We use a bound-
ing box distance measure, as shown in figure 2. The dis-
tance between bounding boxes � and � (figure 2, left) is the
lower of the distance from the centroid, ��� , of � to the clos-
est point on � or from the centroid, ��� , of � to the closest
point on � . In either centroid lies within the other bounding
box (figure 2, right), the distance is zero. The motivation for
using the bounding box distance as opposed to Euclidean
distance between the centroids is the large jump in the Eu-
clidean distance when two bounding boxes (objects) merge
or split. A time distance between the observations is also
added in to penalize tracks for which no evidence has been
seen for some time.
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Figure 2: Bounding box distance measure

The distance matrix is then binarized, by thresholding,
resulting in a correspondence matrix associating tracks with
foreground regions. The analysis of the correspondence ma-
trix produces four possible results as shown in figure 1: ex-
isting object, new object, merge detected and split detected.

For well-separated moving objects, the correspondence
matrix (rows correspond to existing tracks and columns to
foreground regions in the current segmentation) will have
at most one non-zero element in each row or column — as-
sociating each track with one foreground region and each
foreground region with one track, respectively. Columns
with all zero elements represent new objects in the scene

which are not associated with any track, and result in the
creation of a new track. Rows with all zero elements repre-
sent tracks that are no longer visible (because they left the
scene, or were generated because of artefacts of the back-
ground subtraction).

In the case of merging objects, two or more tracks will
correspond to one foreground region, i.e. a column in the
correspondence matrix will have more than one non-zero
entry. When objects split, for example when people in a
group walk away from each other, a single track will cor-
respond to multiple foreground regions, resulting in more
than one non-zero element in a row of the correspondence
matrix. When a single track corresponds to more than one
bounding box, all those bounding boxes are merged to-
gether, and processing proceeds. If two objects tracked as
one do separate, the parts continue to be tracked as one un-
til they separate sufficiently that both bounding boxes do
not correspond to the track, and a new track is created.

Once a track is created, an appearance model of the ob-
ject is initialized. This appearance model is adapted every
time the same object is tracked into the next frame. On the
detection of object merges and splits, the appearance model
is used to resolve the ambiguity. A detailed discussion of
the appearance model and its application to occlusion han-
dling is presented in the following section.

6. Appearance-based tracking
To resolve more complex structures in the track lattice pro-
duced by the bounding box tracking, we use appearance-
based modelling. Here, for each track we build an appear-
ance model, showing how the object appears in the image.
The appearance model is an RGB colour model with a prob-
ability mask similar to that used by Haritaoğlu et al. [5]. As
the track is constructed, the foreground pixels associated
with it are added into the appearance model. The new in-
formation is blended in with an update fraction (typically
0.05) so that new information is added slowly and old in-
formation is gradually forgotten. This allows the model to
accommodate to gradual changes such as scale and orien-
tation changes, but retain some information about the ap-
pearance of pixels that appear intermittently, as in the legs
or arms of a moving person. The probability mask part is
also updated to reflect the observation probability of a given
pixel. Figure 3 shows the appearance model for a van from
the PETS data at several different frames.

These appearance models are used to solve a number of
problems, including improved localization during tracking,
track correspondence and occlusion resolution.

Given a one-to-one track-to-foreground-region corre-
spondence, we use the appearance model to provide im-
proved localization of the tracked object. The background
subtraction is necessarily noisy, and the additional layers of
morphology increase the noise in the localization of the ob-
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Figure 3: The evolution of an appearance model. In each
figure, the upper image shows the appearance for pixels
where observation probability is greater than 0.5. The lower
shows the probability mask as grey levels, with white being
1.) The frame numbers at which these images represent the
models are given, showing the progressive accommodation
of the model to slow changes in scale and orientation.

jects, by adding some background pixels to a foreground
region, and removing extremities. The appearance model
however, has an accumulation of information about the ap-
pearance of the pixels of an object and can be correlated
with the image to give a more accurate estimate of the cen-
troid of the object. The accumulated Euclidean RGB dis-
tance is minimized over a small search region and the point
with the lowest distance taken as the object’s location. The
process could be carried out to sub-pixel accuracy, but the
pixel level is sufficient for our tracking.

When two tracks merge into a single foreground region,
we use the appearance models for the tracks to estimate the
separate objects’ locations and their depth ordering.

This is done by the following operations, illustrated in
figures 4&5:

1. Using a first-order model, the centroid locations of the
objects are predicted.

2. For a new merge, with no estimate of the depth-
ordering, each object is correlated with the image in
the predicted position, to find the location of best-fit.

3. Given this best-fit location, the ‘disputed’ pixels —
those which have non-zero probabilities in more than
one of the appearance model probability masks — are
classified using a maximum likelihood classifier with
a simple spherical Gaussian RGB model, determining
which model was most likely to have produced them.
Figures 4c & 5c show the results of such classifica-
tions.

4. Objects are ordered so that those which are assigned
fewer disputed pixels are given greater depth. Those
with few visible pixels are marked as occluded.

5. All pixels are reclassified, with disputed pixels be-
ing assigned to the foremost object which overlapped
them.

(a) (b) (c)

(d) (e) (f)

Figure 4: An occlusion resolution (Frame 921 of dataset 1,
camera 1). (a) shows three appearance models for tracks
converging in a single region. (b) shows the pixels of a sin-
gle foreground region, classified independently as to which
of the models they belong to. (d,e,f) show the pixels finally
allocated to each track, and (c) shows the regions overlaid
on the original frame, with the original foreground region
bounding box (thick box), the new bounding boxes (thin
boxes) and the tracks of the object centroids.

On subsequent frames, the localization step is carried out
in depth order, with the foremost objects being fitted first,
and pixels which match their appearance model being ig-
nored in the localization of ‘deeper’ objects, as they are
considered occluded. After the localization and occlusion
resolution, the appearance model for each track is updated
using only those pixels assigned to that track.

Because of failures in the background subtraction, par-
ticularly in the presence of lighting variation, some spurious
foreground regions are generated, which result in tracks.
However mosto of these are filtered out with rules detect-
ing their short life or the fact that the appearance model cre-
ated in one frame fails to explain the ‘foreground’ pixels in
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Figure 5: An occlusion resolution (Frame 825 of dataset 1,
camera 1). (a) appearance models. (b) independently clas-
sified foreground region pixels as to which of the models
they belong to. (d,e) the pixels allocated to each track, and
(c) the regions overlaid on the original frame.

subsequent frames. An additional rule is used to prune out
tracks which do not move. These are considered to be static
objects whose appearance varies, such as moving trees and
reflections of sky.

7. Multi-object segmentation
The appearance models can also be used to split complex
objects. While the background subtractions yields complex,
noisy foreground regions, the blending process of the model
update allows finer structure in objects to be observed. The
principal way in which this structure is used in the current
system is to look for objects which are actually groups of
people. These can be detected in the representation if the
people are walking sufficiently far apart that background
pixels are visible between them. These are evidenced in the
probability mask, and can be detected by observing the ver-
tical projection of the probability mask. We look for minima
in this projection which are sufficiently low and divide suf-
ficiently high maxima. When such a minimum is detected,
the track can be divided into the two component objects,
though here we choose to track the multi-person object and
flag its identity.

Figure 6: The appearance model for a group of people.

8. Object classification
For the understanding of video it is important to label the
objects in the scene. For the limited variety of objects in
the test data processed here, we have written a simple rules-
based classifier. Objects are initially classified by size and

shape. We classify objects as: Single Person, Multiple Peo-
ple, Vehicle, and Other. For each object we find the area,
the length of the contour, and the length and orientation of
the principal axes. We compute the ‘dispersedness’, which
is the ratio of the perimeter squared to the area. Dispersed-
ness has been shown to be a useful cue to distinguish 2D
image objects of one or more people from those of individ-
ual vehicles [9]. For each 2D image object, we also deter-
mine which principal axis is most nearly vertical and com-
pute the ratio of the more-nearly horizontal axis length to
the more-nearly vertical axis length. This ratio, � , is used to
distinguish a foreground region of a single person from one
representing multiple people since a single person’s image
is typically significantly taller than it is wide while a multi-
person blob grows in width with the number of visible peo-
ple. From these principles, we have designed the ad-hoc,
rule-based classification shown in figure 7. In addition, we
use temporal consistency to improve robustness so a cleanly
tracked object, which is occasionally misclassified, can use
its classification history to improve the results.
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Figure 7: The classification rules for a foreground region. �
is the horizontal-to-vertical principal axis length ratio.

9. Ground truth generation
The tracking results were evaluated by comparing them
with ground truth. This section overviews the ground truth
generation process. A semi-automatic interactive tool was
developed to aid the user in generating ground truth. The
ground truth marking (GTM) tool has the following four
major components: (i) iterative frame acquisition and ad-
vancement mechanism; (ii) automatic object detection; (iii)
automatic object tracking; (iv) visualization; (v) refinement.
After each frame of video is acquired, the object detec-
tion component automatically determines the foreground
objects. The foreground objects detected in frame � are re-
lated to those frame ���

�
by the object tracking component.

At any frame � , all the existing tracks up to frame � and
the bounding boxes detected in frame � are displayed by



the visualization component. The editing component allows
the user to either (a) accept the results of the object detec-
tion/tracking components, (b) modify (insert/delete/update)
the detected components, (c) partially/totally modify (cre-
ate, associate, and dissociate) track relationships among the
objects detected in frame � �

�
and those in frame � . Once

the user is satisfied with the object detection/tracking results
at frame � , she can proceed to the next frame.

Generating object position and track ground truth for
video sequences is a very labour intensive process. In order
to alleviate the tedium of the ground truth determination,
GTM allows for sparse ground truth marking mode. In this
mode, the user need not mark all the frames of the video but
only a subset thereof. The intermediate object detection and
tracking results are interpolated for the skipped frames us-
ing linear interpolation. The rate,

�
, of frame subsampling is

user-adaptable and can be changed dynamically from frame
to frame.

The basic premise in visual determination of the ground
truth is that the humans are perfect vision machines. Al-
though we refer to the visually determined object position
and tracks as “the ground truth”, it should be emphasized
that there is a significant subjective component of human
judgment involved in the process. The objects to be tracked
in many instances were very small (e.g. few pixels) and ex-
hibited poor contrast against the surrounding background.
When several objects came very close to each other, deter-
mination of the exact boundary of each object was not easy.
Further, since the judgments about of the object location
were based on visual observation of a single (current) frame,
the motion information (which is a significant clue for deter-
mining the object boundary) was not available for marking
the ground truth information. Finally, limited human ability
to exert sustained attention to mark minute details frame af-
ter frame tends to introduce errors in the ground truth data.
Because of the monotonous nature of the ground truth de-
termination, there may be an inclination to acceptance of
the ground truth proposed by the (automatic) component of
the GTM interface. Consequently, the resultant ground truth
results may be biased towards the algorithms used in the au-
tomatic component of the GTM recipe. Perhaps some of the
subjectiveness of the ground truth data can be assessed by
juxtaposing independently visually marked tracks obtained
from different individuals and from different GTM inter-
faces. For the purpose of this study, we assume that the
visually marked ground truth data is predominantly error
free.

10. Performance metrics
Given a ground truth labelling of a sequence, this section
presents the method used for comparison of the ground truth
with tracking results to evaluate the performance. The ap-
proach presented here is similar to the approach presented

by Pingali and Segen [10]. Given two sets of tracks, a cor-
respondence between the two sets needs to be established
before the individual tracks can be compared to each other.
Let ��� be the number of tracks in the ground truth and ���
be the number of tracks in the results. Correspondence is
established by minimizing the distance between individual
tracks. The following distance measure is used, evaluated
for frames when both tracks exist:

���	��
 � � 

����� �

���� �
�

��� � � ���������! � � � �������
" #

�$ � � �&%
#
�' � � � (1)

# $ � � �(� )+* � � � � � * �
� � �,) (2)# ' � � �(� )+- � � � � � - �
� � �,) (3)

Where � � � is the number of points in both tracks

 �

and

�
,
*&./� � � is the centroid and

-0./� � � is the velocity of ob-
ject 1 at time

� � . Thus the distance between two tracks in-
creases with the distance between the centroids and the dif-
ference in velocities. The distance is inversely proportional
to the length for which both tracks exist — so tracks which
have many frames in common will have low distances. An
�2�43 ��� distance matrix is constructed using the track dis-
tance measure

���
. Track correspondence is established by

thresholding this matrix. Each track in the ground truth can
be assigned one or more tracks from the results. This ac-
commodates fragmented tracks. Once the correspondence
between the ground truth and the result tracks are estab-
lished, the following error measures are computed between
the corresponding tracks.

5 Object centroid position error: Objects in the ground
truth are represented as bounding boxes. The object
centroid position error is approximated by the distance
between the centroids of the bounding boxes of ground
truth and the results. This error measure is useful in
determining how close the automatic tracking is to the
actual position of the object.

5 Object area error: Here again, the object area is ap-
proximated by the area of the bounding box. The
bounding box area will be very different from the ac-
tual object area. However, given the impracticality
of manually identifying the boundary of the object in
thousands of frames, the bounding box area error is a
reasonable measure of the quality of the segmentation.

5 Object detection lag: This is the difference in time be-
tween when the ground truth identified a new object
versus the tracking algorithm.

5 Track incompleteness factor: This measures how well
the automatic track covers the ground truth:

687�9
%:6<;=9

 �



where,
6 7 9

is the false negative frame count, i.e. the
number of frames that are missing from the result
track.

6<; 9
is the false positive frame count, i.e. the

number of frames that are reported in the result which
are not present in the ground truth and


 � is the number
frames present in both the results and the ground truth.

5 Track error rates: These include the false positive rate
� ;

and the false negative rate
� 7

as ratios of numbers
of tracks:

� ;4� Results without corresponding ground truth
Total number of ground truth tracks

(4)

� 7 � Ground truth without corresponding result
Total number of ground truth tracks

(5)

5 Object type error: This counts the number of tracks for
which our classification (person/car) was incorrect.

11. Experimental results
The goal of our effort was to develop a tracking system for
handling occlusion. Given this focus, we report results only
on PETS test dataset 1, camera 1. The current version of
our system does not support continuous background esti-
mation and hence we do not report results on the remaining
sequences which have significant lighting variations. Given
the labour intensive nature of the ground truth generation,
we have only generated ground truth up to frame 841. Table
1 shows the various performance metrics for these frames.

Of the seven correct tracks, four are correctly detected,
and the remaining three (three people walking together) are
merged into a single track, though we do detect that it is
several people. This accounts for the majority of the posi-
tion error, since this result track is compared to each of the
three ground truth tracks. No incorrect tracks are detected,
though in the complete sequence, five spuious tracks are
generated by failures in the background subtraction which
are accumulated into tracks. The bounding box area mea-
sure is as yet largely meaningless since the bounding boxes
in the results are only crude approximations of the object
bounding boxes, subject to the vagaries of the background
subtraction and morphology. The detection lag is small,
showing that the system detects objects nearly as quickly
as the human ground truther.

12. Summary and conclusions
We have written a computer system capable of tracking
moving objects in video, suitable for understanding mod-
erately complex interactions of people and vehicles, as seen
in the PETS 2001 data sets. We believe that for the sequence
on which we have concentrated our efforts, the tracks pro-
duced are accurate. The two tier approach proposed in the

Dataset 1, Camera 1
Track error

� ;
8/7

Track error
� 7

2/7
Average position error 5.51
Average area error -346
Average detection lag 1.71
Average track incompleteness 0.12
Object type error 0

Table 1: Performance Measures for Dataset 1, Camera 1

Figure 8: A comparison of estimated tracks (black) with
ground truth positions (white), for two tracks superimposed
on a mid-sequence frame showing the two objects.

paper successfully tracks through all the occlusions in the
dataset. The high level bounding box association is suffi-
cient to handle isolated object tracking. At object interac-

Figure 9: An image showing all the tracks detected by the
system for dataset 1, camera 1, overlaid on a background
image.



tions, the appearance model is very effective in segmenting
and localizing the individual objects and successfully han-
dles the interactions.

To evaluate the system, we have designed and built a
ground truthing tool and carried out preliminary evaluation
of our results in comparison to the ground truth. The at-
tempt to ground truth the data and use it for performance
evaluation lead to the following insights. The most impor-
tant aspect of the ground truth is at object interactions. Thus
ground truth can be generated at varying resolutions through
a sequence, coarse resolutions for isolated object paths and
high resolution at object interations. The tool we designed
allows for this variation.

13. Future work
The implementation of the appearance models holds much
scope for future investigation. A more complex model,
for instance storing colour covariances or even multimodal
distributions for each pixel would allow more robust mod-
elling, but the models as described seem to be adequate for
the current task. The background subtraction algorithm is
currently not adaptive, and so begins to fail for long se-
quences with varying lighting conditions. Continuous up-
dating of background regions will improve its robustness
to such situations. The system must also operate in real-
time to be applicable to real-world tracking problems. Cur-
rently the background subtraction works at about 9 fps and
the subsequent processing takes a similar amount of time.
Without further optimization, the system should run on live
data by dropping frames, but we have not tested the system
in this mode.
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