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     Abstract 
 
Effectively evaluating the performance of moving object 
detection and tracking algorithms is an important step 
towards attaining robust digital video surveillance 
systems with sufficient accuracy for practical 
applications. As systems become more complex and 
achieve greater robustness, the ability to quantitatively 
assess performance is needed in order to continuously 
improve performance. In this paper, we refine the 
methods used to estimate performance and use these 
methods to measure the performance of our system under 
several different conditions including: indoor/outdoor, 
different weather conditions (precipitation, wind, and 
brightness), different cameras/viewpoints, and as a 
standard benchmark, the PETS 2001 datasets. To test the 
extensibility/validity of our results, we have also 
evaluated our system on four longer data sets (20-30 min 
each) from four different cameras. We evaluate the 
performance of the background subtraction alone and 
with a simple tracking system using two different sets of 
metrics. Visualization of the performance results has 
proven critical for understanding the weaknesses of the 
system. 
 
1. Introduction 
In practice, digital video surveillance needs to operate 
around the clock, as the weather varies, the seasons 
change, and the daily events unfold. Performance 
evaluation of automatic surveillance systems is still 
typically limited to short sequences. Unfortunately, these 
sequences and their annotation are often available only to 
the researchers who created them. There is a need to 
create benchmark datasets available to all researchers and 
to agree on standardized performance metrics for their 
evaluation. Furthermore, we need to understand the 
extensibility of these results to the long-term operation of 
systems for real-world applications. In an effort to begin 
to understand the issues involved in running real-time 
real-world around-the-clock digital video analysis, we 

have developed and evaluated a test bed of sequences, 
across a range of conditions. The conditions we have 
studied include: indoor/outdoor, varying weather 
conditions, and different cameras/viewpoints. We have 
also evaluated our system on the standard datasets 
provided by the PETS 2001 workshop. 
      In this paper, we suggest several metrics for system 
performance evaluation, and test our system on these 
metrics for several different types of sequences. When 
possible, we provide the sequences and their ground truth 
annotation online for general accessibility and further 
testing. [http://www.research.ibm.com/peoplevision/ 
performanceevaluation.html] 
     Performance evaluation systems have been developed 
to analyze the two primary levels of processing:  
background subtraction and tracking. We believe these 
are both important elements of any digital video 
surveillance system. However, since the ultimate 
performance of such a system, relies on correct tracking 
and subsequent triggering of specific alarms and possibly 
archiving the correct video clips, it is important to 
distinguish raw background subtraction detection 
accuracy from the eventual high level tracking and 
triggering of an event alarm. Background subtraction may 
influence the effectiveness of the tracking, but the final 
tracking will reflect the system’s capabilities. 
     In the next section of the paper, we discuss the state-
of-the-art in performance evaluation including the 
absolute performance of systems – i.e., what are the 
current performance values reported by researchers on 
their systems. In Section 3, we describe the annotation 
process used to generate ground truth. In Section 4, we 
describe our background subtraction evaluation system. In 
Section 5, we explain our track evaluation system. In 
Section 6, we describe the datasets used for evaluation. In 
Section 7 we show the results on each of the datasets. 
Finally we give our conclusions in Section 8. 
 
2. Background 
     Some of the earliest efforts in performance evaluation 
of moving object detection and tracking began at the 



PETS (Performance Evaluation of Tracking and 
Surveillance) workshops. In 2000 and 2001, the workshop 
provided general outdoor surveillance benchmark datasets 
for the participants to evaluate their systems. [Senior 01] 
suggested several metrics for evaluating performance of 
tracking including: # track false positives, # track false 
negatives, average position error, average area error, 
average detection lag, and average track incompleteness. 
However, the results of these metrics are highly dependent 
on the input sequence and practical systems need to 
perform well on a wide range of input data. 
     [Toyama 99] was the first to analyze the performance 
of nine background subtraction methods using the number 
of pixels erroneously classified as foreground (false 
positives) or not detected (false negatives). The results 
were based on the manual and somewhat arduous 
annotation of seven short (several minutes) sequences 
using the outline of each foreground object at 4Hz and a 
resolution of 160x120.  
     The sequences were chosen to exemplify each of 7 
challenging situations for background subtraction 
methods. In particular, the situations were: moved object 
(static objects are moved), time of day (gradual lighting 
change), light switch (sudden light change), waving trees 
(uninteresting motion), camouflage (foreground similar to 
background), bootstrap (constant motion, no time to learn 
background), and foreground aperture (uniformly colored 
object moves). Their results show the comparative 
performance of the nine algorithms and the advantages of 
background subtraction methods which determine 
foreground objects based on spatially varying criteria (i.e., 
not just based on pixel level models.)  For further 
comparison, their sequences need to be made accessible 
to other researchers. 
     More recently (at PETS 03), two new methods have 
been proposed to evaluate background subtraction and in 
the second case, tracking performance. 
[Chalidabhongse03] proposed a background subtraction 
evaluation system in which the false alarm rate (FAR) is 
fixed, typically in the range of .1-.01 percent of 
pixels/frame, and uniform random contrast differences are 
generated to determine the just noticeable difference 
(JND) for background subtraction. They compared 4 
methods and found their own codebook approach which 
uses a nonparametric quantization/clustering model to be 
superior. Their analysis compares the raw performance 
differences of pixel-based approaches. This is a useful, 
repeatable (although of course, it depends on the 
sequences) metric but limited to measuring raw (i.e. pixel 
level) models. The degree to which the role of the base 
performance of background subtraction pixel-level model 
effects the ultimate results of tracking 24/7 in the real 
world are still unclear. 

      [Black 03] propose a methodology to minimize the 
painstaking manual annotation necessary to provide 
accurate ground truth information. They suggest 
generating a range of tracking situations based on a small 
set of manually annotated tracks by using different 
combinations of tracks on different background scenes. 
Although this clearly eliminates significant labor, it is not 
clear this will simulate many of the issues present in 
actual video such as wind and shadows or effects due to 
inaccurate background subtraction healing (e.g. “ghosts” 
left behind when stationary objects begin to move.) Most 
of these effects are complexly related to the tracks 
themselves and will not occur with simulation but may 
severely affect performance. Furthermore there is a need 
to discover these real-world issues. 
     They also report the performance of their system on 
the PETS 2001 data for one sequence (dataset 2, camera 
2). For the full resolution (768x576) color video, they 
report a false alarm rate of .01 and a track detection rate 
of  98%. In terms of our metrics (described in Section 4, 
this is equivalent to FP=.02, FN=.02, and track 
fragmentation=1.2. This is one of the few quantitative and 
comparable results reported for a publicly available 
sequence albeit for a single sequence and no timing 
information. 
     System to ground truth alignment was based on 
minimizing the distance metric (match each system track 
to its best GT track) weighted inversely by the length of 
the temporal overlap [Senior01]. We will discuss this 
metric and its limitations in Section 5. [Pingali96] 
describe an approach to measure tracking accuracy based 
on trajectories and trajectory events such as crossings. 
Matching system to ground truth tracks is based on 
comparing trajectories and trajectory events. Their 
primary contribution allows performance evaluation of 
specific application goals such as counting. 
     As far as we know, the work of [Black04], [Pingali96] 
and [Senior01] are the only papers which quantitatively 
evaluate the performance of full tracking algorithms, i.e., 
tracking of multiple objects through occlusions.  Other 
researchers have studied tracking systems only with 
regard to segmentation accuracy, i.e., without evaluating 
occlusions, merging and splitting. [Tissainayagam02] 
evaluated the performance of contour trackers but they 
only consider performance of the trackers in terms of the 
accuracy of the contour and assume a single object 
without occlusion. [Erdem04] measure tracking 
performance based on segmentation accuracy using 
spatial differences of color and motion along the 
boundary. [Dahlkamp04] visually compare two vehicle 
tracking methods by analyzing their respective failure 
modes and comparing the time intervals in which each 
vehicle is successfully tracked. 



     In this paper, we describe a method to evaluate 
tracking performance for real-world situations in which 
multiple objects traverse the scene, there is significant 
background clutter, and objects are occluded by the scene 
and each other. 
 
3. Ground Truth Acquisition 
     Ground Truth (GT) Tracks were obtained manually 
using an annotation tool. Annotation is performed every 
30 frames and at start/end of each track. The user draws 
the appropriate bounding box around each foreground 
object which is associated with a track. If the object is 
temporarily predominantly occluded, the user marks it as 
such. The system tracks are obtained by an automatic 
script. More information about our system, the Smart 
Surveillance System can be found in [Hampapur03].  
 
4. Background Subtraction Evaluation 
     The background subtraction evaluation compares 
every ground truth frame against the results of a specific 
background subtraction algorithm. Each comparison 
determines if there is a false negative (FN): no system 
foreground object centroid inside the ground truth 
bounding box or false positive (FP): system foreground 
object does not intersect with any ground truth bounding 
box.  If a foreground moving object becomes stationary, 
we do not measure performance for this region i.e., 
whether the system continues to detect this object for 
longer or no longer detects it, we do not consider it to be 
either a FP or FN because of the ambiguity of the 
situation. 
     The evaluation determines the number of true positives 
(TP) over all ground truth frames. The final FP measure 
represents the average number of false positives per 
ground truth frame. The final FN measure is the 
percentage of TP which are missed by the system. For 
both false positives and false negatives, we also measure 
the average area (in pixels) of their respective instances. 
These values are referred to as FPSize and FNSize. 
     We compare two background subtraction algorithms. 
The first uses a variation of the adaptive mixture of 
Gaussians model (MOG) [Stauffer 99]. We use three 
Gaussians per pixel and a threshold of .3. The multi-
adaptive model learning rate is .01 and the weight update 
learning rate is .005. The second method, we call 
Salience-Based (SAL) and is described in [Connell04]. 
This method combines evidence from differences in color, 
texture and motion. The method also has several built-in 
mechanisms to handle changing ambient conditions and 
scene composition. First, it continually updates its overall 
RGB channel noise parameters to compensate for 
changing light levels. Second, it estimates and corrects for 
automatic gain control and white balance shifts induced 
by the camera. Finally, it maintains a map of high activity 

regions and slowly updates its background model only in 
areas deemed as relatively quiescent.  
 
5. Tracking Evaluation 
     In addition to measuring the performance of the 
background subtraction, we also measure the performance 
of the full system (background subtraction followed by 
tracking.) For this evaluation, we need to determine which 
system tracks correspond to which ground truth tracks.  
     In [Senior 01], the evaluation matched system tracks to 
ground truth tracks. The correspondence was many-to-
one, i.e., several system tracks could be matched to one 
ground truth track but not vice versa. A match was based 
on proximity and the overlap duration: 
 
 
 
 
 

where GT
ip   is the centroid of the ground truth track at 

the ith ground truth frame, Sys
ip  is the centroid of the 

system track, and Dist is the Euclidean distance. 
MatchDuration is the number of frames in the overlap. If 
the match score is below a threshold, the two tracks are 
matched. 
     This metric is useful for simple scenes and tracking 
scenarios but has several limitations. This can be best 
explained in terms of the four types of tracking errors: 
spatial fragmentation, temporal fragmentation, spatial 
merging and temporal merging. Fig 1 shows  examples of 
track fragmentation error. This can be due to either spatial 
error (e.g. a single person results in an upper and lower 
body track) or temporal (e.g. a small object is only 
intermittently observed). In the latter case, the horizontal 
axis represents time. Fig 2 shows examples of track merge 
error. Temporal merging is often due to the track of one 
object exiting just as the track of another object enters the 
scene. Spatial merging is often the result of the tracks of 
two objects merging when they appear close together. 

 
Fig 1. Track fragmentation error. The system identifies 
multiple tracks for a single real track.  

 
Fig 2. Track merge error. The system identifies a single 
track for multiple real tracks. 
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     The problem with matching tracks using the previously 
described match score based on proximity is twofold. 
Proximity between the centroids of the system and ground 
truth tracks is often insufficient to correctly match tracks 
when multiple tracks are nearby; size and shape 
information should also be considered. Second, since a 
many-to-one match is performed (many ground truth 
tracks to each system track) only track fragmentation 
errors are addressed. We have found when evaluating a 
wide range of sequences, that this metric is inadequate.  
     We propose a new two-pass matching scheme to 
address these limitations as seen in Figure 3. In phase 1, 
each system (S) track is allowed to match to many 
ground-truth (GT) tracks.  A GT track is matched to the 
system track if there is both temporal overlap and spatial 
overlap. Temporal overlap is with respect to the duration 
of the system track. Spatial overlap is based on the 
centroid of the system lying inside the bounding box of 
the ground truth track. If multiple GT tracks are matched 
to a particular system track, then the cumulative 
temporal/spatial overlap is computed, i.e, percent of 
frames which overlap both spatially and temporally. This 
is used to find track false positives i.e. system tracks with 
insufficient matches. We threshold the cumulative overlap 
to identify system tracks with “insufficient” matches 
(track false positives). By measuring temporal and spatial 
overlap, we address the problems of temporal and spatial 
merging respectively. After this matching phase is 
completed, we can find instances of track merging – 
system tracks which are explained by multiple ground 
truth tracks. 
    In phase 2, each GT track is matched to many system 
tracks. This is used to determine track false negatives, i.e., 
ground truth tracks with insufficient matches. In this case, 
temporal and spatial overlap is used to identify instances 
of temporal and spatial fragmentation respectively. By 
determining spatial overlap based on the system track 
centroid location inside the GT track bounding box (or 
vice versa for phase 1), we have a more precise estimate 
of track coincidence than proximity. We enlarge the 
bounding box by 20% (E1=E2=.2) to account for small 
errors in segmentation. After this matching phase is 
completed, we can find instances of track fragmentation – 
ground truth tracks which are explained by multiple 
system tracks. 
     After track matching is performed, it is possible to 
measure the number of “track” false negatives (TFN) and 
track false positives (TFP). These should be tracks which 
have either been missed by the system or incorrectly 
found by it. We have set the temporal overlap thresholds 
for TFP  to T1=.5 and for TFN  to T2=.01. Visualizing 
these tracks has been very useful in understanding the 
causes of these problems and the ultimate system 
performance.  

In addition to measuring the number of track false 
positives (TFP) and track false negatives (TFN), we also 
measure the average size and duration of TFPs and TFNs. 
The fragmentation error is defined as the number of 
system tracks per ground truth track (phase 1). The merge 
error is defined as the number of GT tracks per system 
track (phase 2). 

 
6. Data Sets 
 
PETS 01 – 4 sequences from the Performance Evaluation 
in Tracking for Surveillance (PETS) Workshop 2001, 2 
different cameras of an outdoor campus scene, high 
quality (from digital camera), with resolution  (358,288) 
30fps, stored as avis with no compression. The data from 
PETS01 was originally of higher resolution and stored as 
JPEG images. 
 
Hawthorne Outdoor – 10 sequences from an IBM 
building entrance and parking lot, from 4 different 
Sensormatic NTSC cameras, many different viewpoints, 
range of NY weather conditions, 320x240 resolution, 
30fps, MPEG1 compressed, 2-5minutes each. 
 
Longer Sequences – 4 longer sequences from 4 different 
IBM Sensormatic NTSC cameras, 320x240 resolution, 
30fps, MPEG1 compressed, 20-30 minutes each. 
Significant lighting changes and windy conditions 
including camera instability 
 
Indoor – 11 sequences, 5 different NTSC cameras, 
320x240 resolution, 30fps, MPEG1 compressed, less than 
3 minutes each. Three sequences are taken simultaneously 
by 3 cameras in our laboratory as two or three people 
walk by and around each other. Two other sequences are 
taken from two different cameras in our lobby and by our 
elevators, of two people, each walking along a corridor, 
following one another, and then walking past each other. 
 
7. Results  
     We first report our results on the PETS01 datasets. 
Tables 1 and 2 show the results of the background 
subtraction and tracking evaluation for the two different 
background subtraction methods. We compare the results 
for varying resolution (ds1 = full resolution, ds2= half 
resolution), varying the minimum connected component 
size threshold (30 or 100 pixels for full resolution), and 
for grey-scale (8-bit) vs. color (RGB – 24bit). In each 
case (resolution, component size threshold and grey vs. 
color) there is a clear trade-off between improved 
detection (lower FN) and over-sensitivity (increased FP). 
This relationship is depicted in the plots shown in Figure 
4.  These plots show the relationship between the false 
negatives and false positives for each background 



subtraction method. Each line segment represents the two 
values obtained at the two resolutions (ds1/ds2).  In 
addition to showing the trade-off  between FN/FP, the 
plot for the salience-based approach indicates little 
change with grey to color or from low (ds2) to high (ds1) 
resolution This is not true for the MOG method. 
     Table 2 shows the average number of FP per frame 
based on the background subtraction evaluator and the 
number of track false positives and their average duration 
based on the track evaluator. Although the number of 
false positives is high, the average duration is typically 
short (<100 frames or 3 seconds). The percentage of false 
negatives with respect to the total number of true positives 
and their average size based on the background 
subtraction evaluator is also shown. In addition, the 
number of track FN and their average size per frame in 
square pixels are also given. Track FN are typically less 
than 100 square pixels. 
      The best results are obtained using the SAL method, 
at half resolution (DS2), with minimum connected 
component size of 30 and color pixels. At these settings,  
there were 6 TFP and 8 TFN. The evaluator automatically 
creates a video of these tracks for visualization of the 
results. Figure 4 shows an example frame from the TFPs 
and one of the TFN. The other FNs are very similar – 
along the same distant partially occluded road. The TFP 
are due to (1) parked cars beginning to move leaving a 
“hole” (2)  moving tree and moving object resulting in 
“extra” object and (3) shadows. 
     Table 3 shows the results of the background 
subtraction and tracking evaluation on the 10 Hawthorne 
outdoor sequences using the MOG background 
subtraction method, CCMin=100, and grey-scale pixels.  
MOG performed modestly better than SAL overall. Figure 
5 shows several examples of track FPs and FNs. 
     Table 4 shows the results of the evaluation on the four 
longer outdoor sequences. It can be seen with more data, 
our results are not yet sufficient to generalize. For these 
longer sequences the SAL method was significantly more 
robust to the strong lighting changes which caused 
innumerable FP for MOG method. 
     Table 5 shows the results of the evaluation on the 11 
indoor sequences.  The moving objects in the indoor data 
were substantially larger than outdoors and not subject to 
the lighting changes, weather and camera motion due to 
wind. Hence the indoor data had no TFN and only one 
TFP due to shadows. For indoor data, the performance 
was most influenced by the accuracy of tracking through 
occlusion. For our simple appearance-based tracker there 
were significant amounts of fragmentation and merging.  
Some of the merging is due to actually merging of GT 
tracks. In this case, a system track will correctly match to 
multiple GT tracks. This type of merging should not be 
reported as merge “errors.” Figures 7 and 8 show 

examples of track fragmentation and merge errors. Figure 
7 shows an example of spatial merging and temporal 
merging. Figure 8 shows an example of temporal 
fragmentation and temporal merging due to track crossing 
(the system follows one track then loses this track which 
continues and incorrectly follows a different track.)  For 
the appearance based tracker used in these examples – 
spatial fragmentation did not occur. 
      The time required by the system (background 
subtraction and tracking) to process each frame for a 
given video sequence (from the 10 outdoor Hawthorne 
videos) is shown in Figure 6. This is based on MOG 
background subtraction followed by appearance based 
tracking. The graph is a histogram showing the relative 
frequency of frame times in microseconds on a 2.4 GHz 
machine. This plot shows that most frames take < 12ms to 
process and very few take more than 20ms (~50fps). The 
left hand peak (7ms/frame) corresponds to frames in 
which no foreground is detected. The right hand (and 
broader) peak corresponds to frames in which tracking 
must be carried out in addition to background subtraction. 
 
8. Conclusions 
     In this paper we have presented a new method for 
evaluating the performance of background subtraction and 
tracking including a track evaluation based on matching 
ground truth tracks to system tracks in a two-way 
matching system. We have shown the quantitative results 
of this evaluation on the PETS benchmark data, over 100 
minutes of outdoor data with a wide range of camera 
viewpoints, weather conditions, lighting changes and 
camera instability. We have also shown results on indoor 
data. 
    We have made some of the data and annotation 
available publicly (when possible) in order to enable the 
community to work together to understand the relative 
merits of different algorithms. Consequently many of our 
results can be openly compared to results with other 
algorithms. We have illustrated the trade-off between FN 
and FP detection based on varying background 
subtraction method, resolution, color vs. grey-scale,  and 
the minimum connected component size. But, we have 
also shown, via the use of longer sequences, that 
insufficient data is yet available to determine the 
performance of systems for around-the-clock operation. 
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Figure 3. Two-pass many-to-many system to ground truth (GT) track matching criteria 
 
 MOG 30 MOG 100 SAL 30 SAL 100 
 FP FN FP FN FP FN FP FN 
COLOR DS1 .48 7.8 .11 20.2 .11 19.9 .07 27.1 
 DS2 .22 13.3 .07 23.6 .07 20.7 .05 27.3 
GREY DS1 .11 11.7 .05 25.8 .14 20.7 .08 28.5 
 DS2 .09 19.7 .06 30.2 .09 20.7 .04 28.6 
Table 1. Performance results on PETS01 data – using different background subtraction methods (SAL/MOG), different 
resolution(DS1/DS2), and minimum connected component size (30 or 100 pixels) for Color/Grey-Scale data. 
 
File Frames True 

Positives 
False 
Positives 

False 
Negatives  

Track 
TP 

Track 
FP 

TFP 
duration 

Track 
FN 

TFN 
area 

MOG 1120 1120 .11 11.7 90 15 70 0 - 
SAL 2267 1120 .07 20.7 90 6 59 8 90 

Table 2. Performance results including performance of tracking on PETS01 data – using two best results (SAL-color-ds2 
and MOG-grey-ds1. 

1. System-Track-Matching – for every system track find all “GT-matches”  
   “GT-match” =   Temporal-Overlap AND Spatial-Overlap 

Temporal-Overlap = overlap/(system duration)  
Spatial-Overlap = GT centroid inside E1% enlarged system bounding box 

      If cumulative temporal/spatial overlap < T1, then system track has insufficient matches and is labeled a FP. 
      If multiple GT-matches, then this system track has merge error = # matched GT tracks 

2. GT-Track-Matching – for every GT track find all “system-matches”   
                             “System-match” = Temporal-Overlap AND Spatial-Overlap 

Temporal-Overlap = overlap/(GT duration)  
Spatial-Overlap = system centroid inside E2% enlarged GT bounding box 

      If cumulative temporal/spatial overlap < T2, then GT track has insufficient matches and is labelhbghed a FN. 
     If multiple system-matches, then this GT track has fragmentation error = # matched Sys tracks 



Salience-Based Background Subtraction ROC on PETS data
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MOG Background Subtraction ROC on PETS data
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Figure 4. ROC plots of the performance of two background subtractions plots. Each line segment represents the results at 
two resolutions. Performance varies from upper left (high FN, low FP using grey-values, low resolution, and large size 
threshold to bottom right (low FN, high FP) for color, high resolution and small size threshold. 

 
Figure 5. Top left, track FN example – car behind trees on upper left. Top right, track FP due to stationary truck moving 
and leaving a “ghost.” Bottom left, track FP due to moving tree near moving object. Bottom right, track FP due to shadow 
on grass (number on image where FP occurred.) 
 
File Frames True 

Positives 
False 
Positives 

False 
Negatives  

Track 
TP 

Track 
FP 

TFP 
duration 

Track 
FN 

TFN 
area 

MOG 2267 2964 .03 17.7 90 6 79 12 110 
SAL 2267 2964 .03 21.2 90 11 65 14 137 

Table 3. Performance Results on 10 Hawthorne Outdoor Videos (CCSize100,ds2,grey) 
 
 
File 

Frames True 
Positives 

False 
Positives 

False 
Negatives  

1 1704 836 .022 8.6 
2 1595 497 .015 7.7 
3 1320 1492 .072 25.1 
4 1320 543 .054 22.3 

Table 4. Performance results on 4 longer Hawthorne outdoor sequences – using SAL background subtraction. 
 

 
Figure 6. Two pictures on left are example frames from track FNs  - the first is not detected because of insufficient 
contrast, the second because it lies on the border of the video image (upper left).  Two pictures on right are examples from 
track FPs – the first is the result of significant shadows, the second from reflections off glass of building (bottom right of 
image.) 
 
 
 



Indoor Data GT  
Frames 

TP FP FN Tracks TFP TFN #sys/GT #GT/sys 

Total /Ave 254 218 .01 3.7 48 2 0 1.5 1.25 

Table 5. Performance results on indoor data including track fragmentation and merge errors.  
 

 
Figure 7. Left two images: spatial merge – system combines two people into one track, Middle two images: 1st person 
walks across, Last two images: 2nd person then walks, causing temporal merge – system combines tracks of both people, 
one after the other. 

 
Figure 8. Top Row – first person walks halfway across room, stops and then continues. System is confused when the 
person stops and creates another track when he restarts resulting in temporal fragmentation (Tracks S0 and S2). Second 
Row – second person walks around the first person. System initially tracks this person as S1 but then incorrectly connects 
his final exit to track S0. 

 
            

Figure 9.  Histogram showing the relative frequency of frames 
execution times (in microseconds on a 2.4GHz machine). The 
left hand peak (7ms/frame) corresponds to frames in which no 
foreground is detected. The right hand (and broader) peak 
corresponds to frames in which tracking must be carried out in 
addition to background subtraction. 
 
 


