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Abstract—We propose a novel approach to describe and 

recognize visual scene categories. Inspired by the success of Bag of 

Words approach, we represent a scene image using a collection of 

EigenMaps, which incorporate both appearance and spatial 

information for scene analysis. Each EigenMap captures the 

location likelihood of a visual word through the kernel density 

estimation method. By collecting EigenMaps of all visual words, 

our approach can effectively integrate both local features and 

their global correspondences. Experimental results demonstrate 

significant performance improvement as compared with the 

standard Bag of Words approach and the Latent Dirichelet 

Allocation model, which also utilizes a codebook of visual words, 

over each type of features including both region features and 

interest point features. The proposed method achieves the state of 

the art performance on both the UIUC Sport Scene database and 

the Natural Scene database. 

 
Index Terms— Bag of Words, EigenMap, Kernel Density 

Estimation, Scene Classification,  

 

I. INTRODUCTION 

IVEN an image of a complicated scene, can a computer 

recognize the scene category?  The problem of scene 

classification is very challenging. As shown in Figure 1, 

even for the same scene category, there are significant 

variations of background, lighting, scale, rotation and 

viewpoint etc. Nevertheless, the ability to recognize visual 

scene reliably facilitates a large number of applications 

including object detection, image retrieval, and video 

surveillance etc. 

One of the main challenges is to develop an effective visual 

scene description. How do we represent a visual scene, such 

that the scene representation is discriminative enough among 

different scene categories while robust enough to tolerate the 

large variations within the same category? Another challenge is 

that a scene representation should be general enough so that it 

can easily apply to different types of features. 

There have been significant research efforts to develop 
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feature representations in order to incorporate richer form of 

image understanding. Many researchers explore context 

information to improve recognition performance [5, 11, 19, 20, 

30]. The most common method is to include the surrounding 

pixels of interest regions [9, 39], since the surrounding pixels or 

patches usually carry useful information for recognition. Other 

approaches include attribute learning [12, 13, 22, 23] and 

hierarchies [10, 17, 28]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several approaches of scene classification have been 

developed recently [1, 7, 16, 26, 34]. Oliva and Torralba 

proposed a method using Spatial Envelope to represent the 

shape of a scene image [29]. They used a set of perceptual 

dimensions such as openness and naturalness etc. as the 

properties of the Spatial Envelope. However, the authors did 

not consider local features which are robust to partial occlusion 

and clustered backgrounds [8]. 

Recently, the bag of words representation has been 

successfully applied in computer vision applications, such as 

image retrieval and visual scene classification, owing to its 

simplicity and good performance [8, 33, 37, 38, 40]. The bag of 

words representation can also easily adapt to a wide range of 

feature types [8]. 

However, one major limitation using the bag of words model 

as an image representation is that it only models an image as a 

collection of local features without considering features’ 

location information in the image. As proven by many 

researchers, knowing spatial relationship among different 

objects or object parts can be very important in visual scene 

classification [4, 24, 32]. 

In order to incorporate the spatial information into the bag of 

words representation, a few interesting models have been 
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              (a)                                    (b)                                  (c)  

Figure 1: Sample scene images from the UIUC Sport Scene database [25]. 

(a) Badminton; (b) Polo; (c) Rock-climbing; Note that there are significant 

variations of background, lighting, scale, rotation and viewpoint for scene 

recognition. 
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proposed. Savarese et al. [32] borrowed the idea of color 

correlograms [21] to develop visual word correlograms. The 

correlograms capture spatial correlation between all possible 

pairs of visual words by forming a co-occurrence matrix of 

visual words as a function of distance. However, the 

correlograms matrix requires expensive computation cost even 

after utilizing the integral image techniques [32]. Furthermore, 

it is not clear how to extend the correlograms feature 

representation to describe sparsely detected interest points. 

Lazebnik et al. [24] proposed a Spatial Pyramid Matching 

model as visual scene descriptor by partitioning an image into 

successively sub-regions and by calculating the vocabulary 

histogram over each sub-region. Then, the model concatenates 

all histograms together with an appropriate weight. However, 

the Spatial Pyramid Matching model captures relatively weak 

spatial information by hard-assigning features to each region. It 

does not consider a coupling effect among the adjacent regions. 

As the number of pyramid level increases, the resulted feature 

dimension increases exponentially. 

Other researchers introduce a hidden layer, such as object or 

theme between visual words and a visual scene [14, 25, 31]. 

These intermediate layers are learned either in an unsupervised 

or a weakly supervised manner. Each object or theme induces a 

probability density of visual words, while each scene category 

learns the distribution of objects or themes. These topic 

discovery models are usually more flexible and easier to 

integrate with multiple types of features, including non-visual 

features such as text information. Li et al. [25] integrate both 

visual words with tag information to automatically classify 

scene images. One drawback is that the additional intermediate 

layer usually makes the model more complicated. 

In this paper, we propose a new type of feature 

representation, EigenMap, to describe a visual scene. Different 

from the previous work [4, 24], which divide a visual scene 

image to several regions, then form the Bag of Words on each 

region, we model the location likelihood of each visual word on 

the whole scene image through the kernel density estimation 

[2]. The location density map of each visual word is further 

projected into a very small dimensional space using the 

Principal Component Analysis (PCA). We define the location 

density map of a visual word in the principal component space 

as the EigenMap.  

Describing a visual scene with a collection of EigenMaps, 

the approach not only incorporates the spatial information of 

visual words in a scene image, but also effectively integrates 

local appearance features and their global correspondences 

together. Our experiments demonstrate promising results of 

visual scene classification on both the UIUC Sport Scene 

database and the Natural Scene database. As compared with the 

Bag of Words (BOW) model and the Latent Dirichlet 

Allocation (LDA) model, which utilizes a codebook of visual 

words, the proposed EigenMap method significantly improves 

the performance over both region features and interest point 

features. 

The paper is organized as the following. Section II describes 

the proposed method in details including feature extraction and 

the EigenMap Generation for the extracted features. Section III 

presents the databases and our experimental results. We then 

conclude our proposed method in section IV. 

 

 

 

 

 

 

 

 

 

 

 

 

II. METHOD 

A. Overview 

The flowchart in Figure 2 illustrates our overall approach in 

visual scene classification using EigenMap representation. 

We first extract features from images. A codebook is 

generated from the training image features by using an 

unsupervised clustering algorithm such as the K-Mean method. 

The center feature vectors in the codebook are called visual 

words. Then each feature in both training and testing images is 

vector-quantized to one of the visual words in the codebook. 

We then construct location map for each visual word in a 

scene image using the kernel density estimation method [2]. 

The EigenMap of a visual word is then generated by projecting 

the location map to the principal component space. The 

concatenation of every visual word’s EigenMap in the scene 

image forms an input feature vector of a SVM (Support Vector 

Machine) classifier [6]. Finally we can classify an unknown 

scene image to different scene categories. The proposed 

EigenMap representation of a scene image not only 

incorporates spatial information in the appearance features, but 

also effectively integrates both local features and their global 

interactions. 

B. Feature Extraction 

In order to verify the effectiveness of the proposed model, we 

extract five types of different features, which include both 

region features and interest point features. In other words, for 

each type of features, we evaluate the performance 

improvement of the EigenMap model. In our experiments, we 

extract three types of region features and two types of interest 

point features. 

B.1.  Region Features: Texture, Shape, and Color 

Three types of region features are extracted in our 

experiments: texture, shape, and color. Before generating any 

region features, we first perform segmentation on images using 

the algorithm proposed by Felzenszwalb and Huttenlocher 

[15]. As shown in Figure 3, connected pixels with same color 

are used to represent one segmented region. At each segmented 

 

Figure 2: Flowchart of the proposed approach using EigenMap 

representation in visual scene classification. 
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region, the above three types of region features are extracted. 

Texture features are generated by passing the original image 

with S filter bank [35]. S filter bank is rotationally invariant 

with 13 isotropic. There are 13 responses for each image. The 

means and standard deviations of each response are calculated 

for individual segmented region in the image. In other words, 

each segmented region has 13 means and standard deviations of 

the filter responses. These means and standard deviations are 

combined together as texture features of one segmented region. 

 

 

 

 

 

 

 

 

 

 

 

 

A simple type of shape features is extracted in this 

experiment following the approach in [25]. The size of each 

segmented region is found by calculating the maximum length 

of a segmented region in x and y directions. Then the shape 

feature of each segmented region is formed by combining the 

size and the number of pixels in each segmented region. 

Color features are formed by calculating color histograms of 

each segmented region over the RGB color space. Each color 

space is divided into 10 bins. Therefore, the color feature vector 

of each segmented region has 1000 dimensions. 

B.2. Interest Point Features: Uniform Grids and Harris    

Corners 

In addition to the region features above, two types of interest 

point features are evaluated in our experiments: the uniform 

grids and the Harris corners. In our evaluations, the uniform 

grid method is used to sample interest points every 10 pixels in 

x and y directions. The number of interest points generated for a 

typical image (resolution of 300 by 500) is around 1500. 

Unlike the uniform grid method, the Harris corners utilize 

gradient information to detect more stable interest points in an 

image [18]. The average number of the Harris corners in one 

image is approximately 100 in our experiments, which is 

significantly less than the number of the uniform grid interest 

points. 

The Scale Invariant Feature Transform (SIFT) descriptor 

[27] is used to describe all interest points regardless of their 

detection methods. A square patch window with each interest 

point at its center is extracted. The patch window size is 24 by 

24 pixels. 4 by 4 center points are uniformly sampled from the 

patch window. For each center point, an 8-Bin orientation 

histograms of gradients within the patch window is constructed. 

The gradient magnitudes are further weighted by a Gaussian 

function with the mean corresponding to the center point. Then 

all histograms of the 16 center points are concatenated together 

to form an interest point descriptor, which has 128 dimensions. 

C. Codebook Formation and Feature Quantization 

After extracting feature vectors from the training images, the 

K-Mean clustering algorithm is used to group the feature 

vectors together based on the Euclidean distance. As a result, a 

set of center feature vectors are called visual words. The 

resulting visual words form the codebook vocabulary [8]. The 

codebook sizes of the texture, shape and color features are 120, 

100 and 30 respectively. Both the uniform grid and the Harris 

corner features have the codebook size of 150. 

The features in each image are then vector-quantized to one 

of visual words in the codebook. The vector quantization 

process of a feature is to find a visual word in the codebook 

with the smallest Euclidean distance. Then the feature is 

represented by the closest visual word in the codebook. 

D. EigenMap Generation 

In order to effectively incorporate spatial information into 

these visual words and describe their global correspondence 

within a scene image, we generate an EigenMap for each visual 

word in the scene image. The flowchart of EigenMap 

generation for each visual word is shown in Figure 4. 

Given an input image and a codebook of visual words 

generated from the K-Mean clustering algorithm as described 

in the last section, we first locate a visual word Vi in the input 

image and mark the corresponding positions at the visual word 

Vi’s location map. The location map has fixed size of 50 by 50 

pixels. Then we use kernel density estimation [2] to model the 

location likelihood of the visual word Vi in its location map, as 

illustrated in the examples shown in Figure 5. The kernel we 

used is the normal distribution with the standard deviation of 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next step is to project the constructed location map to a 

 
 
Figure 3: Segmentation example of a Polo scene. Connected pixels with 

same color belong to the same segment. 

 

Figure 4: The flowchart of EigenMap Generation for each visual word 

from the codebook.  

   
                   (a)   coast                                          (b)   inside city  

 
         (c)  living room 

Figure 5: A visual word Vi’s locations in an input image and its location 

likelihood on the corresponding location map using the kernel density 

estimation analysis. 
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lower dimensional space using the principal component 

analysis, as shown in Equation (1): 

                                                 

where s is the location map projected in the eigen-space, m is 

the location map, and μ is the average value of the location map 

m. Each column vector of ϕ is an eigenvector of the location 

maps’ covariance matrix obtained from the training images in 

the order of descending eigenvalues of the covariance matrix. 

Finally, the EigenMap η is constructed as the concatenation of s 

and μ, as shown in Equation (2): 

                                                                

Typical dimension of EigenMap η is below 8, which results a 

very compact representation of a scene image, as compared 

with previous work [24, 32].  After each visual word’s 

EigenMap η of a scene image is constructed, we then 

concatenate the EigenMaps of all visual words together to 

represent the scene image. This concatenated feature vector is 

also an input to the SVM classifier. 

E. Classifier 

We employ the SVM with the RBF kernel as our multi-class 

classifier [6]. The SVM is to find a set of hyper-planes which 

separates each pair classes of data with the maximum margin. 

That is to assign a scene category to an unknown image based 

on the collections of visual words’ EigenMaps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. EXPERIMENTS 

A. Databases 

Experiments are performed over two databases: the UIUC 

Sport Scene database [25] and the Natural Scene database [14]. 

A.1. UIUC Sport Scene Database 

The UIUC Sport Scene database is a very challenging visual 

scene database with significant intra-class variations in the 

background, scale and lighting etc. As shown in Figure 6, the 

badminton scene can happen on the badminton court or at the 

backyard of a house. The lighting and scale can also be very 

different. The database consists of 8 categories of sport scenes 

with 500 images in each category. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

                      a) Badminton                                   (b) Bocce   

            
                        (c) Croquet                                     (d) Polo        

         
                   (e) Rock-Climbing                        (f) Rowing                     

         
                         (g) Sailing                                   (h) Snowboarding 

Figure 6: Sample images of the 8 scene categories from the UIUC Sport 

Scene Database [25]. 

 

         
                      a) Bedroom                                   (b) Suburb   

         
                        (c) Kitchen                                     (d) Coast        

       
                   (e) Living room                                (f) Forest                     

        
                         (g) Highway                                   (h) Mountain 

        
                         (i) Street                                   (j) Inside city 

        
                         (k) Open country                               (l) Tall building 

                            
   (m) Office 

Figure 7: sample images of the Natural Scene database, which has 13 

categories [14]. 
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A.2. Natural Scene Database 

Natural Scene database consists of 13 categories, with 210 

scene images in each category, as shown in Figure 7. Most of 

them are gray images. Therefore, we cannot evaluate the color 

feature on this dataset. 

B. Experimental Setups 

We divide the dataset of each category into five subsets. 

Then the images of one subset are used as testing set, while the 

images from the remaining four subsets are used as training set. 

The process is repeated five times with each of the five subsets 

used as the testing data once. All experimental results reported 

in the paper are the average accuracy of the five repeated 

testing. 

C. Experimental Results 

C.1. Compare to the Bag of Words Model and the LDA 

model 

For each feature type, i.e., texture, shape, color, the Harris 

corner with the SIFT descriptor and the uniform grid interest 

point with the SIFT descriptor, we compare the proposed 

EigenMap approach with the Bag of Words model (BOW) [8] 

and the Topic Discovery model [25]. More specifically, we 

employ the Latent Dirichlet Allocation (LDA) [3] similar to the 

approach proposed by Li et al. [25]. They are all running under 

the same experimental setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The detailed comparisons over different feature types are 

shown in Figure 8(a) and Figure 8(b) for the UIUC Sport Scene 

database and the Natural Scene database respectively. On the 

UIUC Sport Scene database, the EigenMap model outperforms 

the standard Bag of Words model by the average of 4.8% over 

all different feature types. It also outperforms the LDA model 

by the average of 15.3%. 

We observe larger performance improvement over the other 

two models on the Natural Scene database. The proposed 

approach improves classification accuracy by the average of 

6% and 19% as compared with the BOW and the LDA models 

respectively. 

The consistent performance improvement over every feature 

type verifies the effectiveness of the proposed model in the 

visual scene classification. The spatial correspondences among 

local features, which the EigenMap model captures, contribute 

to the performance improvements. Figure 9 shows the detailed 

cross validation results as compared with the BOW and the 

LDA model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sample confusion matrices of the uniform grid interest 

point feature are also shown in Figure 10 for both the UIUC 

Sport Scene database and the Natural Scene database. The true 

positive rate for each category is shown in the last column next 

to the corresponding confusion matrix. As we can see from the 

confusion matrices of the EigenMap and the BOW, the 

 
(a) 

 
(b) 

Figure 8: Comparing to the Bag of Words (BOW) model [8] and the Latent 

Dirichlet Allocation (LDA) model [25] on (a) the UIUC Sport Scene 

database; and (b) the Natural Scene database. 

 

 
(a) 

 
(b) 

Figure 9: Comparing the BOW and the LDA models using the five-fold 

cross validation results of the uniform grid interest point features on (a) the 

UIUC Sport Scene database; and (b) the Natural Scene database. 
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EigenMap approach achieves higher performance on most of 

the scene categories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the UIUC Sport Scene dataset, the most confusion occurs 

between the “Rowing” and the “Sailing” categories since both 

sport scenes are very similar in the background, which contains 

water in the scene images. In the Natural Scene dataset, the 

most confusion occurs between the bedroom and the living 

room scene images. 

C.2. Compare to the State-of-the-art Performance 

Figure 11(a) and 11(b) show the detailed comparison with 

the state-of-the-art performance on the UIUC Sport scene 

dataset [25, 36] and the Natural Scene dataset [14, 24] 

respectively. The results are directly cited from their papers. 

From Figure 11, the proposed EigenMap model achieves a 

state-of-the-art performance on both the UIUC Sport Scene 

database and the Natural Scene database. 

 

 

 

 

 

 

 

 

C.3. Select Number of Principal Components for EigenMap 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also evaluate the effect of number of eigenvectors used 

in the construction of the EigenMap on the classification 

 
(a) EigenMap on Sport Scene 

 
(b) EigenMap on Natural Scene 

 
(c) BOW on Sport Scene  

 
(d) BOW on Natural Scene 

Figure 10: Sample confusion matrices of the EigenMap and the BOW 

models over both the UIUC Sport Scene and the Nature Scene database; 

Note that the last column of each confusion matrix indicates the true 

positive rate for each category. All the four confusion matrices are 

generated using the uniform grid interest point with the SIFT descriptor, 

where the rows are the ground truth while the columns are the classified 

categories. 

 

                      
                         (a)                                                      (b) 

Figure 11: Compare with the state of the art reported by Fei-Fei and 

Perona [14], Lazebnik et al. [24], Li et al. [25], and Wang et al. [36] on 

both the UIUC Sport Scene database and the Natural Scene database. 

 

 
(a)                                                      

 
(b) 

Figure 12: The effect of number of eigenvectors used in the PCA 

projection on the classification performance over (a) the UIUC Sport 

Scene database; (b) the Natural Scene database; Note that we used the 

uniform grid interest point with the SIFT descriptor for both databases. 
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performance. As we can see from Figure 12, the number of 

eigenvectors used in the PCA projection achieves the best 

performance when it is around 5. As the number of 

eigenvectors continues increasing, the performance degrades 

slightly. That suggests that we only need a very small 

dimensional space to represent each visual word’s EigenMap. 

IV. CONCLUSION 

We have proposed a novel EigenMap representation of a 

scene image, which can not only incorporates the spatial 

information with the appearance features, but also integrates 

both local features and their global correspondences 

effectively. The EigenMap model has been evaluated on two 

public databases for scene image classification and outperforms 

both the standard Bag of Words model and the LDA model. 

The proposed model also achieves a state-of-the-art 

performance on both datasets with small feature dimension. 

. 
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