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Abstract 

 
Signage plays a very important role to find destinations in applications of navigation and 

wayfinding. In this paper, we propose a novel framework to detect doors and signage to help blind 

people accessing unfamiliar indoor environments. In order to eliminate the interference 

information and improve the accuracy of signage detection, we first extract the attended areas by 

using a saliency map. Then the signage is detected in the attended areas by using a bipartite graph 

matching. The proposed method can handle multiple signage detection. Furthermore, in order to 

provide more information for blind users to access the area associated with the detected signage, 

we develop a robust method to detect doors based on a geometric door frame model which is 

independent to door appearances. Experimental results on our collected datasets of indoor 

signage and doors demonstrate the effectiveness and efficiency of our proposed method.  

 

1 Introduction 
 

Based on the study of the World Health Organization (WHO), there were about 161 million 

visually impaired people around the world in 2002, about 2.6% of the total population. Among 

these statistics, 124 million had low vision and 37 million were blind [13]. Robust and efficient 

indoor object detection can help people with severe vision impairment to independently access 

unfamiliar indoor environments and avoid dangers [1]. Signage and other visual information 

provide important guidance in finding a route through a building by showing the direction and 

location of the desired end-point. Visual information is particularly important to distinguish similar 

objects such as elevators, bathrooms, exits, and normal doors. There are two categories of visual 

information: 1) directional and locational signage, and 2) objects (e.g. elevators, bathrooms, etc). A 

signage may include the text with or without an arrow. Figure 1 shows some examples of 

directional and locational signage of indoor environments. 

Object detection is a computer vision technique that detects instances of a priori objects of a 

certain class (such as faces, signs, buildings, etc) in digital images and videos captured by cameras 

[20].  Camera-based indoor signage detection is a challenging problem due to the following 

factors: 1) large variations of appearance and design (shape, color, texture, etc.) of signage in 

different buildings; and 2) large variations in the camera view and image resolution of signage due 

to changes in position and distance between the blind user with wearable cameras and the targeted 

signage.  
 

(a) (b) 
 

Figure 1: Typical indoor signage: (a) directional signage; (b) locational signage. 

 
Object detection and recognition is a fundamental component for scene understanding. The 

human visual system is powerful, selective, robust, and fast [14]. It is not only very selective, 

which allows us to distinguish among very similar objects, such as the faces of identical twins, but 

also robust enough to classify same category objects with large variances (e.g. changes of position, 

scale, rotation, illumination, color, occlusion and many other properties). Research shows that the 

human visual system can discriminate among at least tens of thousands of different object 

categories [2]. Object recognition processes in the human visual system are also very fast: it can 

take as little as 100 to 200ms [8, 23, 34]. However, it is extremely difficult to build robust and 

selective computer vision algorithms for object recognition which can handle very similar objects 

or objects with large variations. For example, state-of-the-art object detection methods require 

hundreds or thousands of training examples and very long durations to learn visual models of one 

object category [28, 37, 38]. 
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Many disability and assistive technologies have been developed to assist people who are blind 

or visually impaired. The vOICe vision technology for the totally blind offers sophisticated image-

to-sound renderings by using a live camera [32]. The Smith-Kettlewell Eye Research Institute 

developed a series of camera phone-based technological tools and methods for the understanding, 

assessment, and rehabilitation of blindness and visual impairment [9, 10, 17, 29, 33], such as text 

detection [29], crosswatch [9, 10], and wayfinding [17]. To help the visually impaired, Zandifar et 

al. [47] used one head-mounted camera together with existing OCR techniques to detect and 

recognize text in the environment and then convert the text to speech. Everingham et al. [6] 

developed a wearable mobility aid for people with low vision using scene classification in a 

Markov random field model framework. They segmented an outdoor scene based on color 

information and then classified the regions of sky, road, buildings etc.  Shoval et al. [31] 

discussed the use of mobile robotics technology in the GuideCane device, a wheeled device 

pushed ahead of the user via an attached cane for the blind to avoid obstacles. When the 

GuideCane detects an obstacle it steers around it. The user immediately feels this steering action 

and can follow the GuideCane's new path. Pradeep et al. [25] describes a stereo-vision based 

algorithm that estimates the underlying planar geometry of the 3D scene to generate hypotheses 

for the presence of steps. Recently, we have developed a number of technologies for assist people 

who are visually impaired including navigation and wayfinding [35, 42], clothing pattern and color 

matching and recognition [43, 46], banknote recognition [7], text reading [44, 45], signage 

detection [40, 41], and etc. Although many efforts have been made, how to apply this vision 

technology to help blind people understand their surroundings is still an open question. 

Audio Feedback

(a) (b) (c)
 

Figure 2: Query-based signage and door detection by a wearable camera mounted on a pair of 

sunglasses. (a) A blind user is looking for a bathroom; (b) “WOMEN” bathroom signage and door 

detection; (c) audio feedback is provided to the user. 

 

Detection of signage and doors can help blind people to find their destinations in unfamiliar 

environments. As illustrated in Figure 2, in this paper, we propose a new framework based on 

camera captured visual information to provide guidance for blind people in unfamiliar indoor 

environments. The proposed framework including two main components: 1) signage detection by 

combining saliency map based attended area extraction and bipartite graph matching based 

signage recognition; 2) door detection based on a geometric door frame model by combining edges 

and corners. The hardware includes a camera, a microphone, a portable computer, and a speaker 

connected by Bluetooth for audio description of detection results. The user can control the system 

by speech input via microphone. 

An earlier version of this paper can be found in [40]. Compared to our previous work, there are 

two major extensions that merit being highlighted:  

 We recognize more types of signage. In this extended version, we recognize total of 9 

categories of signage including three types of bathroom signs (Men, Women, and Disable), 

two types of elevator buttons (Open and Close), and 4 types of direction signs (Up, Down, 

Left, and Right).  

 We add a new section of door detection to provide the entrance information for the blind 

users accessing the destinations associated with the detected signage. 

The paper is organized as following: Section 2 describes the methodology of signage detection. 

Section 3 introduces the door detection method based on a general door geometric model. Section 

4 analyzes experimental results and demonstrates the effectiveness and efficiency of the proposed 

algorithm. Section 5 concludes the paper and lists the future research directions. 

 

2 Method of Indoor Signage Detection 
 

Scholars tend to combine the window-sliding technique with the classifier to detect regions of an 

image at all locations and scales that contain the given objects. However, the window sliding 
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method suffers from two shortcomings [36]: 1) high processing time; and 2) inaccuracy of 

detection results due to different background. Therefore, we propose a new method to detect 

indoor signage which first employs the saliency map [15, 30] to extract attended areas and then 

applies bipartite graphic matching [16, 26, 48] to recognize indoor signage only at the attended 

areas instead of the whole image, which can increase the accuracy and reduce the computation cost. 

Our signage detection method consists of two phases as shown in Figure 3. In the first phase, 

attended areas are detected via saliency map based on color, intensity, and orientation. Then, the 

scaled patterns are detected within attended areas using bipartite graph matching. To localize the 

patterns, a window sliding method is employed to search the attended areas. 

Input 

Image

Saliency 

Map

Attended 

Area

Phase 1 Phase 2

Window 

Sliding

Signage 

Location

Signage templates 

queried by blind user
 

\Figure 3. Flow chart of the proposed algorithm for indoor signage detection. 

 

2.1 Building Image Saliency Maps 
 

Saliency maps are used to represent the conspicuity at every location in the visual field by a 

scalar quantity and to guide the selection of attended locations based on the spatial distribution of 

saliency [4]. In analogy to the center-surround representations of elementary visual features, 

bottom-up saliency is thus determined by how different a stimulus is from its surround, in many 

sub-modalities and at many scales [24]. Saliency at a given location is determined primarily by 

how different this location is from its surroundings in color, orientation, motion, depth, etc. 

As shown in Figure 4, the different visual features that contribute to attentive selection of a 

stimulus (color, intensity, and orientation) are combined into one saliency map. The saliency map 

which integrates the normalized information from the individual feature maps into one global 

measure of conspicuity. The detailed procedures are discussed in following sections. 
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Figure 4. Architecture of building saliency maps based on three types of image features: intensity, color, 

and orientation. 

 

Initialization: 
We first resize the input color images at 640 × 480 resolution. Then, for each image, nine 
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spatial scales are created using dyadic Gaussian pyramids, which progressively low-pass filter and 

sub-sample the input image, yielding horizontal and vertical image-reduction factors ranging from 

1:1 to 1:256 in eight octaves. 

We compute saliency maps based on intensity, color, and orientation for each pixel by a linear 

“center-surrounded” operation similar to visual receptive fields. Center-surround feature extraction 

is implemented in the function of the difference between fine and coarser scales; the center is a 

pixel at the scales {2,3,4}c , and the surround is a pixel at scale s=c+δ, with δ {3,4} . The 

across-scale difference between two maps is gained by interpolation to the finer scale and point-

by-point subtraction. Using several scales for both c and δ = s-c yield truly multi-scale feature 

extraction, by including different size ratios between the centers and surround regions. 

 

Intensity-based Saliency Map: 

With r, g, and b being the red, green, and blue channels of the input image, respectively, an 

intensity image I is achieved as I = (r+g+b)/3. Here I is used to create a Gaussian pyramid I(σ), 

where {0,1,2,...8}   denotes the scale. The r, g, and b channels are normalized by I in order to 

decouple hue from intensity. However, the hue variation are not perceivable at very low luminance 

(and hence are not salient), so normalization is only applied at the locations where I is larger than 

10% of its maximum over the entire image and other locations yield zero. Four broadly-tuned 

color channels are created: R = r-(g+b)/2 for red, G = g-(r+b)/2 for green. B = b-(r+g)/2 for blue, 

and Y = (r+g)/2-|r-g|/2-b for yellow, and negative values are set to zero for the R, G, B and Y 

values gained from above equations, 4 Gaussian pyramids ( )R  , ( )G  , ( )B  , and ( )Y   are 

created from these color channels. 

Center\-surround differences between a ‘center’ fine scale c and a ‘surround’ coarser scale s 

yield the feature maps. The first group of feature maps is concerned with intensity contrast, which 

is detected by neurons sensitive either to dark centers on bright surrounds or to bright centers on 

dark surrounds. In this paper, both types of sensitivities are simultaneously computed by using a 

rectification in six maps I(c,s). 

 

( , ) | ( ) ( ) |I c s I c I s   (1) 

 

Color-based Saliency Map: 

The second group of saliency maps is similarly built for the color channels, which in cortex are 

represented by a so-called “color double-opponent” system: in the center of their receptive fields, 

neurons are excited by one color such as red and inhibited by another such as green, while the 

converse is true in the surround [27]. Such spatial and chromatic opponency exists for the 

red/green, green/red, blue/yellow, and yellow/blue color pairs in human primary visual cortex. 

Accordingly, maps RG(c,s) are created in the function to simultaneously account for red/green and 

green/red double opponency Eq. (2) and BY(c,s) for blue/yellow and yellow/blue double 

opponency Eq. (3) 

( , ) | ( ( ) ( )) ( ( ) ( )) |RG c s R c G c G s R s     (2) 

( , ) | ( ( ) ( )) ( ( ) ( )) |BY c s B c Y c Y s B s     (3) 

  

Orientation-based Saliency Map: 
Local orientation information is gained from I by oriented Gabor pyramids O(σ, θ) where σ [0, 

1, …, 8] represents the scale and {0 ,45 ,90 ,135 }   stands for the preferred orientation. 

Gabor filters are the product of a cosine grating and a 2D Gaussian envelope, approximating the 

receptive field sensitivity profile of orientation-selective neurons in primary visual cortex. 

Orientation feature maps O(s, c, θ) encode local orientation contrast between the centers and 

surround scales. In total, 42 feature maps are created: 6 from intensity, 12 from color, and 24 from 

orientation. 

 

( , , ) | ( , ) ( , ) |O c s O c O s     (4) 

 

Combination of Saliency Maps from Different Features: 

The difficulty in combining different maps is that they represent a priori not comparable 

modalities, with different dynamic ranges and extraction mechanisms [12]. Furthermore, because 

all 42 maps are combined, salient objects which are strong in only a few maps may be masked by 
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noise or by less-salient objects present in a larger number of maps. 

Because of the absence of top-down supervision, a map normalization operator (.)N  is 

proposed, which globally promotes maps in which a small number of strong peaks of activity is 

present, meanwhile globally suppressing maps which contain numerous comparable peak 

responses. (.)N  consists of: 

(1) Normalizing the values range in the map to a fixed range [0, …, M], in order to eliminate 

modality dependent amplitude differences; 

(2) Finding the location of the map’s global maximum M and computing the average m  of all 

its other local maxima; 

(3) Globally multiplying the map by
2( )M m . 

 

Only local maxima activities are considered, such that (.)N  compares responses associated 

with meaningful ‘active spots’ in the map and ignores homogeneous areas. Comparing the 

maximum activity in the whole map to the average overall activity measures the difference 

between the most active location and the average. If the difference is large, the most active 

location stands out, and the map is strongly promoted. Otherwise, the map contains nothing unique 

and is suppressed.  

Feature maps are combined into three “conspicuity maps”, I  for intensity (5) , C  for color 

(6), and O  for orientation (7), at the scale 4   of the saliency map. They are gained by 

across-scale addition   which consists of reduction of each map to scale four and point-by-point 

addition. 
4 4

2 3

( ( , )) 
c

c s c

I N I c s


  

   (5) 

4 4

2 3

(RG( , )) ( ( , ))]
c

c s c

C N c s N BY c s


  

   (6) 

For orientation, 4 intermediary maps are created by combining the six maps for a given   and 

then are combined into a single orientation conspicuity map: 
4 4

2 3{0 ,45 ,90 ,135 }

( ( , ))
c

c s c

O N I c s




  

    (7) 

The motivation of the creation of three separate channels ( I , C , and O ) is based on the 

hypothesis that similar features compete strongly for saliency, meanwhile different modalities 

contribute separately to the saliency map. The three conspicuity maps are normalized and grouped 

into the final input S to the saliency map. 

 
1

( ) ( ) ( )
3

S N I N C N O    (8) 

From above equations, we get the most salient image locations based on the maximum of the 

saliency map. We can simply detect the attended areas as the connected points by comparing the 

value of the saliency map and a threshold. 

 

2.2 Bipartite Graph Matching Based Indoor Signage Detection 

 

Detecting Signage in Attended Areas: 

The sliding method window is a popular technique for identifying and localizing objects in an 

image [5]. The traditional approach involves scanning the whole image with a fixed-size 

rectangular window and applying a classifier to the sub-image defined by the window. The 

classifier extracts image features within the window and returns the probability that the window 

bounds a particular object. The process is repeated on different scales so that objects can be 

detected at any size [21]. Usually non-maximal neighborhood suppression is applied to the output 

to remove multiple detections of the same object. In order to improve the efficiency, our method 

only scans the attended areas which can significantly reduce the processing time of the sliding 

window algorithm [39]. 

 

Bipartite Graph Matching for Queried Signage Recognition: 

To detect indoor signage queried by a blind user, we employ the “Bipartite Graph Matching 

(BGM)” algorithm to compare the query patterns and the slide-windows at the attended areas. The 
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detailed procedures of the BGM algorithm can be found at papers [11, 22]. Suppose A denotes the 

window and B denotes the sub-image covered by window A. The BGM algorithm first calculate 

the edges of the window and the sub-image, followed by evaluating the degree of the match as  

( , )BGM A B
N


  (9) 

where ω denotes the sum of the pixels that exist in the edge images of both A and B, and N denotes 

the size of the window. Larger values of function (9) correspond to a better match; therefore, the 

BGM algorithm scans the image and finds the location with the largest matching score: 

 * arg max ( , )B BGM A B   (10) 

The maximization can be solved by a gradient-based optimization technique. However, the 

function (10) is non-convex and multi-modal, so the gradient-based optimization technique is 

easy to mislead in local extreme. In this paper, an exhaustive searching method is employed to find 

the global maxima. 

 

2.3 Generalization to Multiple Signage Detection 
 

Our method can handle both single signage and multiple signage detection. The pseudo-codes 

of multiple signage detection are listed below, which are based on multiple runs of aforementioned 

single pattern detection described above. Here, I denotes the original image; Pi denotes the ith 

signage pattern; S denotes the saliency map; BGM denotes the value of bipartite graph matching; 

Li denotes the location found for the ith pattern. 

 

Step 1 Initialization. Input I, P1, P2, … PN; 

Step 2 S=GetSaliencyMap(I); 

Step 3 for i=1: N 

 [BGMi, Li]=SinglePatternDetection(I, S, Pi); 

 end 

Step 4 i*=argmax { }iBGM ; 

Step 5 Output i* and Li*. 

 

3 Method for Door Detection 
 

In order to provide more information for blind users, we further develop a robust method to 

detect doors associated to the detected signage because doors are important landmarks for 

wayfinding and navigation. Doors provide transition points between separated spaces as well as 

entrance and exit information. Therefore, reliable and efficient door detection is a key component 

of an effective indoor wayfinding aid. There are several existing image-based door detection 

algorithms [3, 18, 19]. Chen and Birchfield developed a door detector based on the features of 

pairs of vertical lines, concavity, gap between the door and floor, color, texture, kick plate, and 

vanishing point [3]. Murillo et al. [19] proposed a door detection algorithm to handle all the doors 

with a similar color. Both above algorithms would fail while the colors of the doors varied. 

Munoz-Salinas et al. [18] developed a doorframe model-based algorithm which can handle doors 

with different colors. However, their algorithm cannot discriminate doors from other large 

rectangular objects, such as bookshelves, cabinets, etc. 

As shown in Figure 5, our algorithm is based on the general geometric shape of door frame by 

combining edges and corners which can handle doors with a wide variety of color, texture, 

occlusions, illumination, scales, and viewpoints among different indoor environments. 

Furthermore, our algorithm can differentiate doors from other door-like objects such as 

bookshelves and cabinets. 
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Figure 5. Flow chart of our proposed door detection method based on geometric door frame model. 
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3.1 Edge and Corner based Geometric Door Model 

c1

c2

c4

c3

L12 L34

(a) (b) (c)  
Figure 6. (a) Geometric door model; (b) detected edge map; (c) Extracted corners.  

 

As shown in Figure 6(a), the geometric model of a door consists of four corners and four lines. 

However, in our application, it is often that only a part of a door is captured by a wearable camera, 

especially for visually impaired users who cannot aim the camera to “frame” the door. To detect a 

door from images, we made the following assumptions which are easy to achieve in practice: 1) At 

least two door corners are visible. 2) Both vertical lines of a door frame are visible. 3) Vertical 

lines of a door frame are nearly perpendicular to the horizontal axis of an image. 4) A door has at 

least a certain width and length. 

For the algorithm implementation, we first extract edges and corners as shown in Figure 6(b) 

and (c). Edges and corners are insensitive to variations in color, viewpoints, scales, and 

illumination. Then the door-corner candidates are detected based on the relationship of four 

corners of the doorframe in the geometric door model. To determine whether a door-corner 

candidate represents a real doorframe, we further check if there are matching edges of the door 

frame between corners of each door-corner candidate. If the pixels of matching edges are larger 

than a threshold, then this door-corner candidate corresponds to a real door in the image. If there is 

more than one door-corner candidate with matching edges of same doorframe, they will be merged 

as one detected door. 

3.2 Detecting Doors from Door-like Objects 

Doors are generally recessed or inset into a wall while other door-like objects such as 

bookshelves and cabinets normally protrude in relief from a wall. To distinguish inset doors from 

protruding bookshelves and cabinets, we utilize information from faces formed by an inset or 

protrusion to obtain the depth information with respect to the wall. 

 

c1

c2 c3

c4

c5

c6
c1

c2 c3

c4

c5

c6

c1

c2 c3

c4

c5

c6 c1

c2

c4

c3c5

c6

(a) Inset (b) Inset (c) Protruding (d) Protruding
 

Figure 7. Inset and protruding models. (a) Inset object: door frame located on user’s right side and 

lateral face located on doorframe’s left side. (b) Inset object: frame located on user’s left side and 

lateral face located on frame’s right side. (c) Protruding object: frame located on user’s right side and 

lateral face located on frame’s right side. (d) Protruding object: frame located on the left side; lateral 

face located on the left side.    

As shown in Figure 7, the different geometric characteristics and different relative positions of 

lateral faces and the detected door frame. In Figure 7(a) and (c), the door or door-like object is 

located on the right side with respect to the camera if L12<L34 of the detected frame. The lateral 

(C1C2C5C6) position of the doorframe (C1C2C3C4) indicates that the object is inset (left side) or 

protruding (right side). Similarly as shown in Figure 7(b) and (d), the bookshelf and the elevator 

are located on the left side with respect to the camera, and the lateral positions are different for the 

inset elevator (right side) and protruding bookshelf (right side). Therefore, combining the position 

of a frame and the position of a lateral, we can determine the inset or relief of a frame-like object. 

More details can be found in paper [35]. 

 

4 Experimental Results and Discussions 
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4.1 Single Signage Detection 
 

Independent travel is well known to present significant challenges for individuals with severe 

vision impairment, thereby reducing quality of life and compromising safety. Based on our survey 

with blind users, detection of indoor signage such as elevator buttons and restrooms has high 

priority. Therefore, our experiments focus on the detection of signage. 

 

(a)

(f) (e) 

(c) 

(d) 

(b) 

 
Figure 8. Elevator button detection: (a) Original image; (b) Query elevator button of “Open” symbol; 

(c) Query elevator button of “Close” symbol; (d) Saliency map of the original image; (e) Detected 

“Open” button; and (f) Detected “Close” button. 

 

(a)

(f)(e)

(c)

(d) 

(b)

 
Figure 9. Restroom signage detection: (a) Original image; (b) Query pattern of “Men’s” signage; (c) 

Query pattern of “Women’s” signage; (d) Saliency map; (e) Detected “Men’s” signage; and (f) Detected 

‘Women’s” signage. 

 

Figure 8 displays detection of elevator buttons. The camera-captured image of six different 

elevator buttons is shown in Figure 8(a). Figure 8(d) is the corresponding saliency map extracted 

from the original image by using intensity, color, and orientation. The bright pixels indicate the 

attended areas. Figure 8(b) and Figure 8(c) show the query symbols of “open” and “close” buttons 

which are recorded in the query database of indoor signage. Figure 8(e) and Figure 8(f) 

demonstrate the final detection results (the red rectangular boxes). 

Similarly, the detection of restroom signage is displayed in Figure 9 as (a) shows the original 

image including the signage of both “Women’s” and “Men’s” restrooms; (b) shows the saliency 

map of the original image where the bright regions indicate the attended areas; (c) and (e) are the 

query patterns; (d) and (f) are the final detection signage results of the “Men’s” and “Women’s” 

restroom. 
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Figure 10. Multiple signage detection results. First row: Multiple queried signage patterns; Second row: 

Original image, Saliency map, and the detected result of pattern 2 (signage of Men’s restroom); Third 

row:  Original image, Saliency map, and the detected result of pattern 1 (signage of Women’s 

restroom). Fourth row: original image, Saliency map, and the detected result of pattern 3 (signage of 

Disabled restroom). 

 

4.2 Multiple signage Detection 

 
We further extend our algorithm to detect multiple patterns. In this case, the blind user will give 

multiple query patterns. As shown in Figure 10 (first row), the query patterns include both 

“Men’s” and “Women’s” restroom. We need to detect the patterns as well as recognize which 

pattern is found. The original image, corresponding saliency map, and the detected signage are 

shown in (the second row) for a “Men’s” and a “Women’s” restroom (the third row) respectively.  

We further evaluate the multi-pattern method to detect the four emergency exit signage of up, 

down, left, and right directions. The detection results of directional signage are demonstrated in 

Figure 11. 

 

Queried 
patterns

Original 
images

Saliency 
maps

Detected 
results

 
Figure 11. Examples of detected directional signage. 1st row: queried directional signage patterns 

(“Down”, “Right”, “Left”, and “Up”); 2nd row: original images; 3rd row: saliency maps; 4th row: 

detected results of the directional signage. 

 

4.3 Experimental Results 
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Our proposed method is evaluated by a database of 182 indoor signage images with 9 different 

types of signage including restrooms (Men’s, Women’s and Disables’), elevator buttons (Open and 

Close), and exit directions (left, right, up, and down). Some examples are shown in Figure 12 

which contains variations in lighting, resolution, and camera angle.  

In single-pattern detection, we use 40 restroom sign images (20 Women’s, 20 Men’s and 20 

Disables’) and 40 elevator button images (20 close and 20 open). We correctly detected 18 

“Women’s” signs, 16 ‘Men’s’ signs, 18 ‘Disables’ signs, 17 “Close” signs, and 17 “Open” signs as 

shown in Table 1.  

In multi-pattern detection, we use 82 direction signage (20 up, 20 down, 20 left, and 22 right) 

and 40 restroom signage (20 women, 20 men and 20 disable). In this experiment, 14 “Women’s” 

signs, 16 ‘Men’s’ signs, 18 “Disables” signs, 18 “Up” directions, 16 “Down” directions, 15 “left” 

directions and 19” right” directions are correctly detected from the original image. As shown in 

Table 2, the multi-patterns detection has a lower successful rate than those of single pattern 

detection.  

 Normal Low resolution Large angle of camera  

Men’s 

bathroom 

   

Women’s 

bathroom 

   

Disables’  

bathroom 

   

Elevator  

Buttons 

   

Up 

   

Down 

   

Left 

   

Right 

   

Figure 12. Example images of our indoor signage dataset. 

Table 1. Accuracy of single pattern detection for bathroom signs 

Signage 

Classes 

No. of  

Samples 

Correctly  

Detected 
Detection  

Accuracy 

Men’s 20 16 80% 

Women’s 20 18 90% 

Disables’ 20 18 90% 

Close 20 17 85% 

Open 20 17 85% 
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Total 100 86 86% 

 

Table 2. Accuracy of detect and recognize multiple patterns 

Signage  

classes 

No. of 

samples 

Correct 

recognized 

Wrong  

Recognized 
Missed 

Recognition 

accuracy 

Women’s 20 14 2 4 70% 

Men’s 20 16 1 3 80% 

Disables’ 20 18 2 0 90% 

Up 20 18 0 2 90% 

Down 20 16 2 2 80% 

Right 22 19 1 2 86.3% 

Left 20 15 2 3 75% 

Total 142 116 10 16 81.6% 

 

The wrong signage detections fall into the following two categories. 1) When we build the 

saliency map, the query pattern will be ignored because of low resolution of the original images. 2) 

The bipartite graph matching method is sensitive to the resolution, perspective projection, and 

angle of the camera views. It is difficult to distinguish different types of signage and the success 

rate of the detection decreases if the image resolution is too low or captured with an extreme 

camera view. As shown in Figure 13, the “close” signage is not detected as attended area in the 

saliency map due to the low image resolution. Figure 14 demonstrates that “Men” signage is 

correctly detected by the saliency map, but is missed by the bipartite graph matching method. 

 

 
              (a)                      (b) 

Figure 13. “Open” button of elevator: (a) Original image; (b) Saliency map 

 

 
(a)        (b)      (c) 

Figure 14. “Men” restroom: (a) Original image; (b) Saliency map; (c) Detection result 

 
Table 3. Effectiveness of Saliency Map for Indoor Signage Detection 

Classes No. of Samples 
Correct detected by  

BGM 

Correct detected by  

SM and BGM 

Men 20 11 14 

Women 20 12 16 

Total 40 23 30 

Accuracy  57.5% 75% 

 
4.4 Effectiveness of Employing Saliency Map 

 
To evaluate the effectiveness of a saliency map for the indoor signage detection, we compare 

the detection results with and without using saliency map detection by using the “Women’s” and 

“Men’s” restroom signage. As shown in Table 3, only 11“Men’s” and 12 “Women’s” restroom 

signs are correctly detected by applying bipartite graph matching on the image without performing 

saliency map based attended area detection. However, with saliency maps, we correctly detected 

14 “Men’s” and 16 “Women” restroom signs. The accuracy is increased from 57.5% (without 
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using saliency maps) to 75% (with saliency maps). Saliency map can effectively eliminate 

disturbing information which would decrease the accuracy of the bipartite graph matching method. 

 

4.5 Results of Door Detection 
 

We evaluated the proposed algorithm on a database we collected which contains 221 images 

collected from a wide variety of environments. The database includes 209 door images and 12 

non-door images. Door images include doors and elevators with different colors and texture, and 

doors captured from different viewpoints, illumination conditions, and occlusions, as well as open 

and glass doors. Non-door images include door-like objects, such as bookshelves and cabinets. We 

categorized the database into three groups: Simple (57 images, see examples of the first row in 

Figure 15), Medium (113 images, see examples of the second row in Figure 15), and Complex (51 

images, see examples of the third row in Figure 15), based on the complexity of backgrounds, 

intensity of deformation, and occlusion, as well as changes of illumination and scale. As shown in 

Table 4, the proposed algorithm achieves an average detection rate of 89.5% with a false positive 

rate of 2.3%. Some examples of door detection are illustrated in Figure 15. 

 

Table 4. Door Detection Results 

Data Category 
True Positive 

Rate 
False 

Positive Rate 

Simple 98.2% 0% 

Medium 90.5% 3.5% 

Complex 80.0% 2.0% 

Total 89.5% 2.3% 

 

 

 
Figure 15. Examples of successfully detected doors in different environments. First row: Simple; 

Second row: Medium; Third row: Complex. 

 

5 Conclusions 
 

In this paper, we have proposed a framework for signage recognition and door detection to 

assist blind people accessing unfamiliar indoor environments. The signage recognition approach 

employs both saliency maps and bipartite graph matching to recognize the signage patterns 

queried by blind users. The door detection method is based on a general geometric door frame 

model which is robust to handle doors with different appearances. The effectiveness and efficiency 

of the proposed methods have been evaluated by the databases of indoor signage and doors. 

Our future work will focus on extending our method to handle signage and objects with larger 

variations of perspective projection, scale, point view, occlusions, etc. We will also address the 

significant human interface issues associated with wayfinding for blind users. 
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