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Abstract. Expensive and time-consuming medical imaging annotation
is one of the big challenges for the deep learning-based computer-aided di-
agnosis (CAD) on the low-dose computed tomography (CT). To address
this problem, we propose a novel active learning approach to improve
the training efficiency for a deep network-based lung nodule detection
framework as well as reduce the annotation cost. The informative CT
scans, such as the samples that inconspicuous or likely to produce high
false positives, are selected and further annotated for the nodule detector
network training. A simple yet effective schema suggests the samples by
ranking the uncertainty loss predicted by multi-layer feature maps and
the Region of Interests (RoIs). The proposed framework is evaluated on
a public dataset DeepLesion and achieves results that surpass the active
learning baseline schema at all the training circles.
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1 Introduction

Lung cancer is the leading cause of cancer death in the United States [12].
To better assist the clinic diagnosis, the low-dose computed tomography (CT)
screening is recommended as the most effective lung nodule diagnostic tool. The
automatic computer-aided diagnosis (CAD) systems based on CT scans have
been widely exploited for automatic lung nodule classification, segmentation,
and detection.

In recent years, many researchers have devoted to applying the deep learning-
based frameworks to medical imaging analysis [15]. Since deep learning algo-
rithms are data-hungry, they may suffer from the expensive data acquisition
and annotation of medical images. To label the medical images, the oracle re-
quires clinical and biomedical background knowledge while the nature scene la-
beling needs mainly common sense. Time-consuming pulmonary nodule annota-
tion brings difficulty to acquire large annotated datasets. With the limited data,
the deep learning-based models is prone to overfitting. Recently, semi-supervised
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Fig. 1. The flowchart of the proposed active learning nodule detection framework. A
group of randomly sampled data is selected to train the nodule detection network.
In each of the training cycle, the trained network evaluates the remaining unlabeled
CT scans in the unlabeled CT pool by predicting the uncertainty for each CT scan.
Based on the uncertainty scores, the top-k informative CT scans are selected in the
current training circle considered as the most informative samples for labeling. The
newly annotated CTs are further joined the labeled CTs for the detector training. The
steps are iterated until the network achieves good performance.

and unsupervised learning-based methods utilize partial or unlabeled data to
avoid the annotation cost [5, 6]. These methods mainly focus on extracting good
features, however, the data annotations are still required for the downstream
tasks, such as classification, segmentation, and detection.

Existing approaches consider active learning methods to reduce data anno-
tation cost by selecting valuable representatives from unlabeled data [2, 4, 9, 10,
13]. For medical imaging, the active learning strategy has shown high potential
to reduce the annotation cost [1], such as in biomedical image segmentation [3,
14, 18] and pathology image classification [11, 13]. Most of the active learning
methods for object detection tasks are based on the uncertainty scores predicted
by image-level representation extracted from backbone network to select infor-
mative samples. Recently, Yoo et al. [19] proposed a state-of-the-art learning-loss
schema to predict the loss value of unlabeled data based on the target network,
which can be applied to the object detection task. Multi-level features from the
target model are fused to map the scalar value for loss prediction. Since the loss
prediction network only considers the model loss and despite the task, the loss
prediction strategy is robust to various tasks and has high potential to apply
to nodule detection tasks. However, the performance of object detection task
is not guaranteed with small objects or 3D volumetric data. The image-level
distribution is not sufficient and not detailed for pulmonary nodule detection.

There are two major challenges in implementing the existing active learning
methods for pulmonary nodule detection. First, unlike natural scene images,
CT scans contain relatively small volume of lung nodules relative to the whole
3D CT. Second, the feature similarity between normal tissues and nodules may
mislead the sample selection. The image-level uncertainty prediction cannot be
directly applied to the 3D features. Although the uncertainty of the whole CT
scan can be learned, the informative features that distinguish nodules and tissues
are tended to be ignored.
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To address the above challenges, this paper makes the following contribu-
tions: 1) A deep active learning-based nodule detection framework is proposed
to achieve comparable performance with less data and annotations, as shown in
Fig. 1. The unlabeled CT scans are assessed by a trained model with predicted
uncertainties. By sorting the uncertainty scores of CTs, the top-K informative
candidates are selected, further annotated as the training data. 2) A simple
yet effective uncertainty selection method predicts the loss through the features
extracted from the basic blocks of the backbone network which evaluates the
learning-loss uncertainty, and the features from region proposals for an RoI-
level prediction. 3) The proposed framework is conducted on the large public
DeepLesion dataset [17] and the proposed method surpasses the active learning
baseline [19] at all the training cycles.

Fig. 2. The proposed active learning schema for pulmonary nodule detection. A trained
3DFPN detector takes the input of 3D CT volume and obtains the learning-loss fea-
tures maps through multiple layers [P2, P3, P4, P5]. The learning-loss uncertainty is
computed by aggregating the loss of four-layer feature maps and a global loss predicted
by concatenated four-layer features. The RoI-level uncertainty prediction considers the
local features of the region proposals prediction and is obtained by summing predicted
scores greater than the threshold τ . The uncertainty of sample selection combines
learning-loss loss with RoI-level loss for each unlabeled CT scan.
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2 Method

The informative CT scans with higher uncertainty values are defined as hard
samples, while the non-informative CT scans with lower scores are defined as
easy samples. The key insight of our method is to learn from the hard samples
of CT scans for pulmonary nodule detection. More specifically, we consider the
following two scenarios. 1) The CT scans contain normal tissues with similar
features of nodules. The high probability to be detected as nodules leads to a
high false-positive rate. 2) The CT scans include the nodules that are difficult to
detect, with a small size or low intensity. In this section, we introduce a simple
yet effective active learning scheme for pulmonary nodule detection network.

2.1 Nodule Detection Framework

By appending the low-level texture features with higher-level strong-semantic
features, the feature pyramid networks (FPNs) [7] achieved good performance on
detecting small objects by combining both local and global features through the
multi-layered feature extraction. Since the original FPN is designed to process 2D
images, considering the spatial information of nodules in consecutive CT slices,
we follow the nodule detection network of 3DFPN [8] by applying 3D ResNet-
18 as the backbone network and detecting nodule locations in 3D CT volumes.
The feature pyramid network consists of four layers of [P2, P3, P4, P5], which
integrates low-level features through a top-down pathway by lateral connections.
The feature maps are further applied to evaluate the uncertainty. Currently, two-
stage object detection methods such as RCNN, are widely used in small object
detection combined with the FPN backbone framework. Yan et al. [16] proposed
a 3D Context Enhanced (3DCE) RCNN model for lesion detection, however,
the spatial information is not guaranteed by the three-channel images. In this
paper, we employ the 3D volume CT scan as input to extract multi-layer features
from 3D Feature Pyramid ConvNet (3DFPN) with the region of interest (RoI)
proposal selection. The prediction includes a confidence score of each nodule
candidate, as well as the corresponding position and nodule size, as [x, y, z, d],
where [x, y] are the spatial coordinates of the candidate, z is the CT slice index
number, d is the diameter of the nodule.

2.2 Active Learning with Nodule Detection

This section introduces the proposed active learning framework for lung nodule
detection. During the initial network training, a group of CT scans is randomly
selected from all unlabeled CT pool for annotation and defined as Strain. In the
first learning cycle, a deep learning framework is trained by Strain and predicts
uncertainties l for each unlabeled CT in the unlabeled pool Sunlabel. As the
CT scans are not equally contributed to the performance of the model, the
higher predicted uncertainty loss indicates the greater difficulty for the nodule
prediction, with the high false-negative rate for the missing nodules or high false-
positive prediction for tissues detected as nodules. We define informative CT
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scans with high uncertainty value as hard samples and non-informative CT scans
with lower scores as easy samples. The hard samples aim to efficiently improve
the performance of the nodule detection network. By sorting the predicted loss
of l in descending order, top-k CT scans are selected as the hard samples, which
would be annotated by radiologists and aggregated to the training data Slabel.
The data augmentation methods of the random flip, crop, and rotate are applied
to the labeled k CT scans to avoid overfitting. The augmented data are joined
as the input to train the lung nodule detector. The trained model is applied to
predict the loss for unlabeled data to select another set of top-k CT scans for
annotation. Repeat the active learning schema until the nodule detector achieves
good performance.

As illustrated in Fig. 2, an active learning-based sample selection approach
is proposed to predict loss through global features and RoIs. 3DFPN is applied
as the backbone network by the multi-layer feature maps extracting by a top-
down path. The feature maps of {P2, P3, P4, P5} extracted from the last four
convolution layers represent the global features, which are normalized by 3D
global average pooling and a fully connected (FC) layer. Following the learning-
loss schema [19], a scan-level prediction consists of multi-layer uncertainty losses
of the four feature scalars and a loss predicted by the concatenated four feature
maps. The objective function for the learning-loss uncertainty is obtained by the
five uncertainty scores, shown as Eq. 1:

lscan = lP2 + lP3 + lP4 + lP5 + lPconcat
, (1)

where i indicates the current feature layers, Pconcat concatenates the feature
maps of {P2, P3, P4, P5}.

To obtain the detailed local features for CT scans contained nodules with
the small scale and tissues with the similar feature as nodules, the learning-
loss schema is not sufficient to select the most valuable CT scans by predicting
the loss through the feature maps, where the informative features of the true
negative and false positives candidates are not statistically significant shown. As
the region proposal network predicts nodule candidate location and the region
of interest (RoI) cropped from the multi-layer feature maps, in particular, we
introduce a simple yet effective sample selection method based on uncertainty
prediction by statistically selecting by RoI level uncertainty prediction, as shown
in Fig. 2. We aim to select CT scans with a large number of high uncertainty
RoI regions as additional criteria for CT scan sample selection.

In order to select the CT scans with the most false-positive samples, a set of
uncertainty scores is predicted for each RoI region of the entire 3D CT scan. For
each CT scan si, a set of RoI regions rsi is obtained. RoI-level loss prediction
LRoI sums the scores of the region proposal li for the value greater than the
threshold τ , shown as Eq. 2:

LRoI =

{
i∑
li if li > τ

0 otherwise.
(2)
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Therefore, the objective function is combined with learning-loss, RoI-level
loss, and detector loss as Eq. 3:

lfinal = ltarget(ŷ, y) + λ1 · Lscan{l̂, l}+ λ2 · LRoI{l̂, l}, (3)

where λ1, λ2 are the weights of learning-loss and RoI-level prediction respectively.
(l̂, l) are the two samples selected from different batches followed the batch
strategy of [19] by comparing two samples from different batches.

3 Experiments

3.1 Experimental Settings

Dataset and Evaluation The NIH DeepLesion dataset [17] contains 32, 000
annotated lesions on the CT scans acquired from 4, 400 patients. In this paper,
1, 281 CT scans with 2, 592 lung nodules are conducted in the evaluation. The
1, 000 CT scans are for training and 281 CT scans from the official split are
for testing. To assess the proposed framework, we assume all the CT scans are
unlabeled and in each active learning cycle, 10% of the unlabeled dataset are
selected and annotated. We follow the evaluation method of the baseline detector
3DCE [16] and employ the sensitivity at certain false positives per image similar
to the Free-Response Receiver Operating Characteristic (FROC). In this paper,
we present the results for sensitivity at 4 false positives per image for a fair
comparison with the baseline detector 3DCE [16] for the performance of lung
nodule detection.

Training In the first active learning circle, the detector is trained by a random
selected 10% CT scans from the unlabeled data pool with annotations (100
CT scans). The trained model is applied to predict the loss of the remaining
90% unlabeled data. By sorting the loss prediction, the top 100 CTs, which is
10% of the initial unlabeled CT pool, are annotated and added to the training
data to finetune the trained model. A total of 30 epochs are applied for each
training cycle. The learning rate is initialized as 0.01 and decreased by 1/10
at the 280 epoch. 300 epochs are conducted for the framework. The 18-layer
residual network (ResNet-18) is applied as the backbone network of the 3DFPN
detector. Following the same implementation of Yoo et. al [19], loss prediction
module of learning-loss schema is conducted for scoring the four feature maps of
the backbone network. The RoIs with the prediction score greater than 0.5 are
applied to obtain the RoI-level loss. To avoid overfitting in the training process,
the random flip, rotation and crop are also applied for the data augmentation.

3.2 Results

Performance Evaluation Table 1 shows the results compared to the baseline
detector. By using 80% of all the training data, the sensitivity at 4 false posi-
tives per image of our proposed framework is comparable to the baseline 3DCE
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Table 1. Comparison between 3DCE [16] and our proposed active learning-based
nodule detection network. With the 80% annotated training data, the proposed method
achieves a comparable result with the baseline 3DCE network.

Methods 3DCE [16] Ours-60% Ours-70% Ours-80% Ours-90% Ours-100%

Sensitivity 0.910 0.875 0.896 0.908 0.915 0.921

Fig. 3. The sensitivities at 4 false positives per image for the proposed active learning-
based framework compared with random sampling and learning-loss sample selection.

model with the full training data. By only trained with 60% annotated data,
the result of our model is approaching to the sensitivity of 3DCE trained by the
full training data with only 3.5% less. With all the training data annotated, our
model surpasses the baseline detector by 1.1% sensitivity.

In addition, we compare the sensitivity of the proposed active learning method
with random sampling and learning-loss sampling schema [19]. The sensitivities
of our proposed method and the baseline active learning methods at 4 false pos-
itives per image are shown in Figure 3. Our active learning strategy surpasses
learning-loss prediction [19] and random sampling at all active learning cycles.
The learning-loss features may fail to capture the features of the nodule loca-
tion, while the RoI feature region prediction may lose the global information.
As shown in Fig. 3, by training with 60% annotated data, the proposed method
obtains an 87.5% sensitivity at 4 false positives per image which is 6% higher
than the random sampling baseline, and 4% higher than the learning-loss sample
selection strategy. The performance of the nodule detector is greatly improved
by combining the learning-loss and RoI-level prediction shown the effectiveness
of the proposed active learning sample selection strategy.
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Fig. 4. Visualization of the selected nodule samples on 20%,40%,60%,80% active learn-
ing circle respectively. The x-axis of the scatter map indicates the nodule diameter and
y-axis correspond to the uncertainty loss prediction. We compare the samples for the
random sampling (marked as blue dots), and learning-loss sampling (marked with black
dots) with the proposed active learning schema (marked as cyan dots).

Selected Sample Analysis The samples selected by the proposed method,
learning-loss prediction, and random sampling within 20%, 40%, 60%, 80% active
learning cycles are compared in Fig 4. X-axes and Y-axes indicate the nodule
diameter and the predicted loss value for the corresponding CT scan. As the RoI
regions selected by the proposed detector are the potential candidate regions,
by selecting the candidates containing RoI regions with higher loss in the object
function, the algorithm aims at finding the candidates with the highest potential
to be predicted as miss-detected candidates (negative candidates) and the false
detected candidates (positive candidates). For the samples selected from the
20% training cycle, we can observe that most of the predicted losses from the
proposed active learning strategy (marked as cyan dots) are higher than other
methods especially random sampling (marked as blue). With the learning circle
increasing from 40% to 60%, the proposed method leans to focus on the nodules
with the small size, while the random sampling still selects the large nodule with
low loss values. The learning-loss (marked as black) predicts higher and clusters
are more sparse. When the training cycle increases to 80%, it is worth noting that



Deep Active Learning for Effective Pulmonary Nodule Detection 9

the predicted loss values of the active learning-based sample selection strategies
gradually decreases due to the priority to select informative samples, while the
remaining 20% of the unlabeled data contains majority easy samples.

4 Conclusion

To eliminate expensive annotation costs and effort to acquire large datasets, we
have proposed an active learning schema to select the valuable CT scans to train
a deep learning-based pulmonary nodule detector. A simple yet effective active
learning schema predicts loss from multi-layer features and RoIs for sample selec-
tion. The experimental results have demonstrated that the proposed framework
has great potential in accelerating clinic diagnosis.
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