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Abstract 
We have collected a new dataset consisting of color and depth videos of fluent American Sign Language (ASL) signers 
performing sequences of 100 ASL signs from a Kinect v2 sensor.  This directed dataset had originally been collected as part of an 
ongoing collaborative project, to aid in the development of a sign-recognition system for identifying occurrences of these 100 
signs in video.  The set of words consist of vocabulary items that would commonly be learned in a first-year ASL course offered 
at a university, although the specific set of signs selected for inclusion in the dataset had been motivated by project-related 
factors.  Given increasing interest among sign-recognition and other computer-vision researchers in red-green-blue-depth 
(RBGD) video, we release this dataset for use by the research community. In addition to the RGB video files, we share depth and 
HD face data as well as additional features of face, hands, and body produced through post-processing of this data. 

Keywords: American Sign Language, dataset, RGBD video. 

1. Introduction  

Recently, progress in sensor technologies as well as 
research on algorithmic techniques supported by artificial 
intelligence methods has enabled the development of sign 
language recognition systems (Gkigkelos and 
Goumopoulos, 2017). Moreover, the availability of red-
green-blue-depth (RGBD) sensors (Microsoft, 2014, 
2020; Intel, 2020; Creative, 2013) has made it possible to 
capture depth maps in real time, facilitating many visual 
recognition tasks including ASL hand gesture recognition. 
Research on sign language and sign language recognition 
technologies can benefit from corpora that are collected 
using these RGBD cameras. This paper describes one 
such corpus that has been collected since April 2016 for 
facilitating research on sign recognition technology to be 
used for an educational tool. 

We first describe the context and motivation of our work 
in section 2. In section 3, we summarize various existing 
datasets that are used to support research on sign 
languages and sign language recognition technologies. 
Section 4 describes the dataset in detail including the 
apparatus used, data collection methods, participant 
recruitment, and post-processing of the data. In section 5, 
we conclude with the insights we learned and some of the 
limitations of the dataset. 

2. Motivation and Context 

The release of our dataset is motivated by the increasing 
availability of RGBD video cameras as well as recent 
research on sign recognition that has considered RGBD 
video (discussed in section 3).  As discussed below, some 
datasets have been collected to support various sign 
recognition research using a variety of camera systems, 
including the Intel RealSense, the Microsoft Kinect V2, 
and newer camera systems that have entered the market, 
e.g. (Microsoft, 2020). The low-cost of these consumer 
cameras has enabled the capture of high-resolution red-
green-blue (RGB) videos with depth maps (D) (Ioannidou 
et al.,2017). These RGBD images provide photometric 

and geometric information not captured by traditional 
two-dimensional RGB camera systems.  

While there have been various RGBD datasets collected 
in support of specific research projects, as discussed in 
section 3, the content of many of those datasets has been 
driven by the particular research interests of the particular 
team.  Likewise, our new RGBD dataset was collected to 
support the development of a sign-recognition system, as 
part of a larger collaborative research project between 
City University of New York (CUNY) and Rochester 
Institute of Technology (RIT) (Huenerfauth et al., 2017; 
Ye et al., 2018; Huenerfauth et al., 2016) The computer 
vision team working at CUNY requested a targeted 
dataset to support the design of sign language recognition 
technology that would automatically analyze videos of 
ASL signing so that it can provide feedback to the user 
when particular errors are noticed in the video, e.g. as in 
the case of a student learning ASL who would like to 
practice their signing independently.  

The specific goals of this larger project are not a focus of 
this paper, but we provide some details here to help 
explain the selection of the particular 100 ASL signs 
included in the dataset.  As part of our ASL educational 
feedback system, a required sub-component is software 
that can identify occurrences of any of a set of 100 ASL 
signs that may appear during a video.  These particular 
words were selected from among the vocabulary that is 
traditionally part of the first-year curriculum in most ASL 
courses offered at U.S. universities, and these particular 
words were selected since they related to some of the 
automatic error-detection rules that we intended to 
develop for our project.  For instance, one rule determines 
whether the signer in the video has produced an ASL sign 
such as “NOT” that would typically require a negative 
headshake non-manual signal to be produced 
simultaneously.  The system will indicate to the user that 
an error may have occurred if this manual sign is 
produced but a negative headshake was not performed.  
Additional details of our project appear in prior 
publications that describe human-computer interaction 



research into the design of a system like this (Huenerfauth 
et al., 2017; Shah et al., 2019; Huenerfauth et al., 2016).  

Thus, while we had originally collected this dataset for 
internal training purposes for creating one component of 
our research system (which explains the particular 
selection of the 100 ASL signs in this dataset), we decided 
to release this dataset for use by the community. Our 
decision has been motivated by an increased interest 
among computer vision researchers in working with color 
and depth data for human movement recognition.  Thus, 
the ASL-100-RGBD dataset presented in this paper is 
disseminated for academic research on sign language 
recognition.  

3. Existing ASL Databases 

There are many publicly available corpora that have 
provided a valuable infrastructure for research on sign-
language linguistics and for useful sign-related 
technologies for people who are deaf or hard-of-hearing. 
Traditionally, these videos consist of color video, but 
many were collected prior to the recent proliferation of 
RGBD video camera technology.   

For instance, the National Center for Sign Language and 
Gesture Resources (NCSLGR) corpus contains ASL 
videos collected and linguistically annotated by 
researchers at Boston University. This dataset can be 
accessed using a web-based Data Access Interface (DAI), 
which provides access to data from the American Sign 
Language Linguistic Research Project (ASLLRP) (Neidle 
and Vogler, 2012; Neidle, 2002; Neidle, 2001). Several 
subsets of this database (Dreuw, Neidle, et al., 2008), 
including RWTH-BOSTON-50 and RWTH-BOSTON-
104, were created in collaboration with RWTH Aachen 
University to build up benchmark databases for further 
research on sign language recognition. RWTH-BOSTON-
50 was defined for assisting with the task of isolated sign 
language recognition (Zahedi et al., 2006). The RWTH-
BOSTON-104 corpus has been used in continuous sign 
language recognition experiments (Dreuw et al., 2007; 
Dreuw, Stein, et al., 2008).  Another commonly used sign 
language corpus of continuous signing data includes the 
RWTH-PHOENIX corpus consisting of German public 
TV station PHOENIX in the context of weather forecasts 
during daily news broadcast (Koller et al., 2015). 

Similar to our new ASL-100-RGBD dataset, other ASL 
datasets consist of isolated sign productions.  For instance, 
the American Sign Language Lexicon Video Dataset 
(ASLLVD) contains nearly 10,000 videos of over 3,300 
ASL signs, produced by up to six native ASL signers in 
citation form, from multiple simultaneous camera angles, 
as well as various morphological and articulatory 
annotations for each (Athitsos, 2008). As another 
example, the Purdue RVL-SLLL ASL Database consists 
of 3576 videos from 14 ASL signers, and it was also 
collected using color video cameras, under two different 
lighting conditions (to suppress shadows or enhance 
contrast respectively). A portion of this corpus consists of 
continuous signing of memorized paragraphs, and another 
portion includes isolated sign productions (Martnez et al., 
2002).  

While these color-video corpora above (and many others 
beyond the few examples mentioned here) have been used 
in a variety of sign-language recognition research, there is 
emerging interest in the computer vision community at 
conducting research on data from sensors that provide 
both color and depth data, e.g. (Jing et al, 2019; Xie, 
2018).  More specifically, recent research has investigated 
sign recognition that considers a combination of RGB and 
depth information, e.g. (Almeidaab et al., 2014; Buehler et 
al., 2011, Chai et al., 2013; Jiang et al., 2014; Pugeault & 
Bowden, 2011; Ren et al., 2013, Yang, 2015; Ye et al., 
2018; Zafrulla et al., 2011; Zhang et al., 2016).  

Some of this research has considered static images with 
both color and depth information.  For instance, Pugeault 
and Bowden investigated ASL fingerspelling letter 
recognition using a Kinect camera (2011). Keskin et al. 
captured data for 24 static images of handshapes as input 
to their classification model (2012). The American Sign 
Language Image Dataset (ASLID) contains 809 images 
(resolution 240 X 352) from various signs collected from 
six native ASL signers, as extracted from Gallaudet 
Dictionary videos. Ren et al. captured static handshapes 
for 10 ASL numerical digits using a Kinect camera, from 
10 signers who were in visually cluttered backgrounds 
(2013).  

The proliferation of RGBD video camera technology has 
propelled advances in areas such as reconstruction and 
gesture recognition. While the early RGBD data sets 
tended to be small (e.g. Bronstein et al., 2007), the field 
has expanded to include datasets for enabling research on 
identity recognition, pose recognition, and inferring facial 
expression and emotions (Min et al., 2014.; Fanelli et al., 
2010; Firman, 2016). Recently these technological 
advancements have also enabled research on sign-
recognition from RBGD videos. For instance, Yang 
developed a method to recognize 24 manual signs based 
on handshape and motion information extracted from 
RGBD videos (2015). Mehrotra et al. employed a support 
vector machine to recognize 37 Indian Sign Language 
(ISL) signs, based on 3D skeleton points captured using a 
Kinect Camera (2015).  Kumar et al. used a combination 
of both a Leap Motion sensor and a Kinect Camera to 
recognize 50 ISL signs (2007). There has also been prior 
sign recognition research using RGBD video for Brazilian 
Sign Language (Almeidaab et al., 2014), Greek Sign 
Language (Gkigkelos and Goumopoulos, 2017), and 
Chinese Sign Language (USTC, 2019). Our dataset is also 
collected to exploit the depth modality for the recognition 
of strategically selected 100 ASL signs. 

4. The ASL-100-RGBD Dataset 

As discussed above, ASL-100-RGBD is a novel dataset 
that has been strategically collected and annotated to 
support the development of a sign language recognition 
system for use as a sub-component of our overall ASL 
education software system (Huenerfauth et al., 2017; Ye 
et al., 2018; Zhang et al., 2016). For that reason, the 100 
ASL signs included in the dataset had been selected since 
they were signs commonly taught in the first-year 
curriculum of ASL courses in U.S. universities and 
because our system needed a detector for these ASL signs 
as part of some of its rules for providing feedback to users 
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