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a b s t r a c t

To date, surveillance based person search has focused on locating a person of interest from an image
query, distinct from the law enforcement task of locating a person from a description.
In this paper, we introduce a novel probabilistic framework that combines multiple traits whilst incor-

porating their uncertainty to tackle the emerging challenge: locating a person from a semantic query. In
addressing this, we improve clothing texture recognition by leveraging Dempster-Shafer theory against
an ensemble of support vector machines; achieving state-of-the-art performance for high and low reso-
lution clothing textures.
Our proposed person search framework combines information from clothing texture and colour in the

torso and leg regions to produce a probabilistic match between unknown subjects and the designated
target query. Results are presented on a newly created 520 subject surveillance dataset which is made
available to researchers. This multi-modal person search technique achieves promising results for
locating target subjects, without the requirement of pre-search target enrollment.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

In surveillance and security applications it is often necessary to
search for and locate a subject of interest from a textually supplied
subject description. At present, searches using these forms of
queries are predominantly performed manually and often ineffec-
tively, via physical searching of a premise or watching countless
hours of video footage.

While the use of semantic descriptions for person search has
become more prevalent in recent research [14,8], enrollment-
based re-identification methods continue to dominate the research
[7,10,6,1]. These methods exclude however, instances where the
subject has not previously been located and enrolled from the
footage. The ability to transfer a human describable query into a
genuine image/video search would be invaluable to multiple
domains and applications including query-based image retrieval,
clothing fashion recognition, post-event video analysis, and
surveillance and security.
In search tasks based on soft biometrics [15,26], clothing attri-
butes are a commonly used search due in part to their dominance
of an individuals outward appearance (see Fig. 1), leading to the
ease in which it can be detected, and relevant information
extracted by a human operator. The common use of these traits
becomes further evident when viewing offender description forms,1

where it should be noted that the possible trait descriptors are con-
strained to a subset of those humanly describable.

In this paper we introduce a newmethod for locating individuals
of interest in surveillance based images from the following subset
of soft biometric descriptors: clothing colour, and clothing pattern.
The proposed approach utilises a multi stage classification tech-
nique where textually supplied target queries (i.e. torso clothing
colour, leg clothing colour, torso texture, leg texture) are used as
search parameters. Each of the modalities, in the supplied textual
query, are constrained to a subset of those humanly describable,
similar to that seen on a offender description form. We then combine
clothing colour and texture; recognised using a pixel-wise Gaussian
mixture model (GMM) classification technique and a novel
approach utilising an ensemble of support vector machine (SVM)
classifiers respectively. Finally, the individual modality scores are
fused using the independent method of combination contained in
2.pdf.
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Fig. 1. Comparison of images from low resolution surveillance type situations ((a)-(c)), with higher resolution fashion or photography based datasets ((d)-(f)).
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Dempster-Shafer theory (DST). This method of trait fusion creates a
probabilistic output, providing a probabilistic score to the initial
target query.

Performance of the proposed texture descriptor is evaluated on
high and low resolution images and compared to the state-of-the-
art, where we achieve new state-of-the-art results at both resolu-
tions. Evaluation of the person search framework is completed on a
newly created surveillance dataset. To the best of our knowledge,
evaluation from semantic descriptions achieves state-of-the-art
performance in this challenging domain.

Our novel contributions in this paper are as follows:

� Clothing texture classification in both high and low resolution
domains using four hand selected features. Classification is per-
formed using an ensemble of SVMs with DST classifiers.

� Novel calculation of the uncertainty term contained in the DST
classifiers is used to discriminate against poor performing mod-
els (low cross validation accuracy), and non distinct classifica-
tion results. Feature fusion incorporates the use of the DST
method of independent combination to produce state-of-the-art
results.

� Inclusion of the clothing texture classification technique into a
surveillance framework, evaluated on a newly created dataset
consisting of 520 subjects with full pixel-wise annotation for
coarse body regions. This dataset, which is publicly available
to researchers,2 was created to overcome limitations within
existing datasets, such as occlusions, lacking trait availability,
and the requirement of first running clothing/person parsing
techniques which can introduce other errors due to poor segmen-
tation. Incorporation of this extra trait (clothing texture) in
semantic search provides greater utility in a surveillance frame-
work as existing approaches have predominantly concentrated
on clothing colour alone.

The remainder of this paper is structured as follows: Section 2
provides an overview of the prior work related to this task; Sec-
tion 3 outlines the proposed approach including, feature mapping,
classification and use of DST for fusion; Section 4 describes the
experimental setup and results are outlined in Section 5. Finally,
Section 6 concludes the paper and outlines future work.
2. Background and related work

Soft biometrics as a concept has existed since Bertillon [3]
considered a method for criminal identification in the late 19th
century. His work persists today in the form of criminal ‘‘mug
shots”. After being largely superseded by traditional biometrics
due to their limitations, lacking permanence and discriminatory
2 Data is publicly available on request from the authors.
ability [15,6]; they have recently found renewed interest in com-
puter vision research.

Jain et al. [15] re-introduced soft biometrics to offset traditional
biometrics due to the ease in which they could be extracted (i.e.
eye colour with retina scan). Categorising body measurements into
semantically describable groups, the work by Samangooei et al.
[26] began to outline their strength in multimodal forms. In this
short period of time, soft biometrics have gained much traction
in the research community where they are showing promise in
various areas including: fashion parsing [32], content based image
retrieval [16], surveillance [8], shopping applications [20], simplis-
tic replication of human verbal descriptions of images [18], and
recently as an image labeling tool for surveillance with a deep neu-
ral network (DNN) [24].

From a security standpoint, closing the ‘‘semantic gap” is an
essential step towards creating usable and accurate soft biometric
localisation techniques. To this goal, Reid et al. [25] outlined the
challenges associated with the subjective manner by which
humans identify and describe soft biometric traits, and the link
to associated computer vision trait extraction procedures. This
concept is directly transferable to a surveillance framework and
the requirement of sufficient and effective novel traits, to create
a distinct target signature. However, as seen in law enforcement
practices such as the offender description forms, description options
may be limited in depth to aid in closing the semantic gap.

From a computer vision and surveillance context, person re-
identification [7,10,6,1] and person search (semantic/attribute
search) [29,12,9,11] are two distinct methods of locating a subject
of interest from (one or more) soft biometric traits. Reid et al. [25]
outlined the differences between these similar techniques: re-
identification directly interrogates a supplied image for feature
extraction, while semantic search obtains the trait values through
verbal or textual descriptions (i.e. no direct image interrogation).
2.1. Semantic search

The search for an individual of interest without the use of direct
scene interrogation for soft biometric signature construction can
be considered a constrained form of scene labelling. From an
extensive list of possible traits, Samangooei et al. [26] declared that
age and gender are two of the most easily identified and described
traits by human witnesses. Extraction of the required information
for accurate classification of these traits in low resolution images
(Fig. 1 (a� c)) can be a difficult proposition. By dominating the out-
ward appearance of a subject, clothing is also a trait which is com-
monly identifiable and simplistically relayed between operators
with relative invariance to image resolution (see Fig. 1).

Early semantic search approaches [29,23] used simple colour
descriptors for regions such as the torso and legs; while Vaquero
et al. [29] also combined these with facial features. Creating a



M.A. Halstead et al. / J. Vis. Commun. Image R. 58 (2019) 439–452 441
probabilistic search technique for locating individuals of interest,
Thornton et al. [28] proposed the use of clothing attributes (cate-
gorised colour) and luggage, where the clothing area is extracted
using a moving pedestrian algorithm and image chips. Using
heuristically segmented regions of interest Halstead et al. [12] cal-
culate the dominant colour (using culture colours [2]) in torso and
leg region using GMMs, and allow for different clothing types in
the leg region by using asymmetry driven methods adapted from
Farenzena et al. [10] to detect clothing bounds. Improving on this,
Denman et al. [9] introduced a channel based approach to attribute
detection, that used learned appearance templates for each trait to
build a searchable query.

Satta et al. [27] blurred the lines between re-identification and
textual search by using model based learning and dissimilarity-
based appearance descriptors in a re-identification framework. Pri-
marily utilising facial tracking and soft biometric facial features,
Feris et al. [11] show promise across various datasets for detecting
subjects of interest using semantically describable queries. Torso
and leg regions were segmented using bounded regions guided
by the face detection and can detect 13 different colours, providing
ranked outputs using similarity. Interestingly they proved their
search framework on a ‘‘real world” application, the unfortunate
Boston Marathon Bombing event.

Generally using segmented bounding boxes, convolutional neu-
ral network (CNN) based techniques such as Zhu et al. [34] have
outlined the benefits of using a single trained classifier to detect
multiple soft biometric traits such as clothing and gender. How-
ever, one of the benefits of individual soft biometric traits is that
they remain computationally inexpensive. The advantage of this
is that traits can potentially be added to existing techniques in a
modular fashion. For instance, the addition of gender or age traits
using temporal sequencing and Gabor filters [13]. Where existing
techniques classify clothing colour, clothing texture could be incor-
porated by exploiting existing approaches in alternate fields such
as those outlined by Yang et al. [33] for assisted vision, or correla-
tion filters [30] used in face recognition.

However, for all of the advancement in semantic person search
techniques many limitations persist, including the heuristic mea-
sures of obtaining the bounded regions by which the traits are cal-
culated, and the basic fusion techniques used to produce the final
similarity calculations. Finally, in all of these techniques one major
limitation is witnessed, and that is the lack of measured traits, pro-
viding a limited soft biometric signature to match against.

One solution to heuristically obtaining bounded regions is the
use of clothing detection and parsing. Detecting clothing and cloth-
ing styles from images is an important component of a fully oper-
ational person search technique using attribute based detection.
With accurate clothing detection not only is the clothing type itself
able to be included in the search modalities, but more accurate
detection of the clothing minutia is possible, such as colour and
texture.

An early technique to parse clothing, in a fashion sense, was
that of Yamaguchi et al. [31], where they were able to parse high
resolution fashion images into 53 clothing labels. The garments
were parsed using conditional random fields, exploiting the rela-
tionship between clothing (and super-pixels) and body pose. To
improve the performance of fashion parsing Yamaguchi et al.
[32] introduced a retrieval based approach using templates that
fit the clothing attributes. Their approach combined pre-trained
global clothing models, local clothing models learned dynamically,
and transferred parse-masks. To parse the image, similar to their
earlier approach, they rely on an estimated pose mask of the sub-
ject with features extracted around each point. Tag prediction is
based on K-nearest neighbours with a KD-tree to index
samples, and iterative label smoothing to produce the final parsed
results.
Also relying on pose, Chen et al. [5] proposed a novel clothing
attribute detector that uses images with people in unconstrained
settings. Features including SIFT, maximum response filter, CieLab
colour information, and skin probabilities which are extracted
based on the detected pose. SVM classification is used with condi-
tional random fields to parse twenty-three binary attributes and
three multi-class attributes.

Using a deep CNN, Liang et al. [19] proposed a contextualised
CNN which produced pixelwise attribute labels in an end to end
fashion. Their proposed network comprised five main components:
local-global–local, global image-level content, semantic edge con-
tent, local superpixel content, and attribute output. Their tech-
nique was able to predict the presence of eighteen attributes,
output on a full resolution image containing the pixelwise
annotation.

In each of the above mentioned techniques one major issue
arises when applied to low resolution surveillance imagery, they
are all trained and evaluated on high resolution fashion style
images. While techniques do mention the ability to perform
‘‘across domain” this does not extend to the very low resolution
surveillance domain. For person search in surveillance settings,
techniques that are able to perform in lower resolution are
required.

One technique which aimed to reduce this problem was the
deep decompositional network described by Luo et al. [21]. This
approach reduced the fashion based problem down to a coarse
parsing problem where semantic regions including: hair, head,
torso, legs, and arms. Based on a HOG representation of the pedes-
trian image, they create the parsed representation using three net-
work components: occlusion estimation, completion, and
decomposition layers. The network then produces a set of masks
that segment the image into the desired regions.

Clothing parsing has progressed significantly in a short period
of time and shows promising results. While techniques exist to
parse a low resolution image, in general techniques have concen-
trated on high resolution images to reduce image noise due to
the reliance on fine grained details to ascertain the appropriate
class.

Unfortunately these techniques are still erroneous when seg-
menting images which introduces further noise to a surveillance
image. While potentially not being as severe as errors introduced
by heuristic or static bounded regions, these errors in segmenta-
tion can be detrimental to the performance of subsequent pro-
cesses (i.e. colour detection in a region).
3. Approach

In this section we outline a probabilistic framework to locate
subjects of interest in surveillance imagery. Fig. 2 represents the
pipeline used in the semantic search of target subjects resulting
in their similarity to a supplied target query.

In Section 3.1, the generation of a target query is composed
from cues that capture semantically describable clothing attri-
butes: colour, and pattern. The process for clothing attribute recog-
nition into the semantic traits is outlined in Section 3.2. Finally, the
use of DST for the fusion of features and traits is outlined in
Section 3.3.
3.1. Query generation

Regardless of camera resolution, clothing dominates the out-
ward human appearance and as such clothing traits will comprise
the target query. The colour and texture queries for both the leg
and torso regions are selected from the descriptors outlined in
Table 1.



Fig. 2. Overall system pipeline, initially a target query is designated from semantically describable attributes. The target image with associated segmentation mask is used to
create the regions of interest within the image. Based on these ROIs and the query classification for texture (expanded in Fig. 3) and colour is completed. The texture and
colour information is then combined using DST based techniques to supply a final similarity score to the query. Note that in this paper we consider only hand segmented
semantic masks to remove any errors associated with automated semantic parsing approaches, however these could be used in place of this.

Table 1
Clothing attributes for target query generation.

Attribute Categories

Colour Black, Brown, Blue, Gray, Green, Orange,
Pink, Purple, Red, White, Yellow

Pattern Irregular, Plain, Plaid, Diagonal Plaid, Spots,
Diagonal Stripes, Horizontal Stripes, Vertical Stripes
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Selected colours are taken from the culture colours of Berlin and
Kay [2], and shown in Table 1. For texture we use 8 textures that
we believe best encompassed the majority of available clothing
textures, while also expanding on the textures used by Yang
et al. [33].

3.2. Attribute classification

The attribute classification component probabilistically
matches a region of interest (ROI) to the clothing cues described
in Section 3.1. For classification of the texture snippets, the entire
snippet is considered the ROI as no occlusions or deformities are
present in the dataset.

To classify pedestrians in surveillance footage the masks desig-
nating the ROI are more complex. These masks need to allow for
both the dynamic nature of pedestrians and the body component
to be classified (i.e. torso and leg region). The query based classifi-
cation technique undertaken here helps to constrain this problem.
While there exist techniques to automatically segment masks for
clothing attributes in both high and low resolution settings, all of
these introduce additional errors into the pipeline. These can be
associated with incorrect pixel labels which can act to reduce the
performance of the attribute classifiers. Similarly, the expansive
nature of the attributes being segmented with existing parsing
techniques are unnecessary for this task. The attribute classifica-
tion component here only relies on the presence of the torso cloth-
ing mask and leg clothing mask as holistic components, in this
evaluation we do not require that the torso region be broken down
into multiple articles of clothing (i.e. shirt, vest, jacket).

To ensure that the attribute classifiers themselves are being
evaluated without possible biases caused by a parsing technique,
all the pedestrians in the dataset are hand segmented into pixel-
wise masks. An example of these masks is shown in Fig. 8 where
we only consider the torso clothing an leg clothing masks. When
annotating a region of clothing, if there are multiple items of cloth-
ing within the region, all articles were combined into one such that
an open jacket with a shirt underneath becomes a single mask
component.

3.2.1. Colour attribute
Colour classification uses 11 colours (see Table 1), modelled

using GMMs trained on ancillary colour data supplied in Halstead
et al. [12]. We train our GMMs in the cieLab colour space using the
expectation maximisation algorithm and a maximum of 3 mixtures
selected using the Bayesian information criterion, as it provided
the most consistent results when compared against the colour
snippets reserved for testing.

The similarity score for the ROI for the selected colour, ci, of the
ith trait is,

Sci ¼
X
I#ROI

Gc Ið Þ
ROI

; ð1Þ

where S is the similarity score of the current target image (I) over
the ROI. The probability map, G, is scaled from the sum of all densi-
ties in the GMMs, normalised to 1 such that,

Gc ¼ GMMcPC
j¼1GMMj

; ð2Þ

where C is the total number of colour GMM’s (11).

3.2.2. Texture attribute
The texture component comprises a three phase classification

process (see Fig. 3), with the initial probabilistic classification
being performed by an ensemble of SVMs. Using the extended tex-
ture dataset outlined in Section 4.1 we train our SVMs using libsvm
[4] with a radial basis function for feature mapping. We use 5�fold
cross validation, with parameter selection (C and c) completed
using an exponential grid methodology between the ranges
�40;40½ �, with probability mapping enabled. The training of our
SVMs differs from Yang et al. [33], where they use a single SVM



Fig. 3. The Texture classifier comprises 3 layers. An image has features extracted using the Radon transform, Wavelet sub-band statistics, dense SIFT descriptor, and local
binary pattern. During training features are used to train individual SVMs, while during evaluation the features are fed to the SVMs for probabilistic classification. The
independent SVM results are fed forward to individual DST classifiers, and the cross validation accuracy of each SVM is used as an input to the DST classifiers. The final stage
uses the DST method of independent combination to fuse the outputs producing a final similarity score.

Fig. 4. Dempster-Shafer mapping of the full sample space, including the uncer-
tainty effect on belief and plausibility [17].

M.A. Halstead et al. / J. Vis. Commun. Image R. 58 (2019) 439–452 443
with all features concatenated into a single vector. In our novel
technique we compute a SVM for each feature, creating an ensem-
ble of classifiers. This ensemble methodology is adopted to provide
discriminatory ability against the individual features performance
in the DST classifiers.

The Radon transform (RT) signature (the variance of the RT)
provides global rotational features based on the Sobel edge profile.
Similarly providing global features, statistical measures including
the variance (Var), energy (Ene), uniformity (Uni), and entropy
(Ent) are calculated in each of the wavelet transform sub-bands
(wavelet subband statistics - WSS), creating 16� L features where
L is the depth of the sub bands. Yang et al. [33] provides an in depth
look into the RT and WSS, and the same approach is adopted here.

SIFT and LBP are used to capture local properties. SIFT extraction
follows Yang et al. [33] where a densely sampled SIFT descriptor is
fed to a bag-of-words (BOW) classifier, reducing dimensionality. To
emphasise more discriminative words, we weight the BOW output
with a term frequency-inverse document frequency (tf-idf)
methodology. In all evaluations we use 100 words in our BOW clas-
sifier, and perform L2�normalisation on the resulting feature vec-
tor. For the local binary pattern (LBP) of the texture snippet, the
cell size is set to the size of the image snippet itself, producing a his-
togram of the local textures. Computing the quantized LBP of the
image snippet produces a feature vector of length 58.

We train a multi-class SVM for each feature descriptor (see
Fig. 3). Each SVM is trained with a mapped probability output
and the cross validation accuracy is retained to provide classifier
accuracy based on the supplied training data.

Finally, we create the DST classifiers (see Fig. 3). Following com-
mon DST notation, we define our frame of discernment (sample
space), H, as a set of mutually exclusive hypothesis,

H ¼ Gn; Im½ �; ð3Þ
where Gn (genuine) is the desired class probability from the SVM,
Im (imposter) is the summed probability of the remaining classes
for each of the independent features (f),

Gn ¼ SVMf Tð Þ; ð4Þ
Im ¼

X
tRT

SVMf tð Þ; ð5Þ
and T is the desired texture. The power set (2H) is then used to map
all possible combinations of H and the empty set (ø),

2H ¼ ø;Gn; Im;H½ �; ð6Þ
defining the inclusion of the frame of discernment (H) in 2H. H can
be thought of as a subjective term that maps the uncertainty within
the classifier itself. The strength of DST is the ability to measure
uncertainty within the data.

Next, the mapping of the entire power set is required, where
degrees of belief, m Aið Þ : 0;1½ �, are assigned by a Basic Assignment
Function such that,X

m Að ÞjA#2H
� �

¼ 1; ð7Þ
m øð Þ ¼ 0; ð8Þ
ensuring the power set sums to one. It can be seen that as the
uncertainty (H) decreases to zero, DST reverts to Baysian probabil-
ity theory. One of DST’s strengths is the assignment of the measure
of belief, denoted bel Aið Þ; and the measure of plausibility, denoted as
pl Aið Þ, where bel Aið Þ 6 pl Aið Þ, further illustrated in Fig. 4. The belief
of Ai is the sum of the basic assignment functions of all subsets of
Ai (in our case Gn and Im maintain their values),

bel Aið Þ ¼
X

m Bð ÞjB#Aið Þ; ð9Þ
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where B represents each of the subsets of Ai. The measure of plausi-
bility is calculated similarly using either of,

pl Aið Þ ¼
X

m Bð ÞjB \ Aið Þ ¼ 1�
X

bel �Ai
� �

: ð10Þ
This benefit of DST also presents one of its major challenges: the

creation of the uncertainty term, and assigning values to the Basic
Assignment Function. This assignment can prove challenging in
computer vision problems, and Nguyen et al. [22] outline some
of the problems witnessed in other applications of DST including
situations where the uncertainty is set to zero, or the uncertainty
is set to Im, with Im becomming 0.

To calculate our uncertainty term we exponentially scale a ratio
of the SVM output, which is then further scaled by the SVM classi-
fiers cross validation accuracy (CV). A ratio (R) is calculated as the
ratio of the two highest probability scores from the current SVM
regardless of class, providing a metric on the distinctiveness of
classification in the current feature’s SVM. Then exponential
weighting is calculated,

eU ¼ es�R; ð11Þ
where s is a weighting factor. For the evaluation of the texture clas-

sifier we linearly normalise eU into the range 0;1½ �, while in our
localisation system we attempt to maintain a higher value of uncer-
tainty by removing this normalisation. We then further weight the
uncertainty using the cross validation accuracy,

U ¼ 1� CVð Þ � eU ; ð12Þ
creating an uncertainty value that incorporates the distinctiveness
of classification (R) and the validity of the model (CV). This discrim-
inates against poor classifiers, allowing more dominant classifiers to
maintain high scores. Finally, prior to DST calculation we perform
L1�normalisation of the genuine, imposter and uncertainty compo-
nents, such that,

U þ Gnþ Im ¼ 1: ð13Þ
From Eq. (13), it can be seen how normalised or unnormalised

uncertainty values will impact the masses of Gn and Im. Weighting
with higher values of swithout subsequent normalisation between
0;1½ �, and depending on the initial value of R, we would expect that
the final values for the Gn and Im to be scaled to a smaller value.
However, this gives way to the plausibility of the DST classifier
to return greater values.

3.3. Fusion

Fusion is required at both a trait and system level, and at all
levels we assume complete trait and classifier independence. In
instances where the trait has multiple annotations attached,
specifically during colour classification in the person search evalu-
ation, a method of fusing the independent scores together is
required. Using Fig. 4 as a reference, we perform trait level fusion
of multiple attached annotations in the following manner,

Adoubt ¼
YM
m¼1

Bdoubt mð Þ; ð14Þ

Adisbelief ¼
YM
m¼1

Bdisbelief mð Þ; ð15Þ

Auncertainty ¼ Adoubt � Adisbelief ; ð16Þ
where A is the fused DST classifier; and M is the number of DST
classifiers, B, to be fused. Calculating the disbelief and doubt in
this manner reduces their overall impact on the new classifier,
increasing the expected values for belief and plausibility (as
expected when fusing two accurate classifiers).

In both the texture classification and person localisation there is
a requirement for accurate DST fusion: at feature level (RTSig, WSS,
SIFT, LBP) for the texture descriptor; and at trait level (torso colour,
torso texture, leg colour, leg texture) fusion for the localisation. In
each of these the assumption of independence allows the use of the
DST Independent Method of Combination, defined as,

K ¼ 1�
X

m Aið ÞjAi \ Bi ¼ øð Þ � m Bið ÞjAi \ Bi – øð Þ; ð17Þ

m Cið Þ ¼
P

m AijAi \ Bi – øð Þ �m BijAi \ Bi – øð Þ
K

; ð18Þ

where the new DST classifier C, is created from existing DST classi-
fiers, A and B. This rule derives the Basic Assignments of the new
variable by calculating the sum of the accumulated evidence in Ai

and Bi and dividing by the sum of the conflict. At the feature level
this creates a final DST classifier that incorporates the information
of each of the 4 features. The trait level fusion incorporates informa-
tion from all of the traits creating a final DST classifier, producing a
final similarity belief (i.e. how similar the image is to the query).

4. Experimental setup

Two evaluations are contained in this paper: firstly, the proposed
texture classification technique is compared to the state-of-the-art;
and secondly, a person search framework evaluated to illustrate the
performance of the texture and colour classifiers in a surveillance
setting. The texture and person search datasets used in these
experiments are outlined in Sections 4.1 and 4.2 respectivley;
and experiment details and parameters are given in Sections 4.3
and 4.4 for the texture classification and person search tasks
respectivley.

4.1. Texture dataset

We recast and extend the clothing texture dataset of Yang et al.
[33] to include the additional traits: diagonal plaid, spots, diagonal
stripes, horizontal stripes, and vertical stripes; giving a more com-
prehensive and challenging dataset. All data was collected from the
internet via manual search, and inter and outer class variations
were included.3 An example of each trait, and the full breakdown
of the dataset can be seen in Fig. 5.

Texture evaluation is performed across two versions of the
dataset: at the original resolution (140� 140 pixels) and at
25� 25 pixel resolution. Use of the original resolution allows a
comparison to Yang et al. [33], while the lower resolution snippets
better reflect a surveillance environment. Four examples of the
high and low resolution snippets are shown in Fig. 6, outlining
the extra challenge expected from the lower resolution task.

4.2. Person search dataset

For the evaluation of our novel person search technique a newly
developed dataset was required due to a number of factors includ-
ing: the need for robust pixelwise annotation of subject appearance;
avoidanceof occlusiondue to clothing and/or luggage; andadescrip-
tive annotation of the clothing colour and texture for each subject.

This dataset contains520 subjects (examples shown inFig. 7) col-
lected in a surveillance setting, with varied lighting and resolution.
In addition to the clothing attribute traits, the gender (male or
female), pose (front on, rear, 45�, and 90� to the camera), and cloth-
ing type (long or short) for the torso and leg regions are annotated.4



Fig. 5. An example of each of the 8 classes contained in the texture dataset, expanded from that of Yang et al. [33], and available upon request. (a) irregular pattern (156 in
dataset), this class also includes all forms of logos, (b) patternless or plain (156 in dataset), (c) spots (156 in dataset), (d) plaid or check (159 in dataset), (e) diagonal plaid or
check (157 in dataset), (f) horizontal stripes (154 in dataset), (g) vertical stripes (154 in dataset), and (h) diagonal stripes (154 in dataset). Note also the other variations within
the data including the crease in (c) and the differing width of the stripes in (d)-(g).

Fig. 6. Comparison examples between the two resolution types: (a) to (d) show high resolution for irregular, spots, horizontal stripes, and plaid. (e) to (h) show the
corresponding patches in low resolution.

Fig. 7. Examples of four subjects from the newly created database. (a) Male wearing
a short sleeve plain green top and short plain grey pants. (b) Female wearing a short
sleeve plain black top and short plain white pants. (c) Male wearing a long sleeve
plain grey top with long plain black pants. (d) Male wearing a short sleeve
horizontal striped grey, blue, and white shirt with short plain brown pants. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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For each article of clothing, the subject is annotated for a single
texture based on those outlined in Section 3.1. Due to the inherent
nature of some textures multiple colours are visible, to allow for
Fig. 8. An example of one of the subjects broken down into their binary masks. (a) The
binary mask of the hair, (d) represents the binary mask of the leg clothing, (e) represen
represents the binary mask of the skin in the arms region, (h) represents the binary mas
region, (j) represents the binary mask of the torso clothing.
this a maximum of three colours were annotated in each of the
leg and torso regions. Finally, each subject is pixelwise annotated
for the following regions: torso clothing, leg clothing, hair, shoes,
luggage, arm skin, leg skin, facial skin. An example of a parsed sub-
ject with their respective binary masks is shown in Fig. 8. For the
person search evaluation in this paper only the torso clothing
and leg clothing regions are utilised. These masks were used to
avoid introducing errors associated with automatic parsing tech-
niques, and to better reflect the overall performance of the pro-
posed approach.

4.3. Texture evaluation setup

The texture evaluation is performed across both high and low
resolution snippets. To extract the information for the RT, the rota-
tional properties of the transform are performed over the range:
d ¼ 0 : p

60 : p
� �

. These values of d were selected to provide global
rotational properties without saturating the information being
extracted. The Sobel operator component of the RT requires a
threshold for edge detection, and this is set to one half of the signal
to noise ratio of each individual snippet. This threshold best
original image, (b) an example of the person parsed into regions, (c) represents the
ts the binary mask of the luggage, (f) represents the binary mask of the shoes, (g)
k of the skin in the head region, (i) represents the binary mask of the skin in the leg
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reflected the results seen in Yang et al. [33], which were deter-
mined after empirical evaluation.

The WSS are constructed from a standard Haar wavelet trans-
form, with a depth of L ¼ 3 for both resolutions, similar to Yang
et al. [33].

The SIFT descriptor varies between the high and low resolution
domains. For the high resolution snippets the descriptor uses
spatial resolutions of 4, 8, and 16, while at low resolution spatial
Fig. 9. Comparison between Yang et al. [33] and the proposed technique using the full ran
computed over three SIFT resolution sizes (4, 8, and 16), and evaluated on the high reso

Fig. 10. Comparison between Yang et al. [33] and the proposed technique using the full r
is computed over three SIFT resolution sizes (2, 3, and 4), and evaluated on the low res
resolutions of 2, 3, 4 are used. The disparity is due to the resolution
of the image snippets, and the need to maintain SIFT as a local
information extractor.

LBP requires no changes between the different resolutions. For
both, the LBP is extracted in a 3� 3 neighbourhood and then
aggregated into a histogram based on the size of the current
snippet, creating a histogram based on 58 uniformly quantized
patterns.
ge of descriptors: RT, WSS, SIFT, and LBP, as an ensemble of classifiers. Evaluation is
lution (140� 140 pixels) image snippets.

ange of descriptors: RT, WSS, SIFT, and LBP, as an ensemble of classifiers. Evaluation
olution (25� 25 pixels) image snippets.
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Finally, to set up the DST classifiers in the texture classification
framework, the accurate construction of the uncertainty term is
critical to system performance. The primary parameter to be set
is the weighting component s. For both resolutions s is set to 1.

Evaluation of the clothing texture classifier is completed in a
similar manner to Yang et al. [33]: the training and testing split
is computed over a range of training percentages, starting at 10%
training data and increasing in 5% increments to 80%, creating
15 splits per resolution. At each split we create 50 random alloca-
tions of the image snippets to the training and testing sets. Pre-
sented results are an average measure of recognition accuracy
over the entire training/testing set.
4.4. Person search evaluation setup

To calculate texture features for person localisation we need to
allow for non-uniform ROIs obtained for the torso and leg clothing
Fig. 11. Recognition accuracy comparison of the various permutations of the modalities a
resolution of two and the WSS with a depth of three. From approximate weakest to stron
and RT; SIFT and LBP; SIFT, LBP, and RT; LBP, RT, and WSS; SIFT, LBP, and WSS; propose
(this is of less concern for colour as it can be classified pixelwise).
For texture, models are trained using all low resolution snippets.
Each snippet contains 625 pixels, creating separation from the per-
son search dataset as ROIs are distorted due to factors including
pose and occlusion. To compensate, image patches are extracted
based on the boundaries of the binary mask. Patches are padded
with zeros to obtain a square patch of minimum size (25� 25).
Finally, the patch is resized such that the foreground pixels in
the binary mask are approximately equivalent to the number of
pixels in the texture snippets (i.e. � 625 pixels).

Allowances are also made for individual features in this setting.
RGB images are filtered using the mask, such that background pix-
els in the mask are set to the background value in the RGB image.
This is problematic for the RT due to its’ usage of the Sobel opera-
tor: the Sobel operator will detect an edge profile on the border of
the foreground and background. As such, once the edge map is cal-
culated we perform edge suppression between the foreground and
s well as the fully proposed technique, the SIFT descriptor is evaluated with a spatial
gest: RT and WSS; SIFT and RT; SIFT and WSS; SIFT, RT, and WSS; LBP and WSS; LBP
d technique.
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background, allowing the edge profile to be utilised with the RT
component outlined in Section 3.2. The WSS also requires statisti-
cal allowances to ensure the obtained values maintain viability.
We calculate the probability mass function over only the specified
ROI (designated by the binary mask), such that the mean of the
sub-band is calculated as:

l ¼
XI�1

i¼0

xi � PROI xið Þ: ð19Þ

Both the densely sampled SIFT and LBP use the binary mask to
aggregate features at valid locations. For both, if any of pixels in the
current neighbourhood are background the neighbourhood is
ignored. Extraction then proceeds as outlined in Section 3.2.

The final component of the person search is creating the DST
classifiers for colour and texture. In Section 3.2 we outlined the
general approach to uncertainty calculation. For colour classifica-
tion, the exponential weighting with s is removed, creating uncer-
tainty values solely using the ratio of the top two probabilistic
outputs. This approach is used as only the distinctiveness of classi-
fication was required to accurately model the subjectivity within
the data. For the classification of texture and the subsequent calcu-
lation of uncertainty the exponential weighting is employed. swas
set to 10 to provide higher values of uncertainty within the data
due to disparity in the classification distinctiveness.

To evaluate the person search approach, two different evalua-
tion techniques are used. Initially, performance is evaluated using
direct and independent comparisons of each subject’s similarity to
their personal target query. To produce the final similarity score,
both the belief and plausibility components of the fused DST clas-
sifier are extracted. The belief information of a subject contains
only the knowledge that directly matches the target subject to
the query. Alternatively, the plausibility score has the benefit of
including any overall uncertainty attached to the DST classifier.
The second method emulates an surveillance identification task,
where there is a single target query to be matched against a corpus.
The set of target queries is limited to unique queries only, avoiding
multiple evaluations on the same query. Each query is compared to
the corpus to calculate a ranked output of the subjects that match.
In each evaluations only fully annotated subjects are considered (at
least one colour in the torso and leg region, and texture in each
region). Omiting subjects with only partial annoation, we have a
total of 509 out of 520 subjects available.
Fig. 12. Similarity histogram of the query to subject evaluation, where the red line in
classifier with a mean similarity of 0:270, and (b) displays the plausibility of the Demps
5. Results

The system evaluation is completed in two distinct parts, first
we evaluate our novel texture classifier on the newly expanded
texture dataset described in Section 4.1 and the parameters out-
lined in Section 4.3. The second evaluates the novel texture classi-
fier and a colour classifier in a person search setting, using the
dataset outlined in Section 4.2 and the parameter selection
described in Section 4.4.
5.1. Texture evaluation

We evaluate our novel texture classifier on both full and low
resolution image snippets. The full resolution (140� 140 pixels)
allows a direct comparison to the state-of-the-art Yang et al.
[33]. As shown in Fig. 9, at a SIFT spatial resolution of 4, we are able
to achieve a recognition accuracy of 89:07% compared to 87:27%
for Yang et al. [33]. As can be seen, lower spatial resolutions of
the dense SIFT descriptor offer superior performance due, in part,
to the ability to provide a richer description of the local texture.

In Fig. 10 we compare the low resolution snippets performance
to Yang et al. [33]. Once again we see the benefit of lower spatial
resolutions of the SIFT classifier, providing a richer texture repre-
sentation. At a training split of 80% we are able to outperform
the state-of-the-art by 1:4% (84:75% to 83:36%), at a SIFT spatial
resolution of 2.

Finally, the texture classifier was evaluated across all the possi-
ble permutations of the modalities using the lower resolution snip-
pets. This evaluation stands as proof that the proposed technique
requires all four modalities for optimal performance. From
Fig. 11, while a number of the modes in combination compare
favourably with the full technique, the complete combination of
the RT signature, WSS, LBP, and SIFT descriptors are best able to
classify the texture snippets at low resolution.
5.2. Person search evaluation

Performance of the proposed person search technique is
evaluated using the techniques outlined in Section 4.4. In these
evaluations there is no subject enrollment, as seen in person
re-identification techniques, meaning that attribute classification
requires the global models described in Section 3.2.
dicates the mean similarity. (a) Outlines the belief of the Dempster-Shafer theory
ter-Shafer theory classifier with a mean similarity of 0:332.
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The first evaluation, subject to query, calculates the fused sim-
ilarity score based on the torso clothing colour and texture, and the
leg clothing colour and texture. The similarity metrics are based on
the output from the fused DST classifier for each of the belief and
plausibility properties. System performance for the subject to
query is displayed in Fig. 12.

The results are displayed as a histogram of the similarity scores
of both the ‘‘belief” and ‘‘plausibility” measures to their respective
queries. Investigating the performance under this metric outlines
the strength of the plausibility as a similarity metric. A mean sim-
ilarity score of 0:332 is achived for the plausibility, compared to
Fig. 13. Ranked performance of the subject location technique in a query to corpus setti
measure of the ranked performance using the belief score from the DST classifier. (b) O
using the plausibility score from the DST classifier. (For interpretation of the references to
0:270 for the belief, outlining that we achieve higher similarities
between the subject and their query when using plausibility. This
gain due to the larger value of s being used without linear normal-
isation, creating larger values of uncertainty. As outlined in Sec-
tion 3.2, higher values of uncertainty result in the scaling of the
genuine and imposter variables, however, the plausibility remains
unchanged due to its inherent use of the uncertainty component.

Many techniques, including traditional biometrics, may require
definitive matching to a target query, and these results illustrate
strengths of DST in this field. In a surveillance person search
situation theplausibility contains the addedbenefit of incorporating
ng, with a cumulative plot (red). (a) Outlines the performance of this technique as a
utlines the performance of this technique as a measure of the ranked performance
colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 14. Ranked comparison of various successes and failures of the proposed
technique, each row is a different query and displays the top ranked subject down
to the fourth ranked subject for each. Each ranks search annotation is: row (1)
plain white top with plain black leg clothing; row (2) plain green top with plain
black leg clothing; row (3) plain pink top with plain grey leg clothing; and row (4)
horizontally striped white and grey top with plain blue leg clothing. In each row
the subjects bounded in green indicate that they have been annotated with the
description that is being searched for. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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all uncertainty containedwithin the query, trait, and classifier itself.
Utilising this property provides a higher chance of detecting the
desired target subject within the current scene.

However in surveillance and security situations it is rare that a
target query would be compared to only a single subject. In such
situations it is more likely that hundreds of potential matches will
be compared to. The ranked performance of our query to corpus
metric is displayed in Fig. 13, where each unique query is com-
pared to all subjects. Both the belief and plausibility scores from
the DST classifier are investigated to ascertain the best performing
metric. In Fig. 13 it appears that both scores display equivalent per-
formance. This similarity is further evidenced when considering
the cumulative sum over various locations: At rank 1 we achieve
a belief of 0.022 and a plausibility of 0.018; rank 20 achieves a
belief of 0.236 and plausibility of 0.238; and at rank 100 we
achieve a belief of 0.583 and a plausibility of 0.530.

In contrast to the subject to query evaluation where the plausi-
bility outperformed belief, here the incorporation of uncertainty
fails to have the same positive impact on the overall performance.
This could be due, in part, to the fact that subjects are all being
weighted through the use of the uncertainty, negating its overall
impact.

In this difficult domain the proposed methodology is still able
to produce the majority of matches by rank 100 for both the plau-
sibility and belief. This ability to narrow the search field has ben-
efits in security and surveillance situations where a query is
entered as a textual parameter and then the best matches are
returned for operator review. Search and evaluation in this man-
ner would provide operators at the scene with a much more
manageable list of subjects to visually inspect when searching
for the desired subject.

Fig. 14 shows four examples of matching different queries to
the corpus. The top two rows outline successful searches, the bot-
tom two show failures. Success requires a subject annotated with
the correct query (outlined in green) be returned within the top
four matches.

With three of the top four matches being correct, row one out-
lines a successful attempt. While the fourth subject is of similar
appearance to the query, the subject must match the entire query
for it to be correct. In row two a similar situation is presented, with
many of the subjects being similar to the query where the green
shirt dominates the results. In this case, while a single subject com-
pletely matches the query, other returned subjects have a partial
(yet strong) match. Row three represents an example of colour
confusion. The search parameters are a pink shirt and grey pants,
and in this instance the red is confused with pink creating incorrect
matches. Finally, in row four the target is a horizontal striped white
and grey top with blue pants. Although this search fails, two of the
subjects returned are wearing the correct texture, but with varying
colours, indicating that while we fail to detect the correct subject it
does utilise the texture trait correctly.

Figs. 13 and 14 show that while promising results are achieved,
there are still considerable limitations. To investigate these, a dee-
per evaluation of the traits at a class level is performed. Fig. 15
shows the ranked output for each individual trait, allowing an eval-
uation of each independently.

From Fig. 15 it is clear that system is highly reliant on the colour
in the torso and leg regions. The strength of the colour is most
obvious when evaluating rank one performance of each of the
traits. We see here that torso colour achieves a rank one perfor-
mance of 57:8% as the top scoring trait, leg colour scores 45:9%,
torso texture scores 28:8%, and as the leg texture is the least accu-
rate with a rank one performance of only 17:4%.

Additionally, investigation into the distribution of the texture
shows that both the torso and leg regions are predominantly
labelled as ‘plain’, resulting in a disparity in the evaluation of the
traits as their general lack in appearance equates to an inability
to adequately evaluate the classifiers. While care was taken to
ensure minimal occlusions through bags and multiple items of
clothing, these factors still exist which account for some of the
reduced performance across the colour and texture classification.
We also found that when considering the SIFT and LBP compo-
nents, the leg region obtained about 50% smaller neighbourhoods,
primarily due to the pose of the legs compared to the centralised
location of the torso.

While producing promising results in a low resolution surveil-
lance setting, there are still some limitations in the person search
technique, particularly with regards to texture. The state-of-the-
art results on the texture snippets did not directly transfer to the
person search domain, however, the use of DST for fusion was able
to somewhat mitigate this and promising results were still
obtained. The scaled uncertainty component associated with the
clothing texture modalities created the ability to discriminate
against these modes while allowing for stronger colour classifica-
tion where appropriate. The higher resulting uncertainty of the
texture classifier (due to higher values of s) proves the viability
of DST as an intelligent fusion technique for soft biometric
modalities.



Fig. 15. Ranked output of the different traits evaluated on a class level. (a) torso clothing colour performance, (b) leg clothing colour performance, (c) torso clothing texture
performance, and (d) leg clothing texture performance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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6. Conclusion

In this paper, we propose a person search technique to match a
textually supplied query to a target subject in imagery, using cloth-
ing colour and texture. For clothing colour, we train Gaussian mix-
ture models (GMM) from colour snippets extracted from a
surveillance setting. A novel texture model is trained using a suite
of features (Radon transform signature, wavelet statistics, SIFT,
LBP) and an ensemble of support vector machines (SVM), the out-
put of which is fused using Dempster-Shafer theory (DST) to incor-
porate uncertainty.

As a pure texture classifier, evaluations were completed on an
eight class database using images at the full resolution of
140� 140 and a down sampled resolution of 25� 25, representing
what would be expected in a low resolution surveillance situation.
Results at the lower resolution showed an improvement of 1:4%
over a baseline approach, with the proposed approach scoring a
recognition accuracy of 84:75% and the baseline scoring 83:36%.
The texture descriptor was also evaluated as part of a person search
technique using a newly created and fully annotated surveillance
database, which is publicly available to researchers, allowing direct
evaluation of the colour and texture classifiers without the prob-
lems caused by parsing or other pre-processing errors.

We evaluated the person search technique by attempting to
retrieve matches to a query from the entire corpus. In this paper
we utilised hand segmented surveillance images to reduce errors
associated with automated semantic segmentation techniques.
This evaluation showed, that while limitations exist, our ability
to match to a target query using just two soft biometric descriptors
was promising. In this metric we demonstrate that at rank 100 (out
of 520) we were able to produce 58:3% chance of detecting the
desired subject. Investigation into the matching power of the indi-
vidual traits reveals a heavy reliance on colour, as the individual
texture performance in a person search setting was less than opti-
mal. In part this is due to the imbalanced nature of the data and the
inconsistent nature of the patches, however encouraging results
are still obtained.

The evaluation of the full system and individual trait perfor-
mance also outlines the strength of DST as a method of fusion.
The ability to weight traits based on their uncertainty allowed
the system to achieve promising results for person location. Simi-
larly, the strengths of DST would allow for the modular addition of
further traits, potentially providing stronger soft biometric signa-
tures, and ultimately better localisation.
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