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Abstract

Objects in the world exhibit complex interactions. When captured in a video sequence, some interactions manifest themselves as

occlusions. A visual tracking system must be able to track objects, which are partially or even fully occluded. In this paper we present a

method of tracking objects through occlusions using appearance models. These models are used to localize objects during partial occlusions,

detect complete occlusions and resolve depth ordering of objects during occlusions. This paper presents a tracking system which successfully

deals with complex real world interactions, as demonstrated on the PETS 2001 dataset.
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1. Introduction

Real world video sequences capture the complex

interactions between objects (people, vehicles, building,

trees, etc.). In video sequences, these interactions result in

several challenges to the tracking algorithm: distinct objects

cross paths and cause occlusions; a number of objects may

exhibit similar motion, causing difficulties in segmentation;

new objects may emerge from existing objects (a person

getting out of a car) or existing objects may disappear

(a person entering a car or exiting the scene). Maintaining

appearance models of objects over time is necessary for a

visual tracking system to be able to model and understand

such complex interactions.

In this paper, we present a tracking system which uses

appearance models to successfully track objects through

complex real world interactions. Section 2 presents a short

review of related research. Section 3 presents the overall

architecture of the system, and its components: background
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subtraction, high-level tracking and appearance models, are

discussed in Sections 4–6, respectively. We have developed

an interactive tool for generating ground truth using partial

tracking results, which is discussed in Section 9. Section 10

discusses our method for comparing automatic tracking

results to the ground truth. Section 11 presents results on the

PETS test sequences. We summarize our paper and present

future directions in Section 12.
2. Related work

Visually tracking multiple objects involves estimating

2D or 3D trajectories and maintaining identity through

occlusion. One solution to the occlusion problem is to avoid

it altogether by placing cameras overhead, looking down on

the plane of motion of the objects [1–3] or to use the fusion

of multiple cameras to determine depth [4,5].

In the case investigated here—of static monocular

cameras viewing moving vehicles and people from a side

view—occlusion is a significant problem. It involves

correctly segmenting visually merged objects, i.e. during

occlusion, and specifying depth layering. An useful

categorization of the work in this field is based on the

complexity of the model used to track objects over time. As

model complexity increases, stronger assumptions about the

object are invoked. In general, as the complexity of the

models increases, more constraints are imposed, better
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Table 1

Performance measures for Dataset 1, Camera 1

Multi-person tracking models Constraints and limitations

Simple cues: color histogram, temporal consistency, shape features [6–8] Cannot perform segmentation during occlusion, limited identity

maintenance, good computational speed performance

Appearance based: evolving image information [9,10,20] Better identity maintenance but not robust to 3D object viewpoint changes,

similar textured, colored objects; simplistic occlusion rules

3D scene model and 2D human properties [11,12,14] Requires camera calibration and input of scene information; improves

reliability of constraints when correct but makes assumptions about

normative human height stance, and behavior

2D human appearance model: active shape model, 2D body configurations,

2D clothing blobs [15–17]

Requires prior training, sometimes requires learning individual

appearances, assumes people wearing clothing of different colors with

uniform colors/textures

2d human temporal model: motion templates of people walking, higher

order dynamics [14,18,19]

Assumes people are actively walking, moving in a periodic fashion or

assumes second order dynamics
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performance is achieved—when the appropriate conditions

are met—but general robustness, applicability and real-time

speed are more difficult to attain. Table 1 gives examples of

multi-person tracking methods for progressively more

complex tracking models. Several prototype projects are

listed for each class of method. The right-hand column

describes the constraints and limitations for each class. A

few of the projects are listed in more than one category

because they integrate model information from more than

one class. In order to achieve the generality of simple

methods and the accuracy of refined models, requires

spanning a range of model complexity. In almost all of these

approaches, background subtraction is the first step, and

plays an important role including adapting to scene changes

and removing shadows and reflections.

At the top of Table 1 are the simplest methods that rely

on basic cues such as color histograms and recent temporal

history of each object. These systems have achieved a high

degree of robustness and real-time performance but are

limited in the accuracy with which they can perform

trajectory estimation and identity maintenance through

occlusion. Each object is represented by a set of features.

In [Roh 00] each object/person is represented by two or

three colors temporally weighted depending on the size,

duration and frequency of its appearance. In [6,7] each

object/person is represented by a temporally updated color

histogram. In [6], the histogram intersection method is used

to determine the identity of an object and the histograms are

used directly to compute the posterior probability of a pixel

belonging to each object during an occlusion. In [7], people

are tracked using the similarity of their color histograms

from frame to frame using a mean shift iteration approach.

To segment individuals from each other, temporal infor-

mation is used.

Appearance-based systems have improved the perform-

ance of tracking and identity maintenance through occlusion

but are still limited to simple interactions and scene

conditions. Appearance-based systems, by our definition,

maintain information about each pixel in an evolving

image-based model for each moving object/person. In the

simplest case, this is just an image template. For example in
[8], people and vehicles are classified using shape

characteristics then tracked by template matching combined

with temporal consistency information such as recent

proximity and similar classification. Their method can

deal with partial occlusion but does not take into account the

variable appearance of objects due to lighting changes, self-

occlusions, and other complex 3-dimensional projection

effects. The work most closely related to this paper is that of

[9]. Their system combines gray-scale texture appearance

and shape information of a person together in a 2D dynamic

template, but does not use appearance information in

analyzing multi-people groups. In our system, we use a

color appearance model (thereby incorporating texture,

shape, temporal and occlusion history) and are able to

successfully perform identity maintenance in a wide range

of circumstances but our system is still vulnerable to

misclassification for similarly colored/textured objects

particularly for complex non-rigid 3D objects when they

interact, such as people, since their appearance depends on

viewpoint and is often complicated by shadows and scene

geometry.

As the complexity of tracking models, the methods

become progressively more sophisticated at performing

identity maintenance but at the expense of greater

constraints. For example, if it is possible to calibrate the

camera and manually input specific information regarding

the scene, then systems can be designed which take

advantage of knowledge of where people will enter/exit

the scene, where the ground plane is, where occluding

objects occur, and the typical height in the image a person

will occupy. This process is referred to as ‘closed-world

tracking’ in [10] and was applied to tracking children in an

interactive narrative play space. The contextual information

is exploited to adaptively select and weight image features

used for correspondence. In [11] a scene model is created,

spatially specifying short term occluding objects such as a

street sign in the foreground, long term occluding objects

such as a building, and bordering occlusion due to the limits

of the camera field of view. In [12] static foreground

occluding objects are actively inferred while the system is

running without prior scene information. In [13] not only is
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the expected height of a person used based on the ground

plane location, but also the time of day is utilized to

calculate the angle of the sun and estimate the size and

location of potential shadows.

Several systems make assumptions regarding the

composition of a typical person in a scene. For example, it

is frequently assumed that each person is composed of a

small number of similarly colored/textured blobs, such as

their shirt and pants. One of the earliest works to exploit this

type of assumption was [14]. In their work, a single person is

tracked in real-time. The human is modeled as a connected

set of blobs. Each blob has a spatial and color distribution

and a support map indicating which pixels are members of

the blob. Body parts (heads and hands) are tracked through

occlusions using simple Newtonian dynamics and maxi-

mum likelihood estimations. Several researchers have

extended this work to tracking multiple people during

occlusion. In [15] each person is segmented into classes of

similar color using the Expectation Maximization algor-

ithm. Then a maximum a posteriori probability approach is

used to track these classes from frame to frame. In [16] the

appearance of each person is modeled as a combination of

regions; each region has a color distribution represented

non-parametrically. Each region also has a vertical height

distribution and a horizontal location distribution. Assum-

ing the probability of each color is independent of location

for each blob (i.e. each region can have multiple colors but

their relative positions are independent) and the vertical

location of the blob is independent of the horizontal

position, the system computes the product of the prob-

abilities to estimate the best arrangement of blobs (i.e.,

maximum likelihood estimation) and therefore the relative

location of the people in the scene. These assumptions can

be powerful constraints that reduce the search space for

multi-person tracking but inevitably they also reduce the

range of applicability. Although these constraints improve

performance, there are always natural exceptions and

environmental conditions which will cause these systems

to fail. Examples include peculiar postures and transactions

involving objects.

The performance of tracking can also be improved by the

use of temporal or motion constraints. All systems assume

proximity, most methods employ simplistic first order

dynamics, but a more recent generation of systems is

assuming higher order dynamics and specific periodicities

which can be attributed to people. [17] presents an approach

to detect and predict occlusion by using temporal analysis

and trajectory prediction. In temporal analysis, a map of the

previous segmented and processed frame is used as a

possible approximation of the current connected elements.

In trajectory prediction, an extended Kalman filter provides

an estimate of each object’s position and velocity. [18] have

built a system for tracking people walking by each other in a

corridor. Each foreground object is statistically modeled

using a generalized cylinder object model and a mixture of

Gaussians model based on intensity. A simple particle filter
(often called condensation) is used to perform joint

inference on both the number of objects present and their

configurations. Assumptions about motion include model-

ing translational dynamics as damped constant velocity plus

Gaussian noise and a turn parameter that encodes how much

the person (represented by a generalized cylinder) has

turned away from the camera. [13] track multiple humans

using a Kalman filter with explicit handling of occlusion.

Proper segmentation is verified by ‘walking recognition’.

This is implemented via motion templates (based on prior

data of walking phases) and temporal integration. The basis

for walking recognition relies on the observation that the

functional walking gaits of different people do not exhibit

significant dynamical time warping, i.e. the phases should

correspond linearly to the phases of the average walker.

However, in practice, people start and stop, are not always

walking, and it is difficult to find phase correspondence if

the viewed in the same direction as the walking motion.

All of the systems mentioned here are prototypes. Each

project usually evaluates its own performance based on a

small number of video sequences. In most cases, these

sequences are produced by the investigators and typical

results are primarily a small number of visual examples.

Hence it is very difficult to compare the capabilities of these

methods or quantify their accuracy or robustness. However,

in general these methods are brittle and will fail if their large

number of stated and unstated assumptions is not met. The

IEEE Workshop on Performance Evaluation of Tracking

and Surveillance is an attempt to address some of these

issues by making a public dataset widely available and

inviting researchers to compare the performance of their

algorithms. However, there is still a need to provide ground

truth evaluation of predefined performance criteria.
3. Tracking system architecture

In this paper, we describe a new visual tracking system

designed to track independently moving objects using the

output of a conventional video camera. Fig. 1 shows the a

schematic of the principal components of the tracking

system.

The input video sequence is used to estimate a

background model, which is then used to perform back-

ground subtraction, as described in Section 4. The resulting

foreground regions form the raw material of a two-tiered

tracking system.

The first tracking process associates foreground regions

in consecutive frames to construct hypothesized tracks. The

second tier of tracking uses appearance models to resolve

ambiguities in these tracks that occur due to object

interactions and result in tracks corresponding to indepen-

dently moving objects.

A final operation filters the tracks to remove tracks which

are invalid artefacts of the track construction process,
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Fig. 1. Block diagram of the tracking system.
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and saves the track information (the centroids of the objects

at each time frame) in the PETS XML file format.

In this paper, we describe results using the PETS 2001

evaluation dataset 1, camera 1. For reasons of speed and

storage economy, we have chosen to process the video at

half resolution. The sytem operates on AVI video files

(Cinepak compressed) generated from the distributed JPEG

images. Naturally, higher accuracies and reliability are to be

expected from processing the video at full size and without

compression artefacts.
4. Background estimation and subtraction

The background subtraction approach presented here is

based on that taken by Horprasert et al. [19] and is an

attempt to make the background subtraction robust to

illumination changes. The background is modeled statisti-

cally at each pixel. The estimation process computes the

brightness distortion and color distortion in RGB color

space. Each pixel i is modeled by a 4-tuple (Ei, si, ai, bi),

where Ei is a vector with the means of the pixel’s red, green,

and blue components computed over N background frames;

si is a vector with the standard deviations of the color values;

ai is the variation of the brightness distortion; and bi is the

variation of the chromaticity distortion.

By comparing the difference between the background

image and the current image, a given pixel is classified into

one of four categories: original background, shaded
background or shadow, highlighted background, and fore-

ground objects. The pixels in the foreground objects, are

passed to the next stage (Section 5, and the remaining

categories are grouped together as background pixels. The

categorization thresholds are calculated automatically;

details can be found in the original paper [19]. Finally,

isolated pixels are removed and then a morphological

closing operator is applied to join nearby foreground pixels.

We have also developed an active background estimation

method that can deal with objects moving in the training

images (except the first). The first frame is stored as a

prototype background image, and differenced with sub-

sequent training frames—areas of significant difference

being the moving objects. When the statistical background

model is constructed, these moving object regions are

excluded from the calculations. To handle variations in

illumination that have not been seen in the training set, we

have also added a further two modifications to the

background subtraction algorithm that operate when

running on test sequences. The first is an overall gain

control that applies a global scaling factor to the pixel

intensities before comparing them to the stored means. The

scale factor is calculated on the non-foreground regions of

the previous image, under the assumption that lighting

changes between adjacent frames are small. Further,

background adaptation is employed by blending in the

pixel values of current non-foreground regions, thus slowly

learning local changes in appearance not attributable to

moving objects. These processes reduce the sensitivity of

the algorithm to the lighting changes seen at the end of

sequence 1, and throughout sequence 2.
5. High-level tracking

The foreground regions of each frame are grouped into

connected components. A size filter is used to remove small

components. Each foreground component is described by a

bounding box and an image mask, which indicates those

pixels in the bounding box and an image mask, which

indicates those pixels in the bounding box that belong to the

foreground. The set of foreground pixels is called F. For

each successive frame, the correspondence process attempts

to associate each foreground region with one of the existing

tracks. This is achieved by constructing a distance matrix

showing the distance between each of the foreground

regions and all the currently active tracks. We use a

bounding box distance measure, as shown in Fig. 2. The

distance between bounding boxes A and B (Fig. 2, left) is

the lower of the distance from the centroid, Ca, of A to the

closest point on B or from the centroid, Cb, of B to the

closest point on A. If either centroid lies within the other

bounding box (Fig. 2, right), the distance is zero. The

motivation for using the bounding box distance as opposed

to Euclidean distance between the centroids is the large

jump in the Euclidean distance when two bounding boxes



A

A

BB

Ca
Ca

Cb
Cb

Fig. 2. Bounding box distance measure.

A. Senior et al. / Image and Vision Computing 24 (2006) 1233–1243 1237
(objects) merge or split. A time distance between the

observations is also added in to penalize tracks for which no

evidence has been seen for some time.

The distance matrix is then binarized, by thresholding,

resulting in a correspondence matrix associating tracks with

foreground regions.The analysis of the correspondencematrix

produces four possible results as shown in Fig. 1: existing

object, new object, merge detected and split detected.

For well-separated moving objects, the correspondence

matrix (rows correspond to existing tracks and columns to

foreground regions in the current segmentation) will have at

most one non-zero element in each row or column-

associating each track with one foreground region and

each foreground region with one track, respectively.

Columns with all zero elements represent new objects in

the scene, which are not associated with any track, and

result in the creation of a new track. Rows with all zero

elements represent tracks that are no longer visible (because

they left the scene, or were generated because of artefacts of

the background subtraction).

In the case of merging objects, two or more tracks will

correspond to one foreground region, i.e. a column in the

correspondence matrix will have more than one non-zero

entry.When objects split, for example when people in a group

walk away from each other, a single track will correspond to

multiple foreground regions, resulting in more than one non-

zero element in a row of the correspondence matrix. When a

single track corresponds to more than one bounding box, all

those bounding boxes are merged together, and processing

proceeds. If two objects hitherto tracked as one should

separate, the parts continue to be tracked as one until they

separate sufficiently that both bounding boxes do not

correspond to the track, and a new track is created.

Once a track is created, an appearance model of the

object is initialized. This appearance model is adapted every

time the same object is tracked into the next frame. On the

detection of object merges, the appearance model is used to

resolve the ambiguity. A detailed discussion of the

appearance model and its application to occlusion handling

is presented in the Section 6.

Because of failures in the background subtraction,

particularly in the presence of lighting variation, some

spurious foreground regions are generated, which result in

tracks. However, most of these are filtered out with rules

detecting their short life or the fact that the appearance

model created in one frame fails to explain the ‘foreground’
pixels in subsequent frames. An additional rule is used to

prune out tracks, which do not move. These are considered

to be static objects whose appearance varies, such as moving

trees and reflections of sky.
6. Appearance-based tracking

To resolve more complex structures in the track lattice

produced by the bounding box tracking, we use appearance-

based modeling. Here, for each track we build an

appearance model, showing how the object appears in the

image. The appearance model is an RGB color model with

an associated probability mask. The color model, MRGB(x),

shows the appearance of each pixel of an object, and the

probability mask, Pc(x), records the likelihood of the object

being observed at that pixel. For simplicity of notation, the

coordinates x are assumed to be in image coordinates, but in

practice the appearance models model local regions of the

image only, normalized to the current centroid, which

translate with respect to the image coordinates. However, at

any time an alignment is known, allowing us to calculate Pc

and MRGB for any point x in the image, Pc(x) being zero

outside the modeled region.

When a new track is created, a rectangular appearance

model is created with the same size as the bounding box of

the foreground region. The model is initialized by copying

the pixels of the track’s foreground component into the

color model. The corresponding probabilities are initialized

to 0.4, and pixels which did not correspond to this track are

given zero initial probability.

On subsequent frames, the appearance model is updated

by blending in the current foreground region. The color

model is updated by blending the current image pixel with

the color model for all foreground pixels, and all the

probability mask values are also updated with the following

formulae (aZlZ0.95):

MRGBðx; tÞZMRGBðx; tK1ÞaC ð1KaÞIðxÞ if x2F (1)

Pcðx; tÞZPcðx; tK1Þl if x;F (2)

Pcðx; tÞZPcðx; tK1ÞlC ð1KlÞ if x2F (3)

In this way, we maintain a continuously updated model

of the appearance of the pixels in a foreground region,

together with their observation probabilities. The latter can

be thresholded and treated as a mask to find the boundary of

the object, but also gives information about non-rigid

variations in the object, for instance retaining observation

information about the whole region swept out by a

pedestrian’s legs.

Fig. 3 shows the appearance model for a van from the

PETS data at several different frames. The appearance

models are used to solve a number of problems, including

improved localization during tracking, track correspon-

dence and occlusion resolution.



Fig. 3. The evolution of an appearance model. In each figure, the upper

image shows the appearance for pixels where observation probability is

greater than 0.5. The lower shows the probability mask as grey levels, with

white being 1. The frame numbers at which these images represent the

models are given, showing the progressive accommodation of the model to

slow changes in scale and orientation.

Fig. 4. An occlusion resolution (Frame 921 of dataset 1, camera 1).

(a) Shows three appearance models for tracks converging in a single region.

(b) Shows the pixels of a single foreground region, classified independently as

towhichof themodels they belong to. (d–f) show the pixels finally allocated to

each track, and (c) shows the regions overlaid on the original frame, with the

original foreground region bounding box (thick box), the new bounding boxes

(thin boxes) and the tracks of the object centroids.
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Given a one-to-one track-to-foreground-region corre-

spondence, we use the appearance model to provide

improved localization of the tracked object. The back-

ground subtraction is unavoidably noisy, and the additional

layers of morphology increase the noise in the localization

of the objects, by adding some background pixels to a

foreground region, and removing extremities. The appear-

ance model, however, has an accumulation of information

about the appearance of the pixels of an object and can be

correlated with the image to give a more accurate estimate

of the centroid of the object. The accumulated Euclidean

RGB distance, p(I, x, M), is minimized over a small search

region and the point with the lower distance taken as the

object’s location. The process could be carried out to
sub-pixel accuracy, but the pixel level is sufficient for our

tracking.

pðI; x;MÞZ
Y
y

pRGBðxCyÞPcðxCyÞ (4)

pRGBðxÞZ ð2ps2ÞKð3=2Þe
KjjIðxÞ�MðxÞjj2

2s2 (5)

When two tracks merge into a single foreground

region, we use the appearance models for the tracks to

estimate the separate objects’ locations and their depth

ordering.

This is done by the following operations, illustrated in

Figs. 4–6:

(1) Using a first-order model, the centroid locations of the

objects i are predicted.

(2) For a new merge, with no estimate of the depth-

ordering, each object is correlated with the image in the

predicted position, to find the location of best-fit.

(3) Given this best-fit location, the ‘disputed’ pixels-those

which have non-zero observation probabilities in more

than one of the appearance model probability masks-are

classified using a maximum likelihood classifier with a

simple spherical Gaussian RGB model, determining

which model was most likely to have produced them.

piðxÞZ pRGBi
ðxÞPci

ðxÞ (6)

Figs. 4c and 5c show the results of such classifications.

(4) Objects are ordered so that thosewhich are assigned fewer

disputed pixels are given greater depth. Those with few

visible pixels are marked as occluded.

(5) All disputed pixels are reclassified, with disputed

pixels being assigned to the foremost object which

overlapped them.



Fig. 5. An occlusion resolution (Frame 825 of dataset 1, camera 1).

(a) appearance models. (b) Independently classified foreground region

pixels as to which of the models they belong to. (d, e) the pixels allocated to

each track after enforcing the depth-ordering, and (c) the regions overlaid

on the original frame.
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On subsequent frames, the localization step is carried out

in depth order, with the foremost objects being fitted first,

and pixels which match their appearance model being

ignored in the localization of ‘deeper’ objects, as they are

considered occluded. After the localization and occlusion

resolution, the appearance model for each track is updated

using only those pixels assigned to that track.

If a tracked object separates into two bounding boxes,

then a new track is created for each part, with the

appearance models being initialized from the corresponding

areas of the previous appearance model.
Fig. 6. The appearance model for a group of people.
7. Multi-object segmentation

The appearance models can also be used to split complex

objects. While the background subtractions yields complex,

noisy foreground regions, the blending process of the model

update allows finer structure in objects to be observed. The

principal way in which this structure is used in the current

system is to look for objects, which are actually groups of

people. These can be detected in the representation if the

people are walking sufficiently far apart that background

pixels are visible between them. These are evidenced in the

probability mask, and can be detected by observing the

vertical projection of the probability mask. We look for

minima in this projection, which are sufficiently low and

divide sufficiently high maxima. When such a minimum is

detected, the track can be divided into the two component

objects, though here we choose to track the multi-person

object and flag its identity.
8. Object classification

For the understanding of video it is important to label the

objects in the scene.For the limited variety ofobjects in the test

data processed here, we have written a simple rules-based

classifier. Objects are initially classified by size and shape.We

classify objects as: Single Person, Multiple People, Vehicle,

and Other. For each object we find the area, the length of the

contour, and the length and orientation of the principal axes.

We compute the ‘dispersedness’, which is the ratio of the

perimeter squared to the area. Dispersedness has been shown

to be a useful cue to distinguish 2D image objects of one or

more people from thoseof individual vehicles [8]. For each 2D

image object, we also determine which principal axis is most

nearly vertical and compute the ratio of the more-nearly

horizontal axis length to the more-nearly vertical axis length.

This ratio, r, is used to distinguish a foreground region of a

single person from one representing multiple people since a

single person’s image is typically significantly taller than it is

wide while a multi-person blob grows in width with the

number of visible people. From these principles, we

have designed the ad-hoc, rule-based classification shown in

Fig. 7–10. In addition,weuse temporal consistency to improve

robustness so a cleanly tracked object, which is occasionally

misclassified, can use its classification history to improve the

results.
9. Ground truth generation

The tracking results were evaluated by comparing them

with ground truth. This section overviews the ground truth

generation process. A semi-automatic interactive tool was

developed to aid the user in generating ground truth.

The ground truth marking (GTM) tool has the following

four major components: (i) iterative frame acquisition



r > 0.8
People

r < 0.8
Person

Person
r < 0.75

People
r > 0.65

Person
r < 0.65

People
r > 0.75

Vehicle

Vehicle

People

Vehicle

D
is

pe
rs

ed
ne

ss

Area

Fig. 7. The classification rules for a foreground region. r is the horizontal-

to-vertical principal axis length ratio.

Fig. 9. An image showing all the tracks detected by the system for dataset 1,

camera 1, overlaid on a background image.

100
Total

Background

A. Senior et al. / Image and Vision Computing 24 (2006) 1233–12431240
and advancement mechanism; (ii) automatic object

detection; (iii) automatic object tracking; (iv) visualization;

(v) refinement. After each frame of video is acquired, the

object detection component automatically determines the

foreground objects. The foreground objects detected in

frame n are related to those in frame nK1 by the object

tracking component. At any frame n, all the existing

tracks up to frame n and the bounding boxes detected in

frame n are displayed by the visualization component.

The editing component allows the user to either (a) accept

the results of the object detection/tracking components,

(b) modify (insert/delete/update) the detected components,

(c) partially/totally modify (create, associate, and dis-

sociate) track relationships among the objects detected in

frame nK1 and those in frame n. Once the user is

satisfied with the object detection/tracking results at frame

n, she can proceed to the next frame.
Fig. 8. A comparison of estimated tracks (black) with ground truth positions

(white), for two tracks superimposed on a mid-sequence frame showing the

two objects.
Generating object position and track ground truth for

video sequences is a very labour intensive process. In order

to alleviate the tedium of the ground truth determination,

GTM allows for sparse ground truth marking mode. In this

mode, the user need not mark all the frames of the video but

only a subset thereof. The intermediate object detection and

tracking results are interpolated for the skipped frames using

linear interpolation. The rate, t, of frame subsampling is

user-adaptable and can be changed dynamically from frame

to frame.

The basic premise in visual determination of the ground

truth is that the humans are perfect vision machines.

Although we refer to the visually determined object position

and tracks as ‘the ground truth’, it should be emphasized

that there is a significant subjective component of human

judgment involved in the process. The objects to be tracked

in many instances were very small (e.g. few pixels) and
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Fig. 10. Per frame time requirements for the tracking and background

subtraction. The lower line shows the time required for the background

subtraction, and the upper line shows the total time required to process each

frame. Times vary from about 10 ms when there are no objects to be tracked

to a peak of about 130 ms when there are several overlapping objects being

tracked.
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exhibited poor contrast against the surrounding background.

When several objects came very close to each other,

determination of the exact boundary of each object was not

easy. Further, since the judgments about of the object

location were based on visual observation of a single

(current) frame, the motion information (which is a

significant clue for determining the object boundary) was

not available for marking the ground truth information.

Finally, limited human ability to exert sustained attention to

mark minute details frame after frame tends to introduce

errors in the ground truth data. Because of the monotonous

nature of the ground truth determination, there may be an

inclination to acceptance of the ground truth proposed by

the (automatic) component of the GTM interface. Conse-

quently, the resultant ground truth results may be biased

towards the algorithms used in the automatic component of

the GTM recipe. Perhaps, some of the subjectiveness of the

ground truth data can be assessed by juxtaposing indepen-

dently visually marked tracks obtained from different

individuals and from different GTM interfaces. For the

purpose of this study, we assume that the visually marked

ground truth data is error-free.
10. Performance metrics

Given a ground truth labelling of a sequence, this section

presents the method used for comparison of the ground truth

with tracking results to evaluate the performance. The

approach presented here is similar to the approach presented

by Pingali and Segen [20]. Given two sets of tracks, a

correspondence between the two sets needs to be established

before the individual tracks can be compared to each other.

Let Ng be the number of tracks in the ground truth and Nr be

the number of tracks in the results. Correspondence is

established by minimizing the distance between individual

tracks. The following distance measure is used, evaluated

for frames when both tracks exist:

DT ðT1;T2ÞZ
1

N2
12

X
i:dT1ðtiÞ&dT2ðtiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2xðiÞCd2vðiÞ

q
(7)

dxðiÞZ jx1ðiÞKx2ðiÞj (8)

dvðiÞZ jv1ðiÞKv2ðiÞj (9)

where N12 is the number of points in both tracks T1 and T2,

xk(i) is the centroid and vk(i) is the velocity of object k at

time ti. Thus the distance between two tracks increases with

the distance between the centroids and the difference in

velocities. The distance is inversely proportional to the

length for which both tracks exist-so tracks, which have

many frames in common will have low distances. An Ng!
Nr distance matrix is constructed using the track distance

measure DT. Track correspondence is established by

thresholding this matrix. Each track in the ground truth
can be assigned one or more tracks from the results. This

accommodates fragmented tracks. Once the correspondence

between the ground truth and the result tracks are

established, the following error measures are computed

between the corresponding tracks.

† Object centroid position error: Objects in the ground

truth are represented as bounding boxes. The object

centroid position error is approximated by the distance

between the centroids of the bounding boxes of ground

truth and the results. This error measure is useful in

determining how close the automatic tracking is to the

actual position of the object.

† Object area error: Here again, the object area is

approximated by the area of the bounding box. The

bounding box area will be very different from the actual

object area. However, given the impracticality of

manually identifying the boundary of the object in

thousands of frames, the bounding box area error gives

some idea of the quality of the segmentation.

† Object detection lag: This is the difference in time

between when a new object appears in the ground truth

and when the tracking algorithm detects it.

† Track incompleteness factor: This measures how well

the automatic track covers the ground truth:

TrackincompletenessZ
Fnf CFpf

Ti
(10)

where, Fnf is the false negative frame count, i.e. the

number of frames that are missing from the result track.

Fpf is the false positive frame count, i.e. the number of

frames that are reported in the result which are not

present in the ground truth and Ti is the number frames

present in both the results and the ground truth.

† Track error rates: These include the false positive rate fp
and the false negative rate fn as ratios of numbers of tracks:

fp Z
Results without corresponding ground truth

Total number of ground truth tracks
(11)

fn Z
Ground truth without corresponding result

Total number of ground truth tracks
(12)

† Object type error: This counts the number of tracks for

which our classification (person/car) was incorrect.

11. Experimental results

The goal of our effort was to develop a tracking system

for handling occlusion. Given this focus, we report results

only on PETS test dataset 1, camera 1. The current version

of our system does not support continuous background

estimation and hence we do not report results on the

remaining sequences, which have significant lighting

variations. Given the labour intensive nature of the ground



Table 2

Performance measures for Dataset 1, Camera 1

Dataset 1, Camera 1

Track error fp 5/7

Track error fn 2/7

Average position error 5.51 pixels

Average area error K346 pixels

Average detection lag 1.71 frames

Average track incompleteness 0.12

Object type error 0 tracks
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truth generation, we have only generated ground truth up to

frame 841. Table 2 shows the various performance metrics

for these frames.

Of the seven correct tracks, four are correctly detected,

and the remaining three (three people walking together) are

merged into a single track, though we do detect that it is

several people. This accounts for the majority of the position

error, since this result track is compared to each of the three

ground truth tracks. No incorrect tracks are detected, though

in the complete sequence, five spurious tracks are generated

by failures in the background subtraction in the final frames,

which are accumulated into tracks. The bounding box area

measure is as yet largely meaningless since the bounding

boxes in the results are only crude approximations of the

object bounding boxes, subject to the vagaries of back-

ground subtraction and morphology. The detection lag is

small, showing that the system detects objects nearly as

quickly as the human ground truther.
12. Summary and conclusions

We have written a computer system capable of tracking

moving objects in video, suitable for understanding

moderately complex interactions of people and vehicles,

as seen in the PETS 2001 data sets. We believe that for the

sequence on which we have concentrated our efforts, the

tracks produced are accurate. The two tier approach

proposed in the paper successfully tracks through all the

occlusions in the dataset. The high level bounding box

association is sufficient to handle isolated object tracking.

At object interactions, the appearance model is very

effective in segmenting and localizing the individual objects

and successfully handles the interactions.

To evaluate the system, we have designed and built a

ground truthing tool and carried out preliminary evaluation

of our results in comparison to the ground truth. The attempt

to ground truth the data and use it for performance

evaluation lead to the following insights. The most

important aspect of the ground truth is at object interactions.

Thus ground truth can be generated at varying resolutions

through a sequence, coarse resolutions for isolated object

paths and high resolution at object interactions. The tool we

designed allows for this variation.
13. Future work

The implementation of the appearance models holds much

scope for future investigation. A more complex model, for

instance storing color covariances or even multi-modal

distributions for each pixelwould allowmore robustmodeling,

but themodels as described seem to be adequate for the current

task. The background subtraction algorithm is currently not

adaptive, and so begins to fail for long sequences with varying

lighting conditions. Continuous updating of background

regions will improve its robustness to such situations. The

system must also operate in real-time to be applicable to real-

world trackingproblems.Currently thebackgroundsubtraction

works at about 9 fps and the subsequent processing takes a

similar amount of time. Without further optimization, the

system should run on live data bydropping frames, butwe have

not tested the system in this mode.
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