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Abstract

In this paper, we propose a machine learning-based multi-stream framework to recognize
American Sign Language (ASL) manual signs and non-manual gestures (face and head move-
ments) in real-time from RGB-D videos. Our approach is based on 3D Convolutional Neural
Networks (3DCNN) by fusing multimodal features including hand gestures, facial expres-
sions, and body poses from multiple channels (RGB, depth, motion, and skeleton joints).
To learn the overall temporal dynamics in a video, a proxy video is generated by selecting
a subset of frames for each video which are then used to train the proposed 3DCNN model.
We collected a new ASL dataset, ASL-100-RGBD, which contains 42 RGB-D videos cap-
tured by a Microsoft Kinect V2 camera. Each video consists of 100 ASL manual signs, along
with RGB channel, depth maps, skeleton joints, face features, and HD face. The dataset
is fully annotated for each semantic region (i.e. the time duration of each sign that the
human signer performs). Our proposed method achieves 92 .88% accuracy for recognizing
100 ASL sign glosses in our newly collected ASL-100-RGBD dataset. The effectiveness of
our framework for recognizing hand gestures from RGB-D videos is further demonstrated
on a large-scale dataset, Chalearn IsoGD, achieving the state-of-the-art results.

Keywords: American Sign Language Recognition, Hand Gesture Recognition, RGB-D
Video Analysis, Multimodality, 3D Convolutional Neural Networks, Proxy Video

1. Introduction1

American Sign Language (ASL) is a natural language conveyed through movements and2

poses of the hands, body, head, eyes, and face [1]. There are more than one hundred sign3

languages worldwide, and ASL is used throughout the U.S. and Canada, as well as other4

regions of the world, including West Africa and Southeast Asia. Within the U.S.A., about5

28 million people today are Deaf or Hard-of-Hearing (DHH) [2]. There are approximately6
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500, 000 people who use ASL as a primary language [3], and since there are significant lin-7

guistic differences between English and ASL, it is possible to be fluent in one language but8

not in the other. Most ASL signs consist of the hands moving, pausing, and changing orien-9

tation in space. Facial expressions in ASL are most commonly utilized to convey information10

about entire sentences or phrases, and are referred to as “syntactic facial expressions”, as11

discussed in [4]. Individual ASL signs consist of a sequence of several phonological segments,12

which include:13

• An essential parameter of a sign is the configuration of the hand, i.e., the degree to14

which each of the finger joints is bent, commonly referred to as the “handshape.” In15

ASL, there are approximately 86 handshapes, which are widely used [5], and the hand16

may transit between handshapes during the production of a single sign.17

• During an ASL sign, the signer’s hands will occupy specific locations and perform18

movements through space. Some signs are performed by a single hand, but most are19

performed using both of the signer’s hands, which move through the area in front of20

their head and torso. During two-handed signs, the two hands may have symmetrical21

movements, or the signer’s dominant hand (e.g., the right hand of a right-handed22

person) will have more significant changes than the non-dominant hand.23

• The orientation of the palm of the hand in 3D space is also a meaningful aspect of an24

ASL sign, and this parameter may differentiate pairs of otherwise identical signs.25

• Some signs co-occur with specific “non-manual signals,” which are generally facial ex-26

pressions characterized by specific mouth gestures, eyebrow movement, head tilt/turn,27

or head movements (e.g., forward-backward relative to the torso).28

Sign language recognition can be categorized to isolated or continuous recognition. Iso-29

lated sign language recognition focuses on recognizing isolated signs through movements of30

the hands and quick facial expression changes. In continuous sign language recognition,31

the temporal boundaries of individual signs are not provided and the transition movements32

between two consecutive signs is hard to detect. While some researchers, e.g., [6], have inves-33

tigated the identification of facial expressions that extend across multiple signs to indicate34

grammatical information, in this paper, we describe our work on recognizing isolated signs.35

The category of facial expressions, which is specifically relevant to the task of recognizing36

individual signs, is referred to as “lexical facial expressions,” which are considered as a part37

of the production of an isolated ASL sign (see examples in Fig. 1). Such facial expressions38

are, therefore, essential for the task of sign recognition. For instance, signs with negative39

semantic polarity, e.g., NONE or NEVER, tend to occur with a negative facial expression40

consisting of a slight head shake and nose wrinkle. Besides, specific ASL signs almost al-41

ways happen in a context in which a particular ASL syntactic facial expression occurs. For42

instance, some question signs, e.g., WHO or WHAT, tend to co-occur with a syntactic facial43

expression (brows furrowed, head tilted forward), which indicates that an entire sentence is44

a WH Question. Thus, such a facial expression may be useful evidence to consider when45

building a recognition system for such signs.46
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Figure 1: Example images of lexical facial expressions along with hand gestures for signs: NEVER, WHO,
andWHAT. For NEVER, the signer shakes her head side-to-side slightly, which is a Negative facial expression
in ASL. For WHO andWHAT, the signer is furrowing the brows and slightly tilting moving the head forward,
which is a WH Question facial expression in ASL.

1.1. Motivations47

In addition to the many members of the Deaf community who may prefer to communicate48

in ASL, many individuals seek to learn the language. Due to a variety of educational factors49

and childhood language exposure, researchers have measured lower levels of English literacy50

among many deaf adults in the U.S. [7]. Studies have shown that deaf children raised in51

homes with exposure to ASL have better literacy as adults, but it can be challenging for52

parents, teachers, and other adults in the life of a deaf child to rapidly gain fluency in ASL.53

The study of ASL as a foreign language in universities has significantly increased by 16.4%54

from 2006 to 2009, which ranked ASL as the 4th most studied language at colleges [8]. Thus,55

many individuals would benefit from a flexible way to practice their ASL signing skills.56

Our research investigates technologies for recognizing signs performed in color and depth57

videos, as discussed in [9]. The focus of our research is to develop a real-time system that can58

automatically identify ASL signs, comprising manual and non-manual gestures, from RGB-59

D videos. This is aligned with our broader goal to design assistive technologies to support60

ASL education by providing ASL students immediate feedback about the fluency of their61

signing performances. While the development of user-interfaces for educational software62

was described in our prior work [9], this article instead focuses on the development and63

evaluation of our ASL recognition technologies, which underlie our educational tool. Beyond64

this specific application, automatic recognition of ASL signs from videos could enable new65

communication and accessibility technologies for people who are DHH. These tools may allow66

users to input information into computing systems by performing sign language or serve as67

a foundation for future research on machine translation technologies for sign languages.68

1.2. Challenges69

Sign language recognition shares properties with video action recognition but it has spe-70

cific challenges caused by its unique characteristics. One challenge is visual complexity; for71

instance, slight difference in one hand’s phonemes can generate another sign or be undefined.72

Also, for some pair of signs, hand gestures look identical, and we can only discriminate them73

by paying attention to the difference in facial expressions. In some cases, a hand gesture can74

impose multiple meanings depending on the number of repetitions. The other challenge is75
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occlusion, i.e., hand-hand occlusion or hand-face occlusion where hands or face are partially76

visible in some moments of signing. To address these challenges, we design a multi-modal77

network to combine features from multiple modalities such as hand gestures, facial expres-78

sions, and body poses to better distinguish signs as some of the signs are only identifiable by79

simultaneous articulations of manual and non-manual sources. Furthermore, our network80

leverages information from multiple channels including RGB, depth, motion, and skeleton81

joints to better capture subtle movements of hands and facial expression for fine-grain analy-82

sis. Another challenge is the variation of signs performed by different signers such as pose or83

duration variations, pausing between signs or letters, wearing colored gloves or long sleeves84

shirts. Also, variation in the environment setup such as illumination, background, or dis-85

tance from the camera can make the problem harder. To tackle this challenge, we have86

collected a new ASL dataset, ASL-100-RGBD, where 100 ASL signs have been collected87

and performed by 15 individual signers. To ensure a subject-independent evaluation, no88

same signer appears in both training and testing sets.89

1.3. Scope of Contributions90

As discussed in Section 2.1, most prior ASL recognition studies typically focus on iso-91

lated hand gestures without considering facial expressions and body poses or they only92

use RGB videos. In this paper, we propose a 3D multi-stream framework to recognize a93

set of grammatically important ASL signs from RGB-D videos in real-time. The proposed94

method operates by fusing multimodal features, including hand gestures, facial expressions,95

and body poses from multi-channel (RGB, depth, motion, and skeleton joints). To the best96

of our knowledge, we believe this is the first work that combines multi-channel videos (RGB97

and depth) with the fusion of multi-modal features for ASL recognition. Furthermore, most98

datasets are either do not have “depth” data or they are in other sign languages (not Amer-99

ican) or they are designed for continuous sign language recognition (not isolated). To the100

best of our knowledge, ASL-100-RGBD is the only American sign language dataset collected101

for isolated signs that includes RGB and depth data (RGBD). The main contributions of102

the proposed framework can be summarized as follows:103

• We propose a 3D multi-stream framework using 3D convolutional neural networks for104

ASL recognition in RGB-D videos by fusing multi-modal features such as hand ges-105

tures, facial expressions, and body poses in multiple-channels including RGB, depth,106

motion, and skeleton joints.107

• We propose a temporal augmentation strategy to help the proposed 3D multi-stream108

network capture the long-term spatiotemporal information within video clips and aug-109

ment the training data to handle the videos of relatively small datasets.110

• We have created a new ASL dataset, ASL-100-RGBD, including multiple modalities111

(facial movements, hand gestures, and body pose) and multiple channels (RGB, depth,112

skeleton joints, and HD face) by collaborating with ASL linguistic researchers [10].113

This dataset contains annotations of the time duration when the human in the video114

performs each ASL sign. The dataset is available to the research community.115
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• We further evaluate the proposed framework to recognize hand gestures on the Chalearn116

LAP IsoGD dataset [11], which consists of 249 gesture classes in 47, 933 RGB-D videos.117

Our framework achieves the state-of-the-art results using fewer channels (5 channels118

instead of 12 in previous work).119

2. Related Work120

2.1. RGB-D based ASL Recognition121

Sign language (SL) recognition has been studied for three decades since the first attempt122

to recognize Japanese SL by Tamura and Kawasaki in 1988 [12]. The existing SL recognition123

research can be classified as sensor-based methods, including data gloves and body trackers124

to capture and track the hand and body motions [13, 14, 15, 16], and non-intrusive camera-125

based methods by applying computer vision technologies [17, 18, 19, 20, 21, 22, 23, 24, 25,126

26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. While most studies analyze127

the manual gestures, some methods exploit the linguistic information conveyed by the face128

and head of the signers, such as [42, 6, 43, 44]. More details about SL recognition can be129

found in these survey papers [45, 46, 47, 48, 49, 50, 51, 52, 53]. The availability of cost-130

effective RGB-D cameras in recent years, such as Microsoft Kinect V2 [54], Intel Realsense131

[55], Orbbec Astra [56], has facilitated capturing high-resolution RGB videos, depth maps,132

and tracking skeleton joints in real-time. Compared to traditional 2D RGB images, RGB-133

D images provide photometric and geometric information, motivating the research on ASL134

recognition using RGB and depth information [57, 58, 59, 60, 17, 36, 61, 62, 63, 64, 65, 66]. In135

this article, we briefly summarize ASL recognition methods using RGB-D images or videos.136

Some early work of SL recognition based on RGB-D cameras only focused on a small137

number of signs from static images [57, 60, 67]. Pugeault and Bowden proposed a multi-class138

random forest classification method to recognize 24 static ASL fingerspelling alphabet letters139

by ignoring the letters j and z (as they involve motion) and combining appearance and depth140

information of handshapes captured by a Kinect camera [57]. Keskin et al. [67] recognized141

24 static handshapes of the ASL alphabet, based on scale-invariant features extracted from142

depth images, fed to a Randomized Decision Forest for classification at the pixel level, where143

the final recognition label was voted based on a majority. Ren et al. proposed a modified144

Finger-Earth Mover’s Distance metric to recognize static handshapes for 10 digits captured145

using a Kinect camera [60].146

While these systems only used static RGB and depth images, some studies employed147

the RGB-D videos for ASL recognition. Zafrulla et al. developed a hidden Markov model148

(HMM) to recognize 19 ASL signs collected by Kinect camera and compared the perfor-149

mance with that from colored-glove and accelerometer sensors [58]. For the Kinect data,150

they compared the system performance between the signer seated and standing and found151

that higher accuracy resulted when the users were standing. Yang developed a hierarchical152

conditional random field method to recognize 24 manual ASL signs (seven one-handed and153

17 two-handed) from the handshape and motion in RGB-D videos [63]. Lang et al. [68]154

presented a HMM framework to recognize 25 signs of German Sign Language using depth-155

camera specific features. Mehrotra et al. [69] employed a support vector machine (SVM)156
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classifier to recognize 37 signs of Indian Sign Language based on 3D skeleton points captured157

using a Kinect camera. Almeida et al. [62] also employed an SVM classifier to recognize 34158

signs of Brazilian Sign Language using handshape, movement, and the position captured by159

a Kinect. Jiang et al. proposed recognizing 34 signs of Chinese Sign Language based on the160

color images and the skeleton joints captured by a Kinect camera [61]. Recently, Kumar et161

al. [70] combined a Kinect camera with a Leap Motion sensor to recognize 50 signs of India162

Sign Language.163

As discussed above, SL consists of hand gestures, facial expressions, and body poses.164

However, most existing methods have only focused on hand gestures without considering165

facial expressions and body poses. A few attempted to analyze hands and face [44, 19, 6,166

71, 27, 43], but they only use RGB videos. To the best of our knowledge, we believe this is167

the first work that combines multi-channel RGB-D videos (RGB and depth) with the fusion168

of multi-modal features (hand, face, and body) for ASL recognition.169

2.2. Machine Learning-based Action and Hand Gesture Recognition170

In addition to prior research on sign-recognition technologies, there has been significant171

research in action and hand gesture recognition, which is relevant to consider [72, 73, 74,172

75, 76, 77, 78, 79, 80, 81]. Since the work of AlexNet [82] which makes use of the powerful173

computation ability of GPUs, deep neural networks (DNNs) have enjoyed a renaissance174

in various areas of computer vision, such as image classification [83, 84], object detection175

[85, 86], image description [87, 88], and others. Many efforts have been made to extend176

CNNs from image to video domain [89], which is more challenging because of the large177

volume of video data; therefore, processing video data in the limited GPU memory is not178

tractable. An intuitive way to extend image-based CNN structures to the video domain is179

to perform the fine-tuning and classification process on each frame independently. Then,180

conduct a later fusion, such as average scoring, to predict the action class of the video [90].181

To incorporate temporal information in the video, [91] introduced a two-stream framework.182

One stream was based on RGB images, and the other, on stacked optical flows. Although183

it proposed an innovative way to learn temporal information using a CNN structure, in184

essence, it was still image-based, since the third dimension of stacked optical flows collapsed185

immediately after the first convolutional layer.186

To model the sequential information of extracted features from different segments of187

a video, [87] and [92] proposed to input features into Recurrent Neural Network (RNN)188

structures, and they achieved good results for action recognition. The former emphasized189

pooling strategies and how to fuse different features, while the latter focused on how to train190

an end-to-end DNN structure that integrates CNNs with RNNs. These networks mainly use191

CNN to extract spatial features, then RNN is applied to extract the temporal information192

of the spatial features. 3DCNN was recently proposed to learn the Spatio-temporal features193

with 3D convolution operations [93],[94],[95],[96], and [97] has been widely used in video194

analysis tasks such as video caption and action detection. 3DCNN is usually trained with195

fixed-length clips (usually 16 frames [94],[97],) and later fusion is performed to obtain the196

final category of the entire video. The R(2+1)D network [98] separates spatial and temporal197
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learning by using a 2D convolution for spatial features and a 1D convolution for temporal198

features. This separation allows the model to learn spatial and temporal features effectively199

and is computationally more efficient than 3D convolutions. Hara et al. [94] proposed the200

3D-ResNet by replacing all the 2D kernels in 2D-ResNet with 3D convolution operations.201

With its advantage of avoiding gradient vanishing and explosion, the 3D-ResNet outperforms202

many complex networks.203

ASL recognition shares properties with video action recognition; therefore, many net-204

works for video action recognition have been applied to this task. Pigou et al. proposed205

temporal residual networks for gesture and sign language recognition [27] and temporal con-206

volutions on top of the features extracted by 2DCNN for gesture recognition [22]. Huang et207

al. proposed a Hierarchical Attention Network with Latent Space (LS-HAN), which elimi-208

nates the pre-processing of the temporal segmentation [24]. Pu et al. proposed to employ209

a 3D residual convolutional network (3D-ResNet) to extract then visual features. The fea-210

tures are then fed to a stacked dilated convolution network with connectionist temporal211

classification to map the visual features into text sentence [25]. Camgoz et al. attempted212

to generate spoken language translations from sign language video [26]. Camgoz et al.213

proposed SubUNets for simultaneous hand shape and continuous sign language recognition214

[29]. Cui et al. proposed a weakly-supervised framework to train the network for continuous215

sign language recognition with videos only having the ordered gloss labels [28]. Zhou et216

al. proposed STMC network [99] to represent spatial cues with a 2DCNN (VGG [100]) and217

temporal cues with the bidirectional Long-Short Term Memory (BLSTM) [101]. Jiang et218

al. proposed SAM-SLR [102] to exploit whole body skeleton features for sign language in219

both RGB and RGB-D channels. Moryossef et al. also evaluated representations based on220

skeleton poses for sign language recognition [103]. Hu et al. designed a hand-model-aware221

framework for sign language with hand meshes and poses as the intermediate representa-222

tion [104]. Zhang et al. proposed a global feature descriptor for time series modeling and223

a local feature extractor to model hands for sign language recognition [37]. Bohavcek et224

al. proposed a transformer model for word-level sign language recognition and introduced225

a robust pose normalization scheme to model hand poses [105]. Han et al. adopted a deep226

R(2+1)D network and argued that decomposing 3D convolution filters into separate spatial227

and temporal convolutions is beneficial for sign language recognition [106]. Bilge et al. pro-228

posed a zero-shot sign language recognition to train the models with the seen sign classes229

and recognize the instances of unseen sign classes [107]. In prior work, our research team230

proposed a 3D-FCRNN for ASL recognition by combining the 3DCNN and a fully connected231

RNN [36].232

2.3. Public Camera-based ASL Datasets233

As discussed in Section 2.1, technology to recognize ASL signs from videos could enable234

new educational tools or assistive technologies for people who are DHH, and there has been235

significant prior research on sign language recognition. However, a limiting factor for much236

of this research is the scarcity of video recordings of sign language that have been annotated237

with time interval labels of the sign glosses. For ASL, there have been some annotated238
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(b) Randomly sampled eight frames from the video clip of the same ASL sign

(a) Eight Consecutive frames from a video clip of an ASL sign

Figure 2: Generating representative proxy video by our proposed random temporal augmentation. (a) Eight
consecutive frames from a video clip of an ASL sign. (b) Randomly sampled eight frames from the video clip
of the same ASL sign. With the same number of frames, the proxy video captures more temporal dynamics
of the ASL sign.

video-based datasets [108] or collections of motion capture recordings of humans wearing239

special sensors [109]. Most publicly available datasets, e.g. [110, 71], contain general ASL240

vocabularies from RGB videos and a few with RGB-D channels. Table 1 demonstrates the241

properties of some well-known sign language datasets.242

2D Camera-based ASL databases: The American Sign Language Linguistic Re-243

search Project (ASLLRP) dataset contains video clips of signing from the front and side244

and includes a close-up view of the face [108], with annotations for 19 short narratives245

(1,002 utterances) and 885 additional elicited utterances from four Deaf native ASL signers.246

It includes annotations such as the start and endpoints of each sign and a unique gloss247

label for each sign. The start and endpoints of a range of non-manual behaviors are also248

labeled with respect to the linguistic information that they convey (serving to mark, e.g.,249

different sentence types, topics, negation, etc.). Instances of non-manual behaviors include250

raised/lowered eyebrows, head position and periodic head movements, mouth gestures, and251

other expressions of the face. Dreuw et al. [111] produced several subsets from the ASLLRP252

dataset as benchmark databases for automatic recognition of isolated and continuous sign253

language. The American Sign Language Lexicon Video Dataset (ASLLVD) [112] is a large254

dataset of videos of isolated signs. It contains video sequences of about 3,000 distinct signs,255

each produced by 1 to 6 native ASL signers recorded by four cameras under three views256

(front, side, and face region). The annotations are provided, including start/end frames257

and class labels of every sign (i.e., gloss-based identification) plus locations of hands and258

face at every frame. The RVL-SLLL ASL Database [113] consists of three sets of ASL259

videos with distinct motion patterns, distinct handshapes, and structured sentences, respec-260

tively. These videos were captured from 14 native ASL signers (184 videos per signer) under261

different lighting conditions. For annotation, the videos with distinct motion patterns or262

distinct handshapes are saved as separate clips. However, there are no detailed annotations263

for the videos of structured sentences which limits the usefulness of the database. There264
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Table 1: The summary of sign language datasets of isolated signing.

Dataset Sign Language Signers Vocabulary Clips Modalities
BosphorusSign22k [122] Turkish 6 744 22,542 RGB+D
AUTSL [123] Turkish 43 226 38,336 RGB+D
CSL (SLR500) [124] Chinese 50 500 125,000 RGB+D
Polytropon [125] Greek 1 2,703 3,517 RGB+D
ITI-GSL [126] Greek 7 310 40,785 RGB+D
Signum [127] German 25 455 11,375 RGB
BOBSL [128] British 39 2,281 1,940 RGB
ASLLVD [112] American 6 2,742 9,000 RGB
MS-ASL [117] American 222 1,000 25,513 RGB
ASL-LEX [115] American 69 1,000 - RGB
ASL-LEX 2.0 [114] American - 2723 - RGB
WLASL [116] American 119 2,000 21,000 RGB
ASL-100-RGBD (ours) American 22 100 4,150 RGB+D

are some other ASL datasets with only RGB channels such as ASL-LEX 2.0 [114], ASL-265

LEX [115], WLASL [116], and MS-ASL [117] for isolated sign language recognition and266

RWTH-BOSTON-104 [118], [119], RWTH-BOSTON-400 [120] and CopyCat [121] datasets267

for continuous sign language recognition.268

RGB-D Camera-based ASL and Gesture Databases: Recently, several RGB-D269

databases have been collected for hand gesture and SL recognition [59, 23, 110]. Here we270

only briefly summarize RGB-D databases for ASL. The “Spelling-It-Out” dataset consists271

of 24 static handshapes of ASL fingerspelling alphabet, ignoring the letters “j” and “z” as272

they involve motion. Four signers repeat 500 samples for each letter in front of a Kinect273

camera [57]. The NTU dataset consists of 10 static hand gestures for digits 1 to 10 and was274

collected from 10 subjects by a Kinect camera. Each subject performs 10 different poses with275

variations in hand orientation, scale, articulation for the same gesture, and there is a color276

image and the corresponding depth map for each one [60]. The Chalearn LAP IsoGD dataset277

[11] is a large-scale hand gesture RGB-D dataset, which is derived from Chalearn Gesture278

dataset (CGD 2011) [129]. This dataset consists of 47, 933 RGB-D video clips fallen into279

249 classes of hand gestures including mudras (Hindu/ Buddhist hand gestures), Chinese280

numbers, and diving signals. Although it is not about ASL recognition, it can be used to281

learn RGB-D features from different environment settings. Using the learned features as a282

pretrained model, the fine-tuned ASL recognition models are more robust to handle different283

backgrounds and scales (e.g. distance variations between Kinect camera and the signer).284

There are other sign language datasets with RGBD channels for isolated signs in Greek285

(ITI-GSL isol. [126], Polytropon [125]), Turkish (BosphorusSign [130], BosphorusSign22k286

[122], AUTSL [123]), and Chinese (SLR500 [124]) languages. How2Sign [131] and ASL-287

Homework-RGBD [132] are new ASL datasets with RGBD channels for continuous sign288

language recognition.289

To support our research, we have collected and annotated a new RGB-D ASL dataset,290

ASL-100-RGBD, described in Section 4, with the following properties:291
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• 100 ASL signs have been collected and performed by 15 individual signers (often with292

multiple recordings from each signer).293

• The ASL-100-RGBD dataset has been captured by a Kinect V2 camera and contains294

multiple channels including RGB, depth, skeleton joints, and HD face.295

• Each video consists of 100 ASL signs shown in Fig. 4. The temporal boundary of each296

sign is annotated by ASL linguists, who labeled each span with one of 100 text labels.297

• The 100 ASL signs have been strategically selected to support sign recognition educa-298

tional tools with the detailed vocabulary composition described in Section 4. Many of299

these signs are characterized by both hand gestures and changes in facial expressions.300

3. The Proposed Method for ASL Recognition301

The pipeline of our proposed method is illustrated in Fig. 3. There are two main302

components in the framework: random temporal augmentation to generate proxy videos303

(which represent the overall temporal dynamics of the video clip of an ASL sign) and 3DCNN304

to recognize the class label of the sign.305

3.1. Random Temporal Augmentation for Proxy Video Generation306

The performance of the deep neural network greatly depends on the amount of the train-307

ing data. Large-scale training data and different data augmentation techniques usually are308

needed for deep networks to avoid over-fitting. During training, different kinds of data aug-309

mentation techniques, such as random resizing and random cropping of images, are already310

widely applied in 3DCNN training. In order to capture the overall temporal dynamics,311

we apply a random temporal augmentation, to generate a proxy video for each sign video312

clip channel, by selecting a subset of frames, which has proved to be very effective for our313

proposed framework.314

Videos are often redundant in the temporal dimension, and some consecutive frames
are very similar without observable difference, as shown in Fig. 2 (a) which displays 8
consecutive frames in a video clip of an ASL sign while the proxy video in 2 (b) displays the 8
frames selected from the same video clip by random temporal augmentation. With the same
number of frames, the proxy video provides more temporal dynamics. Thus, proxy videos
are generated to represent the overall temporal dynamics for each ASL sign. To generate
proxy videos, we uniformly divide the span of frames into T intervals and randomly sample
one frame from every interval. If the total number of frames is less than T , it is padded
with the last frame to the length of T . These proxy videos make it feasible to train a deep
neural network on the dataset. The process of proxy video generation by random sampling
is formulated in Eq. (1) below:

Si = random(⌊N/T ⌋) + ⌊N/T ⌋ ∗ i, (1)

where N is the total number of frames in a signing video, T is the number of sampled315

frames, Si is the i-th sampled frame, and random(N/T ) generates one random number in316

range ⌊0, N/T ⌋ for every i ∈ [0, T − 1].317
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Figure 3: The pipeline of the proposed multi-channel multi-modal 3DCNN framework for ASL recognition.
There are multiple channels such as RGB, Depth, and Optical flow, and multiple modalities including hand
gestures, facial expressions and body poses. Hands and face regions are cropped to better model hand
gestures and the facial expression changes. The whole framework consists of two main components: proxy
video generation and 3DCNN modeling. First, proxy videos are generated for each ASL sign by selecting a
subset of frames spanning the whole video clip of each ASL sign, to represent the overall temporal dynamics.
Then the generated proxy videos of RGB, Depth, Optical flow, RGB of hands, and RGB of the face are fed
into the multi-stream 3DCNN component. The predictions of these networks are weighted to obtain the
final results of ASL recognition. The detailed architecture of our network is shown in Table 2.

3.2. 3D Convolutional Neural Network318

3DCNN was first proposed for video action recognition [95] and was improved in C3D [97]319

by using a similar architecture to VGG [100]. It obtained state-of-the-art performance for320

several video recognition tasks. The difference between the 2DCNN and 3DCNN operation321

is that 3DCNN has an extra-temporal dimension, capturing the spatial and temporal infor-322

mation between video frames more effectively. After the emergence of C3D, many 3DCNN323

models were proposed for video action recognition [133],[93],[96]. The 3D-ResNet is the324

3D version of ResNet, which introduced identical mapping to avoid gradient vanishing and325

explosion, making the training of very deep convolutional neural networks feasible. The size326

of the convolution kernel in 3D-ResNet is w × h × t (w is the width of the kernel, h is the327

height of the kernel, and t is the temporal dimension of the kernel), while it is w × h in328

2D-ResNet. In this paper, 3D-ResNet is chosen as the base network for ASL recognition.329

The detailed architecture of our network is shown in Table 2. In the 3DResNet, there330

are five convolution blocks, where the first one consists of one convolution layer, one batch331

normalization layer, one ReLU layer, followed by one max-pooling layer. The next four332

convolution blocks are 3D residual blocks with skip connections. The number of kernels in333

the five convolution blocks are {64, 64, 128, 256, 512}. The Global Average Pooling (GAP) is334

followed after the fifth convolution block to produce a 512-dimensional feature vector. Then335

one fully connected layer and Softmax function are applied to produce the final prediction.336
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Table 2: The detailed architecture of our network. C is the number of classes which is 100 for ASL-100-
RGBD dataset. GAP is Global Average Pooling.

Layer Channels Height Width Temporal
Input 3 112 112 64
Conv3d 64 56 56 64
BatchNorm3d 64 56 56 64
ReLU 64 56 56 64
Max-pool 64 28 28 32
3D-Res block 64 28 28 32
3D-Res block 128 14 14 16
3D-Res block 256 7 7 8
3D-Res block 512 4 4 4
GAP 512 1 1 1
FC C - - -

All the networks are optimized with cross-entropy loss with Stochastic Gradient Descent337

(SGD) optimizer. The cross-entropy loss function is formulated below. N is the number of338

samples in each mini-batch and C is the number of classes; C = 100 for ASL-100-RGBD. yi339

is the ground-truth label for sample i and ŷi is the prediction (output of the network). yi340

and ŷi are both C-dimensional vectors. yci is 1 if video i belongs to class c, for 1 ≤ c ≤ C,341

otherwise, it equals to 0. ŷi is a probability vector where ŷci is the predicted probability that342

video i belongs to class c.343

L = − 1

N
(

N∑
i=1

C∑
c=1

yci · log(ŷci )). (2)

A hybrid framework comprising two 3DCNN networks is designed to recognize three main344

components of signing videos, such as hand gesture, facial expression, and body pose. The345

first 3DCNN (Body Network) captures the full-body movements by receiving multi-channel346

proxy videos generated from RGB, depth, and optical flow. The second 3DCNN (Hand-347

Face network) is designed to capture the coordinates of hands and face with the inputs of348

multi-channel proxy videos generated from the cropped regions of the left hand, right hand,349

and face. Only RGB and depth channels of hand regions are used in the Hand-Face network350

because optical flow cannot accurately track the quick and large motions of hands. Also,351

only the RGB channel of face region is employed since facial expressions generally change352

much less in-depth. The prediction results of the networks are weighted to obtain the final353

prediction of each ASL sign.354

The optical flow images are calculated by stacking the x-component, the y-component,355

and the magnitude of the flow. Each value in the image is then rescaled to 0 and 255 .356

This practice has yielded good performance in other studies [87, 92]. As observed in the357

experimental results, the performance can be improved by fusing all the features generated358

by RGB, optical flow, and depth images. This indicates that different channels provide359
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complementary information for ASL recognition through training deep neural networks.360

4. ASL Dataset: “ASL-100-RGBD”361

As mentioned in Section 2.3, we collected a new dataset from native ASL signers (indi-362

viduals who have been using the language since very early childhood) in collaboration with363

ASL computational linguistic researchers. Each signer performed a list of 100 ASL signs364

(See the full list of ASL signs in Fig. 4) by using a Kinect V2 camera. Participants responded365

affirmatively to the following screening question: Did you use ASL at home growing up or366

attending a school as a very young child where you used ASL? Participants were provided367

with a slide-show presentation that asked them to perform a sequence of 100 individual368

ASL signs, without lowering their hands between signs. Since this new dataset includes 100369

signs with RGB and depth data, we refer to it as the “ASL-100-RGBD” dataset.370

During the recording session, a native ASL signer met the participant and conducted the371

session. Prior research in ASL computational linguistics has emphasized the importance of372

having only native signers present when recording ASL videos so that the signer does not373

produce English-influenced signing [109]. The dataset comprises 100 ASL signs, produced374

by 22 fluent signers, each often contributing multiple recordings. The participants, 15375

men and 7 women, ranged in age from 20 to 51, with a median age of 23. Each recorded376

video consists of the 100 ASL signs, and the start-time and end-time of each of the signs377

have been annotated. Several signers missed few ASL signs in some videos during the378

recording. Typically two to three videos were recorded from each signer, which produced a379

total collection of 42 videos (each video contains about 100 signs) and 4 , 150 samples of ASL380

signs. To facilitate this collection process, we have developed a recording system based on381

Kinect 2.0 RGB-D camera to capture multiple modalities (facial expressions, hand gestures,382

and body poses) from multiple channels (RGB video and depth video) for ASL recognition.383

The recordings also include skeleton (25 joints for every video frame) and HD face (1,347384

points) channels. The video resolution is 1920 x 1080 pixels for the RGB channel and 512385

x 424 pixels for the depth channel, respectively.386

The 100 ASL signs in this collection were selected strategically to support the research387

on sign recognition for ASL educational applications. The signs were chosen based on388

the vocabulary that is traditionally included in introductory ASL courses. Specifically, as389

discussed in [9], our recognition system must identify a subset of ASL signs that relate to a390

list of errors often made by students who are learning ASL. Our proposed educational tool391

[9] would receive as input a video of a student who is performing ASL sentences, and the392

system would automatically identify whether the student’s performance may include one393

of several dozen errors, which are common among students learning ASL. As part of this394

system’s operation, we require a sign-recognition component that can identify if a video of395

a person includes any of these 100 signs and the period in which the sign occurs. When one396

of these 100 key signs are identified, the system will consider other properties of the signer’s397

movements, including hand shapes, timing, and repetitions [9], to determine whether the398

signer may have made a mistake in their signing.399
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Figure 4: The full list of the 100 ASL signs in our “ASL-100-RGBD” dataset under 6 semantic categories.
These ASL signs are strategically selected to support the technology and educational tools for sign language
recognition. Many of these signs are characterized by both hand gestures and facial expression changes.

For instance, the 100 signs include words related to questions (e.g., WHO, WHAT),400

time-phrases (e.g., TODAY, YESTERDAY), negation (e.g., NOT, NEVER), and other cat-401

egories that relate to key grammar rules of ASL. A full listing of the words included in this402

dataset is shown in Fig. 4. Note that there is no one-to-one mapping between English words403

and ASL signs, and some ASL signs have variations in their appearance, e.g., due to geo-404

graphic/regional differences or other factors. For this reason, some words in Fig. 4 appear405

with integers after their name, e.g., THURSDAY and THURSDAY2, to reflect more than406

one variation in how the ASL sign may be produced. For instance, THURSDAY indicates407

a sign produced by the signer’s dominant hand in the ”H” alphabet-letter handshape, with408

gentle circling in space. On the other hand, THURSDAY2 indicates a sign produced with409

the signer’s dominant hand quickly switching from the alphabet-letter handshape of ”T” to410

”H” while held in space in front of the torso. Both are commonly used ASL signs for the411

concept of ”Thursday” with two different representations.412

As shown in Fig. 4, the words are grouped into 6 semantic categories (Negative, WH413

Questions, Yes/No Questions, Time, Pointing, and Conditional), suggesting that particular414

facial expressions are likely to co-occur with these words when used in ASL sentences. For415

instance, time-related phrases that appear at the beginning of ASL sentences tend to co-416

occur with a specific facial expression (head tilted back slightly and to the side, with eyebrows417

raised). Additional details about how detecting words in these various categories would be418

useful in the context of educational software appear in [9].419

After the videos were collected from participants, the videos were analyzed by a team420
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of ASL linguists, who produced time-coded annotations for each video. The linguists used421

a coding scheme in which an English identifier label was used to correspond to each of the422

ASL signs used in the videos, in a consistent manner across the videos. For example, all of423

the time spans in the videos when the human performed the ASL sign “NOT” were labeled424

with the English string ”NOT” in our linguistic annotation.425

The ASL-100-RGBD dataset is available via the Databrary platform (Huenerfauth,426

2020). A sample video 1 that visualizes the face and body-tracking information in this427

dataset is available. Fig. 5 demonstrates several frames of each channel of an ASL sign from428

our dataset including RGB, skeleton joints (25 joints for every frame), depth map, basic face429

features (5 main face components), and HD Face (1,347 points). The dataset 2
430

is available to the research community.431

5. Experiments and Discussions432

In this section, extensive experiments are conducted to evaluate the proposed approach433

on the newly collected “ASL-100-RGBD” dataset and Chalearn LAP IsoGD dataset [11].434

5.1. Implementation Details435

Same 3D-ResNet architecture is employed for all experiments. Different channels and436

modalities are fed to the network as input. The input channels are RGB, Depth, RGBflow437

(i.e. Optical flow of RGB images), and Depthflow (i.e. Optical flow of depth images) and438

the modalities are hands, face, and full body. The fusion of different channels and modalities439

are studied and compared.440

Our proposed models are trained in PyTorch on four Titan X GPUs. To avoid over-441

fitting, the pretrained models from Kinetics or Chalearn datasets are used and then random442

cropping and random rotation are applied to augment the data. The original resolution of443

RGB videos is 1920× 1080 pixels. In order to meet the limitation of the computer memory,444

in our experiment, the center area of 800× 800 pixels (where the signer is located) is resized445

to 134 × 134 as the input. In every iteration of the training, 112 × 112 image patches are446

randomly cropped from the 134 × 134 input images for data augmentation. During the447

testing, only the center patch of size 112× 112 (from the 134× 134 input image) is used for448

the prediction (no data augmentation is needed during testing). Random rotation (with a449

degree randomly selected in a range of [−10, 10]) is applied on the cropped patch to further450

augment the dataset. The models are then fine-tuned for 50 epochs with an initial learning451

rate of λ = 3× 10−3, reduced by a factor of 10 after every 25 epochs.452

To apply the pretrained 3D-ResNet models on 3 bands in RGB image format to one453

channel depth images or optical flow images, the depth images are simply converted to 3454

bands as RGB image format. For the optical flow images, the pretrained 3D-ResNet models455

take the x-component, the y-component, and the magnitude of flow as the R, G, and B456

bands in the RGB format.457

1A sample video is available http://media-lab.ccny.cuny.edu/wordpress/datecode/.
2The ASL-100-RGBD dataset is available via the Databrary platform http://doi.org/10.17910/b7.1062
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Figure 5: Four sample frames of an ASL sign from our dataset, in different channels including RGB, skeleton
joints (25 joints for every frame), depth map, basic face features (5 main face components), and HD Face
(1,347 points.)
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5.2. Experiments on ASL-100-RGBD458

To prepare the training and testing for evaluation of the proposed method on “ASL-459

100-RGBD” dataset, we first extracted the video clips for each ASL sign. We use 3, 250460

ASL clips for training ( 75% of the data) and the remaining 25% ASL clips for testing.461

To ensure a subject-independent evaluation, no same signer appears in both training and462

testing datasets. To augment the data, a new 16-frame proxy video is generated from each463

video by selecting different subset of frames for each epoch during the training phase. In464

testing, 16 frames are randomly sampled from the uniformly divided intervals of the entire465

video and fed to network to obtain the final prediction.466

5.2.1. Effects of Data Augmentations467

The training dataset which contains 3, 250 ASL video clips of 100 ASL manual signs468

is relatively small for 3DCNN training and could easily cause an over-fitting problem. To469

extract more representative temporal dynamics and avoid over-fitting, we applied a random470

temporal augmentation technique to generate proxy videos for each ASL clip (a new proxy471

video for each epoch). The ASL recognition results of using the proposed proxy video472

(16 frames per video) are compared with the traditional method (using the same number473

of consecutive frames). The network, 3DResNet-34, dose not converge when trained with474

16 consecutive frames, while the network trained with proxy video obtained 68.4% on the475

testing dataset. This is likely due to the majority of movements being from hands in these476

videos and the consecutive frames could not effectively represent the temporal and spatial477

information. Therefore, the network could not classify the clips based on only 16 consecutive478

frames. We also evaluate the effect of random cropping (using a batch size of 112 × 112)479

and random rotation (with a random number of degrees in a range of [−10, 10]).480

Table 3 lists the effects of different data augmentation techniques for recognizing 100481

ASL signs on only RGB channel. With proxy videos, the 3DCNN model obtains 68.4%482

accuracy on the testing data for recognizing 100 ASL signs. By adding random cropping,483

the performance is improved by 4.4% and adding the random rotation further improved the484

performance to 75.9%. In the following experiments, proxy videos together with random485

cropping and random rotation are employed to augment the data.486

Table 3: The comparison of the performance of different data augmentation methods on only RGB channel
with 16 frames for recognizing 100 ASL signs. All the models are pretrained on Kinetics and finetuned on
ASL-100-RGBD dataset. The best performance is achieved with random proxy videos, random cropping,
and random rotation.

Augmentations Fusions

Random Proxy Video ✗
√ √ √

Random Crop ✗
√ √

Random Rotation ✗
√

Performance Not converging 68.4% 72.8% 75.9%
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5.2.2. Effects of Network Architectures487

In this experiment, the ASL recognition results of different number of layers at 18, 34,488

50, and 101 for 3DResNet are compared on full RGB, optical flow, and depth images.489

As shown in Table 4, the performance of 3DResNet-18, 3DResNet-50, and 3DResNet-101490

achieve comparable results on RGB channel. However, the performance on optical flow and491

depth channels are much lower than that of RGB channel because the network has been492

pretrained on from Kinetics dataset which contains only RGB images. As shown in Table 4,493

3DResNet-34 obtained the best performance for all RGB, optical flow, and depth channels.494

Hence, 3DResNet-34 is chosen for all the subsequent experiments.495

Table 4: The effects of number of layers for 3DResNet with 16 frames on RGB, optical flow, and depth
channels. All the models are pretrained on Kinetics and finetuned on ASL-100-RGBD dataset.

Network RGB (%) Optical Flow (%) Depth (%)

3DResNet-18 73.2 61.9 65.0
3DResNet-34 75.9 62.8 66.5
3DResNet-50 72.3 55.4 62.0
3DResNet-101 72.5 55.0 61.5

5.2.3. Effects of Pretrained Models496

To evaluate the effects of pretrained models, we fine-tune 3DResNet-34 with pretrained497

models from the Kinectics [134] and the Chalearn LAP IsoGD datasets [11], respectively.498

Kinetics dataset consists of RGB videos of diverse human actions which involve different499

parts of body while the Chalearn LAP IsoGD dataset contains both RGB and depth videos of500

various hand gestures including mudras (Hindu/ Buddhist hand gestures), Chinese numbers501

and diving signals, as shown in Fig. 6.502

The results are shown in Table 5. The temporal duration is fixed to 16 and the channels503

are RGB, Depth, and RGBflow. The pretrained models from large datasets such as Kinet-504

ics or Chalearn can significantly boost the classification performance for all the modalities505

because the pretrained models provide prior knowledge as a good starting point for net-506

work optimization. In all channels, the performance using the pretrained models from the507

Chalearn dataset is better than pretrained models from Kinetics dataset. This is probably508

because all the videos in Chalearn dataset are focused on hand gestures and the network509

trained on this dataset can learn prior knowledge of hand gestures. The Kinetics dataset510

consists of general videos from YouTube and the network focuses on the prior knowledge of511

motions. Therefore, for each channel the pretrained model on the same channel of Chalearn512

dataset is used in the subsequent experiments.513

5.2.4. Effects of Temporal Duration of Proxy Videos514

We study the effects of temporal duration (i.e. number of frames used in proxy videos)515

by finetuning 3DResNet-34 on ASL-100-RGBD dataset with 16, 32, and 64 frames. Note516

that the same temporal duration is also used to train the corresponding pretrained model517

on the Chalearn dataset. Results are shown in Table 6. The performance of the network518
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Figure 6: Example images of three datasets. ASL-100-RGBD: various ASL signs. Kinetics dataset: con-
sisting of diverse human actions, involving different parts of body. Chalearn IsoGD: various hands gestures
including mudras (Hindu/ Buddhist hand gestures) and diving signals.

Table 5: The comparison of the performance of recognizing 100 ASL signs on 3DResNet-34 trained from
scratch and with different pretrained models.

Channels Scratch (%) Kinetics (%) Chalearn (%)

RGB 59.0 75.9 76.4
Depth 52.5 66.5 68.2
RGB Flow 46.3 62.8 66.8

with 64 frames achieves the best performance. Therefore, 3D-ResNet-34 with 64 frames is519

used in all the following experiments.520

Table 6: The comparison of the performance of networks with different temporal duration (i.e. number of
frames used in proxy videos). All the models are pretrained on Chalearn dataset and finetuned on ASL-
100-RGBD dataset by using the same temporal duration.

Channel 16 frames (%) 32 frames (%) 64 frames (%)

RGB 76.38 80.73 87.83
Depth 68.18 74.21 81.93
RGB Flow 66.79 71.74 80.51

5.2.5. Effects of Different Input Channels521

In this section, we examine the fusion results of different input channels. The RGB522

channel provides global spatial and temporal appearance information. The depth channel523

provides the distance information, and the optical flow channel captures the motion infor-524
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mation. The network is finetuned on the three input channels respectively. The geometric525

mean fusion is used to obtain the final predictions.526

Table 7 shows the performance of ASL recognition on ASL-100-RGBD dataset for each527

input channel and different fusions. While RGB channel alone achieves 87 .83%, by fusing528

with optical flow, the performance is boosted up to 89 .02%. With the fusion of all the three529

channels (RGB, Optical flow, and Depth), the performance is further improved to 89 .91%.530

This indicates that depth and optical flow channels contain complementary information to531

RGB channel for ASL recognition.532

Table 7: The performance comparison of networks with different input channels and their fusions. All the
models are pretrained on Chalearn dataset and finetuned on ASL-100-RGBD dataset with 64 frames.

Channels Fusions

RGB
√ √ √ √

Depth
√ √ √

Optical Flow
√ √ √

Performance 87.83% 81.93% 80.51% 89.91% 89.02% 89.71

5.2.6. Effects of Different Modalities533

We attain further insight into the learned features of the model for RGB channel. In534

Fig 7 we visualize some examples of the attention maps of the fifth convolution layer on535

our test dataset generated by the trained RGB 3DCNN model for ASL recognition. These536

attention maps are computed by averaging the magnitude of activations of convolution layer537

which reflect the attention of the network. The attention maps show that the model mostly538

focused on hands and face of the signer during the ASL recognition process.539

Figure 7: The example RGB images and their corresponding attention maps from the fifth convolution layer
of the 3DResNet-34 on the test dataset of ASL-100-RGBD, showing that the hands and face have most of
the attention.

Hence, we conduct experiments to analyze the effect of each modality (hand gestures,540

facial expression, and body poses) with the RGB channel. As shown in Fig. 3, the hand541

regions and the face regions are obtained from the RGB image based on the location guided542
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Table 8: The performance comparison of different modalities and their fusions. All the models are pretrained
on Chalearn dataset and finetuned on ASL-100-RGBD dataset with 64 frames.

Channels Fusions

Body
√ √ √

Hand
√ √ √

Face
√

Performance 87.83% 80.9% 89.81% 91.5%

by skeleton joints. The performance of each modality and their fusions are summarized in543

Table 8.544

In addition to the accuracy of ASL sign recognition, we further analyzed the accuracy of545

the six categories (see Fig. 4 for details) for each modality and their combinations in Table546

9. For the categories that involve many facial expressions, such as Question(Yes/No) and547

Negative, the accuracy of hand modality is improved by more than 15% after fusion with548

face modality. For the Conditional category which utilizes more subtle facial expressions,549

the accuracy of hand modality is not improved after fusion with face modality.550

Table 9: The performance (%) of different modalities and their fusions on six categories listed in Fig. 4:
Conditional (Cond), Negative (Neg), Pointing (Point), Question (WH), Yes/No Question (Y/N) and Time.
The last column is the accuracy (%) for ASL signs.

Modalities Cond Neg Point WH Y/N Time Acc

Hand 90.0 78.1 68.4 84.3 68.4 81.4 80.9
Body 100.0 87.4 84.2 88.0 89.5 87.6 87.83
Body+Hand 90.9 86.6 89.5 88.7 94.7 90.2 89.81
Body+Hand+Face 90.9 93.3 84.2 90.6 84.2 91.8 91.5

5.2.7. Comparison of Different Fusion Methods551

Various fusion methods have been used for video understanding tasks including average552

fusion, geometric mean fusion, jointly end-to-end training, and sparse fusion method. The553

average fusion method calculates the average of predictions as final prediction from predic-554

tions of multiple channels, and the weights for each channel can be adjusted based on the555

importance of each channel. The geometric mean fusion method calculates the geometric556

mean of predictions of all channels. These two fusion methods are widely used for video557

action recognition task due to their simplicity and effectiveness. The sparse fusion method558

is proposed to use a small neural network to learn how much each channel contributes to559

each class and the weighted score is used as the final prediction, and the jointly training560

fusion method trains all the networks together to jointly optimize them.561

In this section, we study the effects of different fusion methods and report the perfor-562

mance of all the four fusion methods in Table 10. Among all these fusion methods, the563
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geometric mean fusion method outperforms the other three fusion methods. Therefore, the564

geometric mean fusion method is employed for all the experiments in the paper.565

Table 10: Results of different fusion methods on ASL-100-RGBD dataset by using five channels including
RGB, RGB Flow, Depth, Cropped Hands, and Cropped Face.

Fusion Method Accuracy (%)

Jointly Training 89.51%
Sparse Fusion 90.29%
Average Fusion 91.29%

Geometric Mean Fusion 92.58%

5.2.8. Fusions of Different Channels and Modalities566

The fusion results of different input channels and modalities on ASL-100-RGBD dataset567

are shown in Table 11. The experiments are based on 3DResNet-34 with 64 frames, pre-568

trained on Chalearn dataset. Among all the models, fusion of RGB+Depth+Hands569

RGB+ Face RGB achieves the best performance with 92.88% accuracy. Adding RGBflow570

to this combination results in 92.48% accuracy which is comparable but not improved since571

the channels have redundant information.572

Table 11: Performance of 3DResNet-34 with 64 frames with fusion of different channels and modalities.

Channels Fusions

RGB
√ √ √

Depth
√ √ √ √

RGBflow
√ √ √

RGB of Hands
√ √ √ √

RGB of Face
√ √ √

Performance 91.19% 92.48% 92.48% 92.88%

5.3. Experiments on Chalearn LAP IsoGD dataset573

5.3.1. Effects of Network Architectures574

The 3D-ResNet is pretrained on Kinetics [134] for all the experiments in this section. To575

find the best network architecture for Chalearn dataset, the parameters of 3D-ResNet are576

studied on RGB videos. The results are shown in Table 12. By changing the number of577

layers to 18, 34, 50 while fixing the temporal duration to 32, ResNet-34 achieved the best578

accuracy.579

We also evaluated the performance of ResNet-34 with different temporal duration of the580

proxy videos by using 16, 32, and 64 frames. Our results indicate that ResNet-34 with 64581

frames has the best performance for Chalearn dataset, as shown in Table 13.582
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Table 12: Ablation study of number of layers of the network on RGB videos of Chalearn Dataset.

Network Temporal Duration Accuracy

ResNet-18 32 52.69%
ResNet-34 32 56.28%
ResNet-50 32 54.57%

Table 13: Ablation study of temporal duration of proxy videos on RGB channel of Chalearn Dataset.

Network Temporal Duration Accuracy

ResNet-34 16 45.00%
ResNet-34 32 56.28%
ResNet-34 64 58.32%

5.3.2. Effects of Different Channels and Modalities583

We evaluate the effects of different channels including RGB, RGB flow, Depth, and584

Depth flow. Because the Chalearn dataset is designed for hand gesture recognition, we585

further analyze the effects of different hands (left and right), as well as the whole body. We586

develop a method to distinguish left and right hands in Chalearn Isolated Gesture dataset,587

and will release the coordinates of hands (distinguished between right and left hands) with588

the publication of this article. Since the Chalearn dataset is collected for recognizing hand589

gestures, here, the face channel is not employed.590

We train 12 3D-ResNet-34 networks with 64 frames by using different combinations of591

channels and modalities respectively and show the results in Table 14. The accuracy of right592

hand is significantly higher than the left hand. The reason is that for most of the gestures593

in Chalearn dataset, the right hand is dominant and the left hand does not move much for594

many hand gestures.595

Table 14: Performance of 3D-ResNet-34 with 64 frames on Chalearn Dataset for different channels and
modalities.

Channel Global Channel (%) Left Hand (%) Right Hand (%)

RGB 58.32 18.01 48.58
Depth 63.16 19.43 54.15
RGB Flow 60.26 21.97 48.79
Depth Flow 55.37 20.28 47.07

5.3.3. Effects of Fusions on Channels and Modalities596

Here we analyze the effects of fusing different channels and modalities. The results are597

shown in Table 15. Using only RGB and depth channels, the accuracy is 67.58% which is598

improved to 69.97% by adding RGB flow. We observe that among all different triplets of599

channels, Right Hand RGB + Depth + RGBflow has the highest accuracy at 73.32%. By600
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applying the geometric mean fusion on four channels RGB+ RGBflow+ Right Hand RGB601

+ Right Hand Depth, our model achieves the accuracy about 75.88% which outperforms all602

previous work on Chalearn dataset. In the-state-of-the-art work of [135], the accuracy of603

average fusion is 71.93% for 7 channels and 70.37% for 12 channels, respectively.604

Finally, the geometric mean fusion of all global channels (RGB, RGB flow, Depth, Depth605

flow) and Right Hand channels (Right Hand RGB, Right Hand RGB flow, Right Hand606

Depth, Right Hand Depth flow) resulted in 76.04% accuracy and the accuracy of 12 channels607

together resulted in 75.68%. This means that the 12 channels contain redundant information,608

and adding more channels does not necessarily improve the results.609

Table 15: Performance of 3DResNet-34 with 64 frames for fusion of different channels and modalities on
Chalearn dataset.

Channels Fusions

RGB
√ √ √ √

Depth
√ √ √ √

RGBflow
√ √ √ √

RGB of Right Hand
√ √ √

Depth of Right Hand
√ √

Performance 67.58% 69.97% 73.32% 75.53% 75.88%

Table 16: Comparison with the State-of-the-art Results on Chalearn IsoGD Dataset.

Framework Accuracy on Test Set (%)

Our Results 76.04
MEMP (3DCNN + LSTM) [136] 78.85
MultiD-CNN [137] 72.53
MEMP (3DCNN) [136] 71.24
FOANet (Average Fusion) [135] 70.37
Lin et al. [138] 68.42
Chen et al. [139] 68.15
Duan et al. [140] 67.26
Miao et al. [141] 67.71
CAPF [142] 66.79
Zhou et al [143] 66.62
Wang et al. [144] 65.59
Zhang et al. [145] 60.47
Wang et al. [146] 59.21
Santos et al. [147] 52.18

5.3.4. Comparison with the-state-of-the-arts610

Our framework achieves accuracy of 75.88% and 76.04% from the fusion of 5 and 8611

channels, respectively, on Chalearn IsoGD dataset. Table 16 lists the state-of-the-art results612
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from Chalearn IsoGD competition 2017. As shown in the table, our framework achieves613

comparable results to the-state-of-the-art methods.614

MEMP [136] achieves a slightly higher results, 78.85%, by combining 3DCNNs with615

LSTMs. However, the performance of MEMP [136] drops 5% below our results when LSTMs616

are not employed. Rastgoo et al. in [148] improved the performance to 86.1% by exploiting617

additional information such as 3D hand keypoints. It is worth noting that FOANet [135]618

reported the accuracy of 82.07% by applying Sparse Fusion on the softmax scores of 12619

channels (combinations of right hand, left hand, and whole body while each has 4 channels620

of RGB, Depth, RGBflow and Depthflow). The purpose of using sparse fusion is to learn621

which channels are important for each gesture. The accuracy of FOANet framework using622

average fusion is 70.37% which is around 6% lower than our results and nearly 12% lower623

than the accuracy of sparse fusion. While the authors of FOANet [135] had reported a 12%624

boost from using sparse fusion in their original experiments, our experiments do not reveal625

such a boost when implementing a system following the technical details provided in [135].626

Table 17 lists the accuracy on individual channels of our network and FOANet [135]. In627

this table, the values inside the parenthesis represent the accuracy of FOANet. As shown628

in the table, in the Global channel, our framework outperforms FOANet in all the four629

channels by 10% to 25%. Also, for the RGB of Right Hand, we obtain a comparable accuracy630

( 48%) as FOANet. However, FOANet is outperforming our results in the Right Hand for631

Depth, RGBflow, and Depthflow by nearly 10%. From our experiments, the performance632

of ”Global” channels (whole body) in general is superior to the Local channels (Right/633

Left Hand) because the Global channels include more information. By using the similar634

architecture, FOANet reported 64% accuracy from Depth of Right Hand and 38% from635

Depth of the entire frame. Instead, our framework achieves more consistent results. For636

example, in our framework the accuracy of Depth channel is higher than RGB and RGBflow637

for both Global and Right Hand, while the accuracy in FOANet for Depth and RGB are638

almost the same in the Global channel (around 40%) but very different in the Right Hand639

channel (17% difference.)640

Table 17: The accuracy (%) of 12 channels on the test set of Chalearn IsoGD Dataset. Comparison between
our framework and FOANet [135]. The bold numbers show the best results.

Channel Global Channel (%) Left Hand (%) Right Hand (%)
Method Ours FOANet Ours FOANet Ours FOANet
RGB 58.32 41.27 18.01 16.63 48.58 47.41
Depth 63.16 38.50 19.43 24.06 54.15 64.44
RGB Flow 60.26 50.96 21.97 24.02 48.79 59.69
Depth Flow 55.37 42.02 20.28 22.71 47.07 58.79

5.4. Efficiency Analysis641

One major advantage of our proposed method is that it is efficient and runs in real-time.642

During the training phase, a small proxy clip sampled for each gesture clip is used to train643
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the network. During testing, the prediction of each gesture clip is obtained by feeding its644

proxy video to the network in one pass. The performance and computation time of our645

proposed framework with 3DResNet-34 on different input channels on the Chalearn IsoGD646

testing set using a single NVIIDA PASCAL GPU are reported in Table 18. Our proposed647

framework runs 432 frames per second by using 6 channels input channels including RGB,648

RGB Flow, Depth, Cropped Left Hand, Cropped Right Hand, and Cropped Face which649

demonstrate the potential for real-time ASL recognition application. Table 19 reports the650

computational complexity of our model, 3D-ResNet34, with varying temporal durations, in651

terms of floating-point operations (FLOPs) on the RGB channel and whole-body modality of652

the ChaLearn IsoGD Dataset. As the table demonstrates, increasing the temporal duration653

improves accuracy but also leads to higher computational complexity.654

Table 18: The speed analysis of the proposed network on the Chalearn IsoGD dataset. The channels are
RGB, Depth, RGB Flow of whole body and the right hand.

# Channels Accuracy (%) FPS

4 75.53 650
5 75.88 537
6 76.04 432

Table 19: The computational complexity of 3D-ResNet34, with varying temporal durations, in terms of
floating-point operations (FLOPs) on the RGB channel of the ChaLearn IsoGD Dataset.

Temporal Duration Accuracy (%) FLOPs(1× 109)

16 45.0% 69.7
32 56.3% 133.8
64 58.3% 260.9

6. Conclusions655

In this paper, we have proposed a 3DCNN-based multi-channel and multi-modal frame-656

work, which learns complementary information and embeds the temporal dynamics in videos657

to recognize ASL signs from RGB-D videos. To validate our proposed method, we collabo-658

rate with ASL experts to collect an ASL dataset of 100 manual signs including both hand659

gestures and facial expressions with full annotation on the sign labels and temporal bound-660

aries (starting and ending points.) A Proxy video generation method is integrated with our661

framework to capture both spatial and temporal information of the entire gesture. The ex-662

perimental results on our ASL-100-RGBD and Chalearn IsoGD datasets have demonstrated663

the effectiveness and efficiency of the proposed framework.664
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This technology for identifying the appearance of specific ASL signs has valuable appli-665

cations for technologies that can benefit people who are DHH [29, 31, 30, 27, 43, 149, 150].666

Our “ASL-100-RGBD” dataset together with the annotation is available to the research667

community to use this resource for training or evaluation of models for ASL recognition.668
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[29] N. C. Camgöz, S. Hadfield, O. Koller, R. Bowden, Subunets: End-to-end hand shape and continuous742

sign language recognition., in: ICCV, Vol. 1, 2017.743

[30] O. Koller, H. Ney, R. Bowden, Deep learning of mouth shapes for sign language, in: Proceedings of744

the IEEE International Conference on Computer Vision Workshops, 2015, pp. 85–91.745

[31] O. Koller, H. Ney, R. Bowden, Deep hand: How to train a cnn on 1 million hand images when your746

data is continuous and weakly labelled, in: Proceedings of the IEEE Conference on Computer Vision747

and Pattern Recognition, 2016, pp. 3793–3802.748

[32] Z. Liu, F. Huang, G. W. L. Tang, F. Y. B. Sze, J. Qin, X. Wang, Q. Xu, Real-time sign language749

recognition with guided deep convolutional neural networks, in: Proceedings of the 2016 Symposium750

on Spatial User Interaction, ACM, 2016, pp. 187–187.751

[33] S. Gattupalli, A. Ghaderi, V. Athitsos, Evaluation of deep learning based pose estimation for sign lan-752

guage recognition, in: Proceedings of the 9th ACM International Conference on Pervasive Technologies753

Related to Assistive Environments, ACM, 2016, p. 12.754

[34] O. Koller, S. Zargaran, H. Ney, R. Bowden, Deep sign: Enabling robust statistical continuous sign755

language recognition via hybrid cnn-hmms, International Journal of Computer Vision 126 (12) (2018)756

1311–1325.757

[35] J. Charles, T. Pfister, M. Everingham, A. Zisserman, Automatic and efficient human pose estimation758

for sign language videos, International Journal of Computer Vision 110 (1) (2014) 70–90.759

[36] Y. Ye, Y. Tian, M. Huenerfauth, Recognizing american sign language gestures from within continu-760

28



ous videos, The 8th IEEE Workshop on Analysis and Modeling of Faces and Gestures (AMFG) in761

conjunction with CVPR 2018.762

[37] S. Zhang, Q. Zhang, Sign language recognition based on global-local attention, Journal of Visual763

Communication and Image Representation 80 (2021) 103280.764

[38] K. Sadeddine, F. Z. Chelali, R. Djeradi, A. Djeradi, S. Benabderrahmane, Recognition of user-765

dependent and independent static hand gestures: Application to sign language, Journal of Visual766

Communication and Image Representation 79 (2021) 103193.767

[39] J. Zheng, Y. Wang, C. Tan, S. Li, G. Wang, J. Xia, Y. Chen, S. Z. Li, Cvt-slr: Contrastive visual-768

textual transformation for sign language recognition with variational alignment, in: Proceedings of769

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 23141–23150.770

[40] L. Hu, L. Gao, Z. Liu, W. Feng, Continuous sign language recognition with correlation network, in:771

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp.772

2529–2539.773

[41] L. Guo, W. Xue, Q. Guo, B. Liu, K. Zhang, T. Yuan, S. Chen, Distilling cross-temporal contexts774

for continuous sign language recognition, in: Proceedings of the IEEE/CVF Conference on Computer775

Vision and Pattern Recognition, 2023, pp. 10771–10780.776

[42] J. Liu, B. Liu, S. Zhang, F. Yang, P. Yang, D. N. Metaxas, C. Neidle, Recognizing eyebrow and777

periodic head gestures using crfs for non-manual grammatical marker detection in asl, in: Proc. of778

the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition779

(FG), 2013.780

[43] P. Kumar, P. P. Roy, D. P. Dogra, Independent bayesian classifier combination based sign language781

recognition using facial expression, Information Sciences 428 (2018) 30–48.782

[44] U. von Agris, M. Knorr, K.-F. Kraiss, The significance of facial features for automatic sign language783

recognition, in: Proceedings of IEEE International Conference on Automatic Face & Gesture Recog-784

nition, 2008.785

[45] D. Bragg, O. Koller, M. Bellard, L. Berke, P. Boudreault, A. Braffort, N. Caselli, M. Huenerfauth,786

H. Kacorri, T. Verhoef, C. Vogler, M. R. Morris, Sign language recognition, generation, and translation:787

An interdisciplinary perspective, in: In Proceedings of the 21st International ACM SIGACCESS788

Conference on Computers and Accessibility (ASSETS ’19), 2019.789

[46] S. Ong, S. C.and Ranganath, Automatic sign language analysis: A survey and the future beyond790

lexical meaning, IEEE Pattern Analysis and Machine Intelligence 27 (6) (2005) 873–891.791

[47] A. Er-Rady, R. O. H. Thami, R. Faizi, H. Housni, Automatic sign language recognition: A survey,792

in: Proceedings of the 3rd International Conference on Advanced Technologies for Signal and Image793

Processing, 2017.794

[48] R. Rastgoo, K. Kiani, S. Escalera, Sign language recognition: A deep survey, Expert Systems with795

Applications 164 (2021) 113794.796

[49] M. C. Ariesta, F. Wiryana, G. P. Kusuma, et al., A survey of hand gesture recognition methods in797

sign language recognition., Pertanika Journal of Science & Technology 26 (4).798

[50] O. Koller, Quantitative survey of the state of the art in sign language recognition, arXiv preprint799

arXiv:2008.09918.800

[51] P. Barve, N. Mutha, A. Kulkarni, Y. Nigudkar, Y. Robert, Application of deep learning techniques on801

sign language recognition—a survey, Data Management, Analytics and Innovation (2021) 211–227.802

[52] R. Minu, et al., A extensive survey on sign language recognition methods, in: 2023 7th International803

Conference on Computing Methodologies and Communication (ICCMC), IEEE, 2023, pp. 613–619.804

[53] Z. Liang, H. Li, J. Chai, Sign language translation: A survey of approaches and techniques, Electronics805

12 (12) (2023) 2678.806

[54] Set up kinect for windows v2 or an xbox kinect sensor with kinect adapter for windows,807

https://support.xbox.com/en-US/xbox-on-windows/accessories/kinect-for-windows-v2-setup.808

[55] Intel realsense technology: Observe the world in 3d, https://www.intel.com/content/www/us/en/architecture-809

and-technology/realsense-overview.html.810

[56] Orbbec astra, https://orbbec3d.com/product-astra/.811

29



[57] N. Pugeault, R. Bowden, Spelling it out: Real-time asl fingerspelling recognition, in: Proc. of IEEE812

International Conference on Computer Vision Workshops, 2011, pp. 1114–1119.813

[58] Z. Zafrulla, H. Brashear, T. Starner, P. Hamilton, H.and Presti, American sign language recognition814

with the kinect, in: In Proceedings of the International Conference on Multimodal Interfaces, 2011,815

pp. 279–286.816

[59] X. Chai, G. Li, Y. Lin, Z. Xu, Y. Tang, X. Chen, M. Zhou, Sign language recognition and transla-817

tion with kinect, in: Proceedings of IEEE International Conference on Automatic Face and Gesture818

Recognition, 2013.819

[60] Z. Ren, J. Yuan, J. Meng, Z. Zhang, Robust part-based hand gesture recognition using kinect sensor,820

IEEE Trans. on Multimedia 15 (2013) 1110–1120.821

[61] Y. Jiang, J. Tao, Y. Weiquan, W. Wang, Z. Ye, An isolated sign language recognition system using rgb-822

d sensor with sparse coding, in: Proceedings of IEEE 17th International Conference on Computational823

Science and Engineering, 2014.824
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