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ABSTRACT

Prediction of sea ice motion is important for ocean-atmosphere
interaction modeling and safe naval operations in polar re-
gions. In this study, we investigate the potential of Recurrent
Neural Networks (RNNs) in predictions of motion for several
days in the future based only on previously observed satellite
image data. We collect a large dataset of daily Advanced
Microwave Scanning Radiometer - Earth Observing System
(AMSR-E) images that cover the entire Arctic. Optical flow
is employed to calculate dense sea ice motion between im-
ages of each consecutive-day pair. The optical flow images
are then used to train an encoder-decoder Long Short-Term
Memory (LSTM) RNN and estimate motion for several days
in the future. Experiments demonstrate that the proposed
method is successful in predicting short-term sea ice motion
with accuracy close to motion calculated from the original
images and buoys, and proves promising for further applica-
tions and research.

Index Terms— Advanced Microwave Scanning Ra-
diometer - Earth Observing System (AMSR-E), deep learn-
ing, Long Short-Term Memory (LSTM), motion prediction,
optical flow

1. INTRODUCTION

Knowledge of sea ice motion in polar and near-polar regions
is essential for safe naval operations and modeling of the
energy and mass exchange between the atmosphere and the
ocean [1, 2]. Thus, timely prediction of future sea ice mo-
tion is important for planning safe ship navigation, oil and
gas exploration, and fisheries, and may serve as feedback
mechanism to improve ocean-atmosphere models.

Despite its importance, the challenging task of future mo-
tion prediction is a largely unexplored area. The few pre-
sented studies [3, 4] rely mainly on numerical models that
require a large amount of data from multiple sources, includ-
ing surface winds, ice thickness, water currents, ice collision
rheology data, etc., with the respective uncertainties of each
source. On the contrary, in this study we aim at predicting sea
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ice motion based only on a sequence of previously observed
satellite images. To our knowledge, this is the first attempt to
predict sea ice motion solely based on satellite imagery.

Motion prediction remains a challenging task in computer
vision. Recent deep learning techniques have been applied to
predict future instances based on large datasets of observed
past instances. Among them, RNNs have provided promising
results in predicting a small number of future natural [5] or
ground-based radar echo images [6], based on an observed
image sequence. In this study, we propose a methodology for
future sea ice motion prediction based on LSTMs and optical
flow image sequences. We calculate a sequence of optical
flow images from the satellite image data. The optical flow
images are encoded in a fixed-size vector representation by
an LSTM network, and decoded by a second LSTM network
for short-term predictions of optical flow instances for several
days in the future. To our best knowledge, it is the first use
of deep learning, and in particular, LSTM networks in sea ice
motion prediction.

2. DATA

Horizontal polarization brightness temperature images from
the Advanced Microwave Scanning Radiometer - Earth Ob-
serving System (AMSR-E) sensor on NASA’s Aqua satellite
are used as the principal data sources [7]. In particular, the
entire set of 277 daily averaging images of 36.5 GHz from
2011 is collected, ranging from January 1st to October 4th,
the last day AMSR-E data are provided for. The images are
in a polar stereographic grid, tangent to the Earth’s surface at
70 degrees northern latitude, and have a spatial resolution of
12.5 km. Each image covers the entire Arctic region, expand-
ing within the following corner coordinates: top-left 30.98◦N,
168.35◦E; bottom-left 33.92◦N, 80.74◦W; top-right 31.37◦N,
102.34◦E; bottom-right 34.35◦N, 9.97◦W. The original 16-bit
images are transformed to 8-bit images for further process-
ing, scaled between the minimum and maximum brightness
temperature values observed over the entire dataset. In addi-
tion, the sea ice concentration daily average product included
within the image dataset is used to generate a daily sea ice
mask, by filtering out the indicated open water and land mask
pixels.



3. METHODOLOGY

3.1. Optical flow

Sea ice motion is calculated for each pair of consecutive-day
AMSR-E images. We employ an optical flow approach that
has recently proven to outperform a state-of-the-art pattern
matching approach to calculate sea ice motion i) densely, i.e.,
for every pixel of the original image, instead of the sparse
calculation of pattern matching, ii) more accurately, and iii)
requiring less processing time [8].

First, the sea ice mask image for each day is used to gen-
erate AMSR-E images with non-sea-ice pixels filtered out.
These new images are used to calculate the optical flow. A
structure learning-based edge detection methodology [9] is
then applied to each image. In parallel, sparse pixel corre-
spondences are found for each pair of images, using a bottom-
up multi-stage non-rigid matching approach [10]. The calcu-
lated edges and pixel correspondences are then used to ap-
ply sparse-to-dense interpolation and variational energy min-
imization [11] to calculate optical flow for each pixel between
the paired images.

3.2. LSTM encoder-decoder

Our LSTM network consists of an encoder LSTM and two
decoder LSTM networks. The composite network follows the
structure proposed by Srivastava et al. [5]. The encoder net-
work consists of a number of LSTM units that sequentially re-
ceive as input optical flow patches from continuous dates and
encode them to a fixed-length vector representation. Then,
the first decoder network receives this representation as input
and reconstructs the original patches, from the most recent
to the oldest. Apart from the first reconstructed patch in the
time series, where only the encoder representation is used as
input, for each reconstruction the output from the previous
time step is used as input together with the encoder represen-
tation. The second decoder network works in a similar fash-
ion, but instead, it tries to predict a number of future optical
flow patches. Again, the previously predicted patch is used
as input for the next prediction together with the encoder rep-
resentation. The LSTM encoder-decoder structure allows an
end-to-end training of the entire network in an unsupervised
manner, with no requirement for image annotation.

Two-layer encoder and decoder architectures are used,
where the output of the first LSTM layer serves as the input
to the second layer. Each LSTM unit has a memory cell ct
at time t, connected with an input, it, forget, ft, and output,
ot logistic sigmoidal gate. The input sources at step t are the
current optical flow patch—reordering the 2D optical flow
patch as 1D vector—or its encoded representation vector, xt,
and the output, or hidden state, from the previous step, ht−1.
Together with the previous cell state, these input sources pass
through the input and forget gates and update the cell state.
The input sources and the updated cell state are then passed

through the output gate and update the hidden state of the unit
through a tanh non-linearity. The overall formulas describing
the calculation of the current hidden state output, ht, are [12]:

it =σ(Wxixt +Whiht−1 +Wcict−1 + bi), (1)
ft =σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ), (2)
ct =ftct−1 + it tanh(Wxcxt +Whcht−1 + bc), (3)
ot =σ(Wxoxt +Whoht−1 +Wcoct−1 + bo), (4)
ht =ot tanh(ct), (5)

where σ represents the sigmoid function, W weight matrices,
and b biases. Multiplications between vectors are element-
wise. The weight matrices Wci, Wcf , and Wco, representing
the so-called peephole connections between the cell and the
gates, are diagonal, i.e., each element of a gate vector receives
input only from the respective element of the cell vector. The
rest of the weight matrices are dense. The cell state of the
LSTM unit is capable of summing activities over time. This
allows the LSTM network to capture and accurately describe
long-term dependencies and avoid the exploding or vanishing
gradient problems that traditional RNNs suffer from.

4. RESULTS AND DISCUSSION

4.1. Network parameters

In our settings, since the desired output is optical flow real
values, we use linear output units in the LSTM network. The
squared loss function is used to evaluate the predictions dur-
ing training. The weight matrices are initialized by sampling
from a uniform distribution and biases are set to zero. We use
sequences of 20 optical flow images for training, out of which
the 10 first serve as the observed images and the next 10 as the
ones to be predicted.

Contrary to [5] that used a training and test set, we ad-
ditionally employ a validation set to fine-tune the network
and prevent overfitting. From the total 276 optical flow im-
ages, we randomly select 31 consecutive images for valida-
tion and another 31 for testing. This results in 11 overlap-
ping sequences of 20 images each for validation and another
11 sequences for prediction. The original images of width-
height-depth dimensions 608×896×2 pixels are split into 532
patches of 32×32×2 pixels. From the validation set, patches
with no pixels falling in the sea ice mask area are excluded. In
total, 1202 sequences are used for validation and other 5852
sequences for testing, each with patches from 20 sequential
images. The remaining images form the training set. To keep
the training set totally independent, we exclude all images be-
longing to either the validation or test set. After removing
all patches falling entirely outside the sea ice area, we end
up with a training set of 32184 sequences, each with patches
from 20 sequential images.

The first and second layers of the encoder-decoder net-
work has 4096 and 2048 hidden units, respectively. This



means that, for a 20-patch sequence, the first layer of the en-
coder transforms the first 10 patches into a 4096-dimensional
vector, the second layer into a 2048-dimensional vector, and
the decoder networks follow the reverse order to reconstruct
the first 10 patches and predict the next 10 future patches.
Minibatch training of 100 sequences with rotation is used,
i.e., the last minibatch fills the missing sequences from the
beginning of the set and the next minibatch continues from
there. Validation during training is applied every 500 batch
iterations on the validation set. Instead of a fixed number of
training iterations as in [5], we apply early-stopping after 10
validation steps without change in the best validation perfor-
mance. Then, the model with the best validation performance
is selected.

4.2. Experimental results

In our experiments the first 10 optical flow patches of each test
set sequence are used as input to predict the next 10 patches.
First, we compare the predicted optical flow with the refer-
ence optical flow patches on a per pixel basis, for both x and
y motion axes. Pixels outside the sea ice area are masked out.
Fig. 1 draws error statistics for each predicted step in the fu-
ture, e.g., if patches from days 1–10 are used as inputs, step
1 represents the predicted patches of day 11, step 2 of day
12, etc. After masking out non-sea ice pixels, around 700,000
pixels remain at each prediction step. As expected, the mini-
mum error values appear in the first prediction step, for both
motion axes. The errors then, generally, gradually increase
as prediction moves further in the future. Although in the
last steps the errors slightly decrease for only the x axis, the
overall increasing trend remains. However, overall, the per-
formance degrades in a slow pace and even after 10 prediction
steps the error values remain as low as double the errors in the
first prediction step.

To further evaluate the accuracy of our proposed ap-
proach, the predicted motion is compared against buoys from
the International Arctic Buoy Programme (IABP) [13]. The
12:00 GMT reported daily buoy positions are selected and
the data are reprojected to the polar stereographic grid of the
input data. Table 1 reports the corresponding errors for each
prediction step in the future. Each step involves between 280
and 287 buoys, i.e., around 26 buoys for each daily image
of the test set. It is noted that the corresponding root mean-
squared error (RMSE) and mean-absolute error (MAE) of the
optical flow data we use as input for the prediction lie around
2.5–3 km and 1.6–2.3 km, respectively. This demonstrates
the close proximity of the error of the predicted patches to
the theoretically minimum possible error of the input data. In
addition, predictions of up to several steps in the future are
more accurate even from vectors estimated from observed,
instead of predicted, similar AMSR-E 36.5 GHz data (RMSE
4.5 km on the x and 4.83 km on the y axis in [14]).

Fig. 2 draws an example of the step 1 prediction vectors

Fig. 1. Accuracy evaluation of the predicted versus the refer-
ence optical flow for all sea ice pixels, for each prediction step
in the future. The relative squared error (RSE), root mean-
squared error (RMSE) in km, and mean-absolute error (MAE)
in km are calculated for both x and y axes.

Table 1. Accuracy evaluation of the predicted motion against
buoys in the entire Arctic, for each prediction step in the fu-
ture (fut). RMSE and MAE are in km.

x axis y axis
fut RSE RMSE MAE RSE RMSE MAE

1 0.456 3.607 2.609 0.572 3.167 2.306
2 0.589 3.793 2.777 0.836 3.521 2.589
3 0.589 3.806 2.698 1.202 4.252 2.950
4 0.650 3.944 2.912 1.652 5.096 3.591
5 0.591 3.662 2.662 1.937 5.893 4.305
6 0.595 3.875 2.781 1.995 6.521 4.887
7 0.696 4.211 3.164 2.085 6.747 5.072
8 0.823 4.437 3.351 2.117 6.756 5.110
9 0.808 4.398 3.325 2.012 6.681 5.130
10 0.822 4.632 3.473 1.834 6.611 4.970

compared with the reference optical flow and the IABP buoys.
For visualization, a close-up look of the original image extent
is shown, vectors are drawn every 56 and 38 pixels in the
vertical and horizontal dimension, respectively, and they are
magnified by 20 times to be clearly visible (see scale on the
bottom right corner of the figure). Although in several cases
the predicted motion vectors underestimate the true magni-
tude of the buoys or the orientation of the reference optical
flow vectors, they correlate overall well with both. In total, as
the aforementioned quantitative results also suggest, the pro-
posed LSTM and optical flow approach provides satisfactory



Fig. 2. Close-up look of one-step predicted motion vectors,
reference optical flow and buoy data, for the day pair of May
20–21, 2011. All vectors are magnified by 20 times for visu-
alization. Background: AMSR-E image from May 20, 2011.

first predictions of future sea ice motion and a promising di-
rection for future research.

5. CONCLUSION

We have proposed an approach to predict sea ice motion with
a LSTM deep learning network and optical flow input, using
only satellite AMSR-E source data. The approach provided
satisfactory results for predictions as far as 10 steps in the
future. It is the first attempt to use LSTMs for sea ice motion
prediction and the results are promising for future research
and extension to further motion prediction tasks.
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