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S
ituation awareness is the key to security. Awareness requires information that spans multiple scales
of space and time. A security analyst needs to keep track of “who are the people and vehicles in a
space?” (identity tracking), “where are the people in a space?” (location tracking), and “what are
the people/vehicles/objects in a space doing?” (activity tracking). The analyst also needs to use his-
torical context to interpret this data. For example, the fact that the paper delivery truck showed up

at 6 a.m. instead of the usual 8 a.m. would alert a security analyst.
Smart video surveillance systems are capable of enhancing situational awareness across multiple scales of

space and time. However, at the present time, the component technologies are evolving in isolation; for exam-
ple, face recognition technology addresses the identity tracking challenge while constraining the subject to be
in front of the camera, and intelligent video surveillance technologies provide activity detection capabilities on
video streams while ignoring the identity tracking challenge. To provide comprehensive, nonintrusive situation
awareness, it is imperative to address the challenge of multiscale, spatiotemporal tracking. This article explores
the concepts of multiscale spatiotemporal tracking through the use of real-time video analysis, active cameras,
multiple object models, and long-term pattern analysis to provide comprehensive situation awareness. 

INTRODUCTION
Ensuring high levels of security at public access facilities like airports and seaports is an extremely complex
challenge. A number of technologies can be applied to various aspects of the security challenge, including
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screening systems for people and objects (bags, vehicles, etc.),
database systems for tracking “trusted people,” biometric sys-
tems to verify identity, and video surveillance systems to moni-
tor activity. Today’s video surveillance systems act as large-scale
video recorders, either analog or digital. Their primary focus is
the application of video compression technology to efficiently
multiplex and store images from a large number of cameras
onto mass storage devices (either video tapes or disks). These
systems serve two key purposes: providing a human operator
with images to detect and react to potential threats and record-
ing evidence for investigative purposes. While these are the first
steps in using video surveillance to enhance security, they are
inadequate for supporting both real-time threat detection and
forensic investigation.

From the perspective of real-time threat detection, it is a
well-known fact that human visual attention drops below
acceptable levels even when trained personnel are assigned to
the task of visual monitoring [4]. From the perspective of foren-
sic investigation, the challenge of sifting through large collec-
tions of surveillance video tapes is even more tedious and error
prone for a human investigator. Automatic video analysis tech-
nologies can be applied to develop smart surveillance systems
that can aid the human operator in both real-time threat detec-
tion and forensic investigatory tasks. Specifically, multiscale
tracking technologies are the next step in applying automatic
video analysis to surveillance systems.

In this article, we begin with a discussion on the state-of-
the-art in video analysis technologies as applied to surveillance
and the key technical challenges. Component technologies for a
smart surveillance system are then presented. We explore a face
cataloging system and discuss a long-term site monitoring and
movement pattern analysis system. The article concludes with a
discussion of future directions.

STATE-OF-THE-ART IN VIDEO ANALYSIS 
FOR SURVEILLANCE
Video analysis and video surveillance are active areas of research.
The key areas are video-based detection and tracking, video-based
person identification, and large-scale surveillance systems. A sig-
nificant percentage of basic technologies for video-based detection
and tracking were developed under a U.S. government-funded
program called Video Surveillance and Monitoring (VSAM)[2].
This program looked at several fundamental issues in detection,
tracking, autocalibration, and multicamera systems [8], [9], [19].
There has also been research on real-world surveillance systems
in several leading universities and research labs [16]. The next
generation of research in surveillance is addressing not only
issues in detection and tracking but also issues of event detection
and automatic system calibration [20].

The second key challenge of surveillance—namely, video-
based person identification—has also been a subject of intense
research. Face recognition has been a leading modality with
both ongoing research and industrial systems [1], [13]. A recent
U.S. government research program called Human ID at a
Distance addressed the challenge of identifying humans at a dis-

tance using techniques like face at a distance and gait-based
recognition [10].

One of the most advanced systems research efforts in large-
scale surveillance systems is the ongoing U.S. government pro-
gram titled Combat Zones That See [3]. This program explores
rapidly deployable smart camera tracking systems that commu-
nicate over ad hoc wireless networks, transmitting track infor-
mation to a central station for the purposes of activity
monitoring and long-term movement pattern analysis.

KEY CHALLENGES
There are several technical challenges that need to be addressed
to enable the widespread deployment of smart surveillance sys-
tems. Of these, we highlight three key challenges.

THE MULTISCALE CHALLENGE
One of the key requirements for effective situation awareness is
the acquisition of information at multiple scales. A security ana-
lyst who is monitoring a lobby observes not only where people
are in the space and what they are doing but also pays attention
to the expression on people’s faces. The analyst uses these visual
observations in conjunction with other knowledge to make an
assessment of threats. While existing research has addressed
several issues in the analysis of surveillance video, very little
work has been done in the area of better information acquisition
based on real-time automatic video analysis, like automatic
acquisition of high-resolution face images. Given the ability to
acquire information at multiple scales, the challenges of relating
this information across scales and interpreting this information
become significant. Multiscale techniques open up a whole new
area of research, including camera control, processing video
from moving cameras, resource allocation, and task-based cam-
era management in addition to challenges in performance mod-
eling and evaluation.

THE CONTEXTUAL EVENT DETECTION CHALLENGE
While detecting and tracking objects is a critical capability for
smart surveillance, the most critical challenge in video-based
surveillance (from the perspective of a human intelligence ana-
lyst) is interpreting the automatic analysis data to detect events
of interest and identify trends. Current systems have just begun
to look into automatic event detection. The area of context-based
interpretation of the events in a monitored space is yet to be
explored. Challenges here include: using knowledge of time and
deployment conditions to improve video analysis, using geomet-
ric models of the environment and other object and activity mod-
els to interpret events, and using learning techniques to improve
system performance and detect unusual events.

THE LARGE SYSTEM DEPLOYMENT CHALLENGE
The basic techniques for interpreting video and extracting infor-
mation from it have received a significant amount of attention.
The next set of challenges deals with how to use these tech-
niques to build large-scale deployable systems. Several chal-
lenges of deployment include minimizing the cost of wiring,



meeting the need for low-power hardware for battery-operated
camera installations, meeting the need for automatic calibration
of cameras and automatic fault detection, and developing sys-
tem management tools. 

COMPONENT TECHNOLOGIES FOR SMART SURVEILLANCE
Since the multiscale challenge incorporates the widest range of
technical challenges, we present the generic architecture of a
multiscale tracking system. The goal of a multiscale tracking
system is to acquire information about objects in the monitored
space at several scales in a unified framework. The architecture
presented here provides a view of the interactions between the
various components of such a system. 

In Figure 1, the static cameras cover the complete scene of
interest and provide a global view; the pan tilt zoom (PTZ) cam-
eras are meant to obtain detailed or fine-scale information about
objects of interest in the scene. The video from the static cameras
is used to detect and track multiple objects in either two or three
dimensions. Additionally, the fixed camera images can be used to
extract additional information about the objects at a coarse level,

like object class (person, car, truck) or object attributes (position
of a person’s head, velocity of the car, etc.). The coarse-scale
information is used as a basis to “focus the attention of the PTZ
cameras.” The information from the PTZ cameras is then used to
perform fine-scale analysis. For example, if the PTZ camera is
directed towards a person, the fine-scale analysis could include
face detection. The information from the coarse- and fine-scale
analyses is combined in the internal scene representation.
Specific instantiations of the multiscale architecture are present-
ed in the following sections. We present the concepts that under-
lie several of the key techniques, including detection of moving
objects in video, tracking in two and three dimensions, object
classification, and object structure analysis. Our aim is to present
the basic approach to each of these tasks. Research literature has
many variants to the techniques presented. 

OBJECT DETECTION
Object detection is the first stage in most tracking systems and
serves as a means of focusing attention. There are two approaches
to object detection. The first approach, called background subtrac-

tion, assumes a stationary
background and treats all
changes in the scene as
objects of interest. The
second approach, called
salient motion detection,
assumes that a scene will
have many different types
of motion, of which some
types are of interest from a
surveillance perspective.
The following sections
offer a  short discussion of
both approaches.

ADAPTIVE
BACKGROUND
SUBTRACTION
WITH HEALING
The background subtrac-
tion module combines
evidence from differences
in color, texture, and
motion. Figure 2 shows
the key stages in back-
ground subtraction. The
use of multiple modali-
ties improves the detec-
t i on  o f  ob j ec t s  in
cluttered environments.
The resulting saliency
map is smoothed using
morphological operators,
and then small holes and
blobs are eliminated to
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[FIG1] Architecture of a generic multiscale tracking system. The system uses a combination of active
cameras and multiscale models to address the issue of scale variations in the visual tracking applications.
Different applications will implement a subset of this architecture.
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generate a clean fore-
ground mask. The back-
g r o u n d  s u b t r a c t i o n
module has a number of
mechanisms to handle
changing ambient condi-
tions and scene composi-
tion. First, it continually
u p d a t e s  i t s  o v e r a l l
red /green/b lue  (RGB)
channel noise parameters
to compensate for chang-
ing light levels. Second, it
estimates and corrects for
automatic gain control
(AGC) and automatic while
balance (AWB) shifts
induced by the camera.
Third, it maintains a map
of high-activity regions
and slowly updates its
background model only in
areas deemed as relatively
quiescent. Finally, it auto-
matically eliminates occa-
sional spurious foreground
objects based on their
motion patterns. 

SALIENT MOTION
DETECTION
This is a complementary approach to
background subtraction. Here, we
approach the problem from a motion fil-
tering perspective. Figure 3(a) shows a
scene where a person is walking in front
of a bush that is waving in the wind.
Figure 3(b) shows the output of a tradi-
tional background subtraction algorithm
which (per its design) correctly classifies
the entire bush as a moving object.
However, in this situation, we are inter-
ested in detecting the person as opposed
to the moving bush. Our approach uses
optical flow as the basis for detecting
salient motion. We use a temporal win-
dow of N frames (typically ten to 15) to
assess the coherence of optic flow at
each pixel over the entire temporal win-
dow. Pixels with coherent optical flow
are labeled as candidates. The candidates
from the motion filtering are then sub-
jected to a region-growing process to
obtain the final detection. These stages
are shown in Figure 3(c)–(e).

[FIG2]  Background subtraction compares the current image (a) with a reference image (b) to find the
changed regions (c) corresponding to objects of interest. Our system uses multiple modalities to locate
change regions. It combines saliency from color shifts (d), differences in edge texture (e), and motion
energy (f) to give a more robust segmentation. The system is able to incrementally build up and update
a background model despite the presence of foreground objects. The person in the image (g) has just
entered from the corner of the room. The system maintains a corresponding “quiescence” map (h) of
where there have been no objects or motion for a while. From this, it generates a mask (i) of where the
image is stable and hence where it is appropriate to adjust the background. 

(a) (b) (c)

(d)

(g) (h) (i)

(e) (f)

[FIG3]  Illustration of salient motion detection. (a) Shows an image from a sequence with
bushes in the background moving in the wind. (b) Shows the result obtained from our
background subtraction algorithm where green regions indicate foreground
demonstration of the limitation of background subtraction in regions of high
environmental motion. (c)-(e) Show intermediate steps and results from the salient motion
detection algorithm, (c) Shows a frame difference image. (d) Shows optical flow red
patches show significant flow towards the right and green shows significant flow towards
the left. (e) Shows the final result of segmentation where the bushes are classified as
background and the person as foreground.

(a) (b)

(c) (d) (e)



Background subtraction and salient motion detection are com-
plementary approaches, each with its own strengths and weakness-
es. Background subtraction is more suited for indoor
environments where lighting is fairly stable and distracting
motions are limited; salient motion detection is well suited to
detect coherent motion in challenging environments with motion.

TWO-DIMENSIONAL OBJECT TRACKING
Multi-object tracking aims to develop object trajectories over
time by using a combination of the objects’ appearance and
movement characteristics. There are several challenges in multi-
object tracking, with occlusion handling being one of the most
critical. Our approach to multi-object blob tracking relies on
appearance models that are image-based templates of object
appearance. New appearance models are created when an object
enters a scene. In every new frame, each of the existing tracks is
used to try to explain the foreground pixels. The fitting mecha-
nism used is correlation, implemented as minimization of the
sum of absolute pixel differences between the detected fore-
ground area and an existing appearance model. During occlu-
sions, foreground pixels may represent the appearance of
overlapping objects. 

We use a maximum likelihood classification scheme to
resolve foreground pixels into the component objects. The
tracks are correlated in the order of their relative depth order-
ing (which has been computed in the previous frame). The
correlation process is gated by the explanation map, which
holds at each pixel the identities of the tracks explaining the
pixels. Thus, foreground pixels that have already been
explained by a track do not participate in the correlation
process with models of the objects that are more distant. The
explanation map is now used to update the appearance models
of objects associated with each of the existing tracks. The
explanation map is also used to determine the relative depth
ordering. Regions of foreground pixels that are not explained
by existing tracks are candidates for new tracks. A detailed dis-
cussion of the two-dimensional (2-D) multiblob tracking algo-
rithm can be found in [18]. The 2-D multi-object tracker is
capable of tracking multiple objects moving within the field of
view of the camera, while maintaining an accurate model of
the shape and color of the objects. Figure 4 illustrates an
example of occlusion handling.

THREE-DIMENSIONAL WIDE-BASELINE 
STEREO OBJECT TRACKING
In several surveillance applications, it becomes necessary to
determine the position of an object in the scene with reference
to a three-dimensional (3-D) world coordinate system. This can
be achieved by using two overlapping views of the scene and
locating the same scene point in the two views. This approach
to 3-D measurement is called stereo. There are two types of
stereo: 1) narrow-baseline stereo, or stereo where the two cam-
eras are placed close (a few inches) to each other, resulting in
dense depth measurements at limited distance from the cam-
eras, and 2) wide-baseline stereo where the two cameras are far
apart (a few feet), resulting in a limited number of high-accura-
cy depth measurements where correspondences are available.
In wide-area surveillance applications, wide-baseline stereo pro-
vides position information at large distances from the cameras,
which is not possible with traditional stereo. Hence, we explore
wide-baseline tracking. Figure 5 shows a block diagram of a 3-D
tracker that uses wide-baseline stereo to derive the 3-D posi-
tions of objects. Video from each of the cameras is processed
independently using the 2-D tracker described earlier, which
detects objects and tracks them in the 2-D image. 

The next step involves computing a correspondence between
objects in the two cameras. The correspondence process is
accomplished by using a combination of object appearance
matching and camera geometry information. At every frame, we
measure the color distance between all possible pairings of
tracks from the two views. We use the Bhattacharya distance
between the normalized color histograms of the tracks. For
each pair, we also measure the triangulation error, which is
defined as the shortest 3-D distance between the rays passing
through the centroids of the appearance models in the two
views. The triangulation error is generated using the camera
calibration data. To establish correspondence, we minimize the
color distance between the tracks from the view with the small-
er number of tracks to the view with the larger number. This
process can potentially cause multiple tracks from one view to
be assigned to the same track in the other view. We use the tri-
angulation error to eliminate such multiple assignments. The
triangulation error for the final correspondence is thresholded
to eliminate spurious matches that can occur when objects are
just visible in one of the two views. Once a correspondence is

available at a given frame, we need to
establish a match between the existing
set of 3-D tracks and 3-D objects present
in the current frame. We use the com-
ponent 2-D track identifiers of a 3-D
track and match them against the com-
ponent 2-D track identifiers of the cur-
rent set of objects to establish the
correspondence. The system also
enables partial matches, thus ensuring a
continuous 3-D track even when one of
the 2-D tracks fails. Thus, the 3-D track-
er is capable of generating 3-D position
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[FIG4]  Occlusion handling in object tracking: (a) original image with occlusion, (b) objects
being tracked by the system, and (c) classification of pixels into models.

(a) (b) (c)
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tracks of the centroid of each moving
object in the scene. It also has access to
the 2-D shape and color models from
the two views that make up the track.

OBJECT CLASSIFICATION
In several surveillance applications,
determining the type of object is critical.
For example, detecting an animal at a
fence line bordering the woods may not
be an alarm condition, whereas spotting
a person there will definitely require an
alarm. There are two approaches to
object classification: an image-based
approach and a video tracking-based
approach. Presented below is a video
tracking approach to object classifica-
tion. This assumes that the objects of
interest have been detected and tracked
by an object tracking system. Image-
based systems, such as face, pedestrian,
or vehicle detection, find objects of a cer-
tain type without prior knowledge of the
image location or scale. These systems
tend to be slower than video tracking-
based systems, which leverage current
tracking information to locate and seg-
ment the object of interest.

Video tracking-based systems use sta-
tistics about the appearance, shape, and
motion of moving objects to quickly dis-
tinguish people, vehicles, carts, animals,
doors opening/closing, trees moving in
the breeze, etc. Our system (see Figure 6)
classifies objects into vehicles, individu-
als, and groups of people based on shape
features such as compactness, bounding
ellipse parameters, and motion features
(such as recurrent motion measure-
ments, speed, and direction of motion).
From a small set of training examples, we
are able to classify objects in similar
scenes using a Fisher linear discriminant
to perform feature reduction, followed by
a nearest neighbor classifier and tempo-
ral consistency information. Our classifi-
cation system (not including tracking)
runs at approximately 200 frames/s on a
2.4-GHz PC and accurately classified
objects 90% of the time by track.

OBJECT STRUCTURE ANALYSIS:
HEAD DETECTION
Often, knowing that an object is present
in the scene is not sufficient, and it

[FIG5]  Block diagram of a 3-D wide-baseline stereo tracker. This uses 2-D tracking in
conjunction with camera calibration to track objects in 3-D.
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becomes necessary to analyze and locate parts of an object. For
example, finding a person’s head or the license plate of an auto-
mobile are important from an identification perspective. Our
head detection technique uses the smoothed silhouette of the
foreground object, as segmented using background subtrac-
tion. To interpret the silhouette, we use a simple human body
model (see Figure 7) consisting of six body parts: head,
abdomen, two hands, and two feet. First, we generate a one-
dimensional (1-D) “distance profile,” that is, the distance of
each contour pixel from the contour centroid, following the
contour clockwise. This distance profile is parsed into peaks
and valleys based on the relative magnitudes of the successive
extrema. The peaks of the distance transform are used to

hypothesize candidate locations of the five body parts: the head,
two feet, and two hands. Determination of the head among the
candidate locations is currently based on a number of heuris-
tics founded on  the relative positions of the candidate locations
and the curvatures of the contour at the candidate locations. 

FACE CATALOGER APPLICATION
The level of security at a facility is directly related to how well
the facility can answer the question “who is where?” The “who”
part of this question is typically addressed through the use of
face images for recognition, either by an individual or a comput-
er face recognition system. The “where” part of this question
can be addressed through 3-D position tracking. The “who is
where” problem is inherently multiscale; wide angle views are
needed for location estimation and high-resolution face images
are required for identification. An effective system to answer the
question “who is where?” must acquire face images without
constraining the users and must associate the face images with
the 3-D path of the individual. The face cataloger uses comput-
er-controlled PTZ cameras driven by a 3-D wide-baseline stereo
tracking system. The PTZ cameras automatically acquire
zoomed-in views of a person’s head without constraining the
subject to be at a particular location. The face cataloger has
applications in a variety of scenarios where one would like to
detect both the presence and identity of people in a certain
space, such as loading docks, retail store warehouses, shopping
areas, and airports. 

Figure 8 shows the deployment of a face cataloger at the
interface between a public access area and a secure area in a
building. The secure area already has access control through a
badge reader system; however, tailgating is a serious concern. A
face cataloging system deployed in this area could help identify
tailgaters and ensure that the identity of all people accessing the
secure area is logged, irrespective of whether they badge-in.

The deployment consists of multiple fixed cameras that
cover the area of the access point. These cameras are intended

to detect and track the position of indi-
vidual people in the scene. Additionally,
there are PTZ cameras that are automat-
ically controlled by the system to
acquire high-resolution images of the
faces of people passing through a space.
The goal of the face cataloger is to
acquire one face shot of each person
who enters the space and associate the
face image to the positional track of the
person. Figure 8 schematically shows
the association between the tracks of
people and their pictures. 

Figure 9 shows the schematic block
diagram of the face cataloging system.
Several components of this system have
already been discussed. Here, we present
how these component algorithms are
integrated together. Given that the face
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[FIG7]  Various steps in object structure analysis: Head detection.
(a) Shows the schematic of a human body with the five extreme
points marked. The plots (b) and (c) show the distance to each of
these extreme points from the centroid and the curvature at each
of these points.
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[FIG8]  A face cataloging system deployed at the interface between a secure area and
public access area. The face catalog can be used for multiple purposes, including tailgating
prevention.
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cataloger is a multicamera system, it
inherently relies on the fact that all the
cameras in the system are calibrated to
a common world coordinate system.
The calibration process is a one-time
process performed at setup. Typically, it
involves using a calibration pattern of
known geometry or using physical
measurements from the scene. The
process uses images of the calibration
pattern (in which feature points corre-
sponding to known object geometry are
manually selected) in conjunction with
a few parameters supplied by the cam-
era manufacturer [11], [17]. 

The following is a step-by-step
description of the operation of the face
cataloger system:

■ Step 1: 2-D Object Detection—
This step detects objects of interest
as they move about the scene. The
object detection process is independ-
ently applied to all the static cameras
present in the scene.
■ Step 2: 2-D Object Tracking—
The objects detected in Step 1 are
tracked within each camera field of
view based on object appearance
models. 
■ Step 3: 3-D Object Tracking—The
2-D object tracks are combined to
locate and track objects in a 3-D
world coordinate system. This step
uses the 3-D wide-baseline stereo tracking discussed previ-
ously. The result of the 3-D tracking is an association between
the same object as seen in two overlapping camera views of
the scene.
■ Step 4: 3-D Head Detection—To locate the position of the
head in 3-D, we use the head detection technique described
earlier. Given a 3-D track, the head is first detected in the cor-
responding 2-D views. The centroid of the head in the two
views are used to triangulate the 3-D position of the head.
■ Step 5: Active Camera Assignment—This step determines
which of the available active cameras will be used for which
task. Let us consider the example of a scene with three objects
and a face cataloger system with two available active cameras.
This step will employ an algorithm that uses an application-
dependent policy to decide the camera assignment.
■ Step 6: 3-D Position-Based Camera Control—Given the
3-D position of the head and a PTZ camera that has been
assigned to the object, the system automatically steers the
selected active camera to foveate in on the measured loca-
tion of the head. There are several ways of controlling the
pan-tilt and zoom parameters. For example, the zoom
could be proportional to the distance of the object from the

camera and inversely proportional to the speed at which
the object is moving.
■ Step 7: Face Detection—Once the 3-D position-based
zoom has been triggered, the system starts applying face
detection [12] to the images from the PTZ camera. As soon as
a face is detected in the image, the control switches from 3-D
position-based control to 2-D control based on face position.
■ Step 8: Face Detection-Based Camera Control—Once the
(frontal) face image is detected, the camera is centered on the
face and the zoom is increased. The pan and tilt of the camera
are controlled based on the relative displacement of the cen-
ter of the face with respect to the center of the image. Given
the intrinsic calibration parameters of the camera and the
current zoom level (i.e., focal length), the relative image coor-
dinate displacements are translated into desired (relative)
pan/tilt angles. To avoid any potential instabilities in the feed-
back control strategy, we use a damping factor in the process. 

Figure 10 shows images selected from the zoom sequence of the
face cataloger. Figure 10(a)–(c) show the initial 3-D position-
based control. Figure 10(d) shows the a box around the person’s
face, indicating that a face has been detected (Step 6). Figure
10(e)–(g) show the final stages of the zoom based on using the

[FIG9]  Block diagram of the face cataloger.
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position and size of the face to control the PTZ of the camera. In
a typical zoom sequence, the size of the face image will go from
roughly ten pixels across to 145 pixels across the face with a
resulting area zoom of 200. This clearly demonstrates the value
of the multiscale approach. Details of the face cataloging tech-
nology can be found in [6].

LONG-TERM MONITORING 
AND MOVEMENT PATTERN ANALYSIS
Consider the challenge of monitoring the activity near the
entrance of a building. Figure 11 shows the plan view of an IBM
facility with a parking lot attached to the building. A security
analyst would be interested in several types of activities, includ-
ing finding cars speeding through the parking lot, finding cars
that have been parked in loading zones, etc. Figure 12 shows

the architecture of a system that can enable such queries
through the use of smart surveillance technology.

The camera, which is mounted on the roof of the build-
ing, is wired to a central server. The video from the camera is
analyzed by the smart surveillance engine to produce the
viewable video index. The index is stored in the index data-
base, which is a commercial database system, the IBM DB2.
The video from the camera is also independently encoded by
the video encoder and stored on a video server, the IBM Video
Charger. An application can launch SQL queries against the
index database to locate events of interest (such as all speed-
ing cars between 9 a.m. and 10 a.m. on 13 January 2004).
The events located in the index database are associated with a
pointer to the actual video data on the video server, which
can be used for browsing purposes.
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[FIG10]  Face Cataloger zoom sequence. Images (a), (b), and (c) show successive stages as the camera zooms in on the person based on
3-D head position. Images (d), (e), (f), and (g) show the second stage of the zoom process, which uses face detection in a closed loop to
acquire very high resolution images of the face. A video demonstration of this system can be viewed at http://www.
research.ibm.com/peoplevision/facecateloger.html.  
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[FIG11]  Plan view of the setup for monitoring the parking lot at an IBM facility. The camera, which is mounted on the building roof top,
is monitoring the entrance area to the building and a segment of the parking lot attached to the building. Typical activity in the
monitored area includes cars driving by, cars parking in a spot, people exiting/entering cars, and people walking in and out of the
building.
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The internal structure of the smart surveillance engine is shown
in Figure 13. It uses some of the component technologies described
earlier. The following analysis steps are performed on the video:

■ Step 1: The first step is to detect objects of interest in the sur-
veillance video. This step uses the object detection techniques
described previously.
■ Step 2: All the objects
that are detected in Step
1 are tracked by the
object tracking module,
using the techniques
described earlier. The
key idea behind the
tracking is to use the
color information in
conjunction with veloci-
ty-based prediction to
maintain accurate color
and shape models of the
tracked objects.
■ Step 3: Object classifi-
cation is applied to all
objects that are consis-
tently tracked by the
tracking module. The
object classification cur-
rently generates three
class labels, namely, vehi-
cles, multiperson group,
and single person. 
■ Step 4: Real-time
alerts—these are based
on criteria that set up by

the user; examples include motion detection in specified areas,
directional motion detection, abandoned object detection,
object removal detection, and camera tampering detection. 
■ Step 5: Viewable video index (VVI)—this is a representation
that includes time-stamped information about the trajecto-
ries of objects in the scene, other index data like size of the

[FIG12]  System architecture for long-term monitoring. The smart surveillance engine generates index
data that is stored in a database. A movement pattern analysis program analyzes the index data in
response to user queries.
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[FIG13]  Internal structure of the smart surveillance engine.
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[FIG14]  Visual proxies stored as part of the viewable video index. (a) Background models stored as the lighting in the scene changes
going from day to night. (b) Object appearance model stored showing an objects appearance at various stages of its trajectory.
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object, type of object, etc. The viewable video index also incor-
porates appearance information in terms of the evolving
background model and the appearance of objects through the
lifetime. Figure 14 shows the visual portions of the index,
which include background models that are indexed by time. A
new background model is stored each time the background
changes significantly [Figure 14(a)]. The index also stores
foreground appearance models [Figure 14(b)]. These models
are stored at intermittent points in the life of the foreground
object in the scene. The index can be used to rerender the
activities in the video.

QUERYING THE VIEWABLE VIDEO INDEX
As the engine monitors the scene, it generates the VVI, which is
stored into a relational database against which queries may be
launched. There are several different types of basic queries that
are supported by the database. Some of them are listed below:

■ Object Queries: These are queries against the fixed proper-
ties of the object like object type and color. For example, show
all cars that passed through this scene.
■ Temporal Queries: These are queries against the time-vary-
ing properties of the object like motion properties, shape
properties (for deformable objects), etc. For example, show all
cars that drove through the scene in this direction.

■ Spatial Queries: These
are queries related to the
positions of objects in the
scene. For example, show
all cars that drove through
“this” part of the parking
lot, where “this” is speci-
fied as an area in image
coordinates.

The following is a presentation
of results of queries performed
against our experimental
activity database. This test
activity database was generat-
ed by monitoring activity from
our experimental setup at an
IBM facility as described in
Figure 11. The database cap-
tured activity from 12 a.m. 13
January 2004 until 12 a.m. 14
January 2004. Figures 15 and
16 show the output of queries
and the distribution of the
arrival of people into the facili-
ty on 14 January. The index
data can also be used to pro-
vide browse access to surveil-
lance event data. Figure 17
shows a sample surveillance
index browser.

PERFORMANCE EVALUATION
Measuring the performance of smart surveillance systems is a
very challenging task [5] due to the high degree of effort
involved in gathering and annotating the ground truth as well
as the challenges involved in defining metrics for performance
measurement. Like any pattern recognition system, surveillance
systems have two types of errors:

■  False Positives: These are errors that occur when the sys-
tem falsely detects or recognizes a pattern that does not exist
in the scene. For example, a system that is monitoring a
secure area may detect motion in the area when there is no
physical object but rather a change in the lighting.
■  False Negatives: These are errors that occur when the sys-
tem does not detect or recognize a pattern that it is designed
to detect. For example, a system monitoring a secure area
may fail to detect a person wearing clothes similar to the
scene background.
In this section, we present the various steps in evaluating an

application like the face cataloging system. The ultimate goal of
the face cataloger is to obtain good close-up head shots of people
walking through the monitored space. The quality of the close-
up face clips is a function of the accuracy of a number of under-
lying components. The following are potential sources of errors
in the system:
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[FIG15]  (a) Tracks of all moving objects during the 24-hour monitoring period. (b) Tracks of objects
with (50 pixels < Area < 1000 pixels) yielding only the people walking through the parking lot. (c)
Tracks of objects with (1000 pixels < Area), yielding only vehicles. (d) Track of a speeding vehicle
(Velocity > 10 pixels/frame ~ covering 10 m in 2 s ~ 11.25 mph). All tracks in the diagram are color
coded, with tracks colored white at the beginning and gradually turning red as time progresses.
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■ Object Detection and Tracking Errors:
— Frame-Level Object Detection Errors: These are errors
that occur when the detection system fail to detect or false-
ly detects an object.
— Scene-Level Object Detection Errors: These are errors
that occur when an object is  completely missed through
its life in the scene or a completely nonexistent object is
created by the system.
— 2-D Track Breakage: These errors occur when the
tracker prematurely terminates a track and creates a new
track for the same object. 
— 2-D Track Swap: This error occurs when the objects
being represented by a track get interchanged, typically
after an occlusion.
— 3-D Track Swap: This error can occur due to errors in
the inter-view correspondence process.

■ 2-D Head Detection Errors: These are errors in the posi-
tion and size of the head detected in each of the 2-D views.
■ True Head Center Error: Since we are detecting the head
in two widely different views, the centers of the two head
bounding boxes do not correspond to a single physical point
and hence will lead to errors in the 3-D position.
■ 3-D Head Position Errors: These are errors in the 3-D posi-
tion of the head due to inaccuracy in the camera calibration data.
■ Active Camera Control Errors: These are errors that arise
due to the active camera control policies. For example, the
zoom factor of the camera is dependent on the velocity of the
person; thus, any error in velocity estimation will lead to
errors in the zoom control.
■ Active Camera Delays: The delay in the control and physi-
cal motion of the camera will cause the close-up view of the
head to be incorrect.

The above discussion illus-
trates how a variety of errors
contribute to the final per-
formance of the system.
Below, we discuss the
process we use to measure
the performance of the most
basic component of the sys-
tem, namely object detection
and tracking. 

■ Test Data Collection
and Characterization:
This involves collecting
test sequences from one
or more target environ-
ments. For example, the
challenges in monitor-
ing a waterfront at a
port are very different
from those of monitor-
ing a crowded subway
platform in New York
City. Once data is col-

lected from an environment, it is manually grouped into
different categories based on environmental conditions
(i.e., sunny day, windy day, etc.) for ease of interpreting
the results of performance analysis.
■ Ground Truth Generation: This is typically a very labor-
intensive process and involves a human using a ground
truth marking tool to manually identify various activities
that occur in the scene. Our performance evaluation sys-
tem uses a bounding box marked on each object every 30th
frame while assigning a track identifier to each unique
object in the scene.
■ Automatic Performance Evaluation: The object detection
and track systems are used to process the test data set and
generate results. An automatic performance evaluation algo-
rithm takes the test results and the ground truth data, com-
pares them and generates both frame-level and scene-level
object detection false positive and false negative results.

In summary, while a challenging task, performance evaluation
of smart surveillance systems provides significant insights into
the failure modes of the system. Our current efforts in perform-
ance evaluation show that our detection and tracking systems
perform with roughly 70–95% accuracy. The chosen target envi-
ronment for our system is an outdoor parking lot. Our efforts
have also identified certain critical challenges, like camouflage
and camera movement due to wind, which need to be addressed
in order to improve performance. 

CONCLUSIONS AND FUTURE DIRECTIONS
Smart surveillance systems significantly contribute to situation
awareness. Such systems transform video surveillance from a
data acquisition tool to information and intelligence acquisition

[FIG16]  The temporal distribution of tracks corresponding to people (arriving and leaving the
building). The tracks were selected using an area-based query [results presented in Figure 14(c)]. The
peak of the arrivals is around 8:30 a.m., and the two significant departure peaks are around 3:30 p.m.
and 5:30 p.m. 
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systems. Real-time video analysis provides smart surveillance
systems with the ability to react to an activity in real-time, thus
acquiring relevant information at much higher resolution. The
long-term operation of such systems provides the ability to ana-
lyze information in a spatiotemporal context. As such systems
evolve, they will be integrated both with inputs from other types
of sensing devices and also with information about the space in
which the system is operating, thus providing a very rich mech-
anism for maintaining situation awareness. Further details on
all of the technologies described in this article can be found on
our project Web site [14].
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[FIG17]  Screen capture of a surveillance index browser showing the object tracking window, multiple time lines, and associated zoom
pictures. The user can click on a particular event and browse the index from that point in time.
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