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ABSTRACT
Image enhancement aims to modify images to achieve a better
perception for human visual system or a more suitable repre-
sentation for further analysis. Based on different attributes of
given input images, tasks vary, e.g., noise removal, deblur-
ring, resolution enhancement, prediction of missing pixels,
etc. The latter two are usually referred to as image super-
resolution and image inpainting. There exist complicated cir-
cumstances where low-quality input images suffer from in-
sufficient resolution with missing regions. In this paper, we
propose a novel uniform framework to accomplish both im-
age super-resolution and inpainting simultaneously. The pro-
posed approach adopts internal exemplar similarities in image
level and gradient level where later enhancement results from
both levels are fed into a pre-defined cost function to restore
the final output. Experimental results demonstrate that our
method is capable of generating visually plausible, natural-
looking results with clear edges and realistic textures.

Index Terms— image enhancement, super-resolution,
image inpainting, exemplar-based, gradient across-scale sim-
ilarity

1. INTRODUCTION

Image enhancement has drawn increasing attention in im-
proving image quality or interpretability. After enhancement,
images are more visually pleasing for human perceptual sys-
tem or more suitable for further analysis in many applications
such as medical imaging, remote sensing, and video surveil-
lance. Based on different characteristics of the low-quality
input images, enhancement tasks vary, for example, noise
reduction, inpainting, deblur, and super-resolution.

Among the numerous situations of image enhancement,
there are complicated circumstances where part of an input
low-resolution (LR) image is undesired or unavailable, e.g.,
an overexposed spot, an unwanted shadow or scratch within
a digital photo, a satellite image partly covered by cloud. For
these cases, in addition to the enhancement of image resolu-
tion, image inpainting techniques are also needed to recon-
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Fig. 1. Enhancement results of the proposed framework on
image ‘fish’ (×2) with different masks. Left: input LR images
with missing regions (marked in white); Right: generated HR
results with clear contours and natural textures. The figure is
better viewed on screen with HR display.

struct more visually plausible result. The underlying goal for
both image super-resolution and inpainting is to predict the
unknown pixel values within an image. They are numerical-
ly ill-posed problems and rely on additional assumptions or
priors to finalize the output among all the possible solutions.

Single image super-resolution aims at estimating a high
quality fine-resolution image from one coarse-resolution im-
age. Recently, exemplar learning-based techniques have been
widely used in image super-resolution approaches by explor-
ing the relationship between high-resolution (HR) exemplars
and their corresponding LR exemplars. The learning can be
performed either through an external dataset [1, 2, 3, 4, 5]
or within the input image [6, 7]. Different from external
exemplar-based learning which depends on a large dataset of
natural images, internal exemplar-based super-resolution is
based on the observation that small image patches in a natu-



ral image tend to appear redundantly within the input image
itself and across different scales. Glasner et al. proposed
an image super-resolution framework based on the nearest
neighbor search within a patch pool formed with internal
patches collected through a pyramid structure utilizing only
the input image at different resolutions. In [8], Zontak and
Irani have demonstrated the effectiveness and powerfulness
of internal exemplars in image enhancement tasks including
image super-resolution. Compared with internal exemplar-
based approaches, external based methods usually require a
dataset with hundreds of training images to achieve compara-
ble enhancement performance.

Different from internal exemplar-based image super-
resolution which incorporates self-similarities across dif-
ferent scales, exemplar-based image inpainting approaches
[9, 10, 11, 12, 13] deal with patch recurrence within the
same resolution. They replace incomplete patches with sim-
ilar ones in the known region and have been successful in
replicating visually plausible background textures. More-
over, super-resolution techniques have already been utilized
to assistant image inpainting. Le Meur and Guillemot [13]
proposed a super-resolution-aided inpainting method which
firstly performed inpainting in a coarse-version of the input
image followed by a super-resolution process as to retain the
original resolution.

In this paper, we propose a novel and straightforward
algorithm for image enhancement which performs super-
resolution and inpainting simultaneously. Given an input LR
image and a mask representing the missing region(s), we
perform enhancement in both gradient level and image level.
The input LR gradients in horizontal and vertical (represented
as x and y) directions are upscaled with inpainting embed-
ded. The resulting HR gradients, along with the inpainted
LR image, are fed into an easily-optimized cost function to
reconstruct the final HR enhanced image.

The contributions of the proposed image enhancement
framework are fourfold: 1) A uniform image enhancement
framework is proposed to accomplish both super-resolution
and inpainting given a LR input image with unavailable
region(s). 2) Both gradient-level and image-level enhance-
ment are adopted to ensure the robust performance. 3) A
straightforward energy function is utilized to incorporate the
enhanced gradients while maintaining the consistency with
the input image. 4) Experimental results demonstrate that
our algorithm is capable of generating natural and visually
pleasing outputs.

2. EXEMPLAR-BASED IMAGE ENHANCEMENT

In this section, we present our proposed image enhancement
framework based on internal exemplar similarity within the
same scale and across different resolutions. Both gradient-
level and image-level enhancement are employed to better p-
reserve intensity changes and to ensure robust performance.

Fig. 2. Flowchart of the proposed internal exemplar-based
image enhancement method. Given an input LR image with
a mask indicating the missing region(s), the LR gradients are
upsampled with inpainting embedded. The HR gradients, a-
long with the inpainted LR image, are fed into an energy func-
tion to reconstruct the final HR output image.

Fig. 2 illustrates the schematic pipeline of our approach. Giv-
en an input LR image and a mask indicating the region(s)
with missing pixels, the system consists of three components
to fulfill both super-resolution and inpainting: gradient-level
upscaling with inpainting, image-level inpainting, and final
HR image reconstruction.

2.1. Gradient-Level Upscaling with Inpainting

Internal across-scale gradient similarity is utilized to accom-
plish super-resolution and inpainting for input LR gradients
simultaneously. It is based on the observation that since for
small image patches in a natural image, self-similarities exist
within the image itself and across different scales, we should
expect the similar redundancy for gradient patches.

Given a greyscale input LR image L, the mask M , and
the scaling factor s, we denote the gradients of L in x and
y directions as Lx and Ly . The enhanced HR gradients are
represented as Hx and Hy . Lx is decomposed into a set of
overlapping patches with size a × a. Patches with unknown
pixels are upscaled first. Among the patches with missing
regions, the upsampling priority for patch P centered at pixel
q is determined as follows:

Pri(q) = C(q) ·D(q) =

∑
i⊆{P (q)∩M̄} C(i)

a2
·

√
∇L⊥xq

· uq
N

,

(1)
where P (q) represents the instant patch centered at pixel q,
M̄ indicates the unmasked region,N is a normalization factor
(255 for grey images), uq stands for a unit vector orthogonal
to the front at pixel q. The initialization for C(i) is set to
C(i) = 0 if pixel value i is unknown and C(i) = 1 otherwise.
Lxq represents the value at pixel q in Lx. As indicated in Eq.
(1), priority at a given pixel is measured as the product of two
terms: the confidence term C(·) and the data term D(·). Both
terms are normalized to range between 0 and 1.

Different from the priority computation in [9], we assign
more credit to the data term in the calculation of final priority
by modifying it to a squared form. The confidence term re-
mains unchanged. In general, the confidence term measures



the amount of reliable information surrounding a given pixel.
The data term detects how strongly an isophote at that pixel
collides and the contour at the same pixel.

After calculating the priority for each pixel along the
boundary of the masked region, the patch with the highest
priority at its center pixel is selected as the query patch p to
be upsampled. We then downsample Lx by the scaling factor
s to obtain LLx. A gradient patch pool ℘x is formed with
all the patches in LLx (size a× a) whose pixel values are all
known. To ensure a more expressive representation, all the
patches in ℘x as well as the query patch p are normalized to
have zero mean and unit variance.

Given a query patch p, its k most similar patches are
searched within the patch pool ℘x. The similarity between
two patches is measured in the mean square error (MSE) with
only the available pixels. After obtaining the k similar patch-
es in LLx, their corresponding ‘parent’ patches in Lx are
extracted and combined weightedly in a softmax way. The
combined patch is then readjusted according to the original
mean and variance of p and ‘pasted’ to the corresponding
position in Hx. After updating the confidence term and data
term, the above process is repeated until all patches which
have overlaps with the mask M are upsampled. Then the rest
patches in Lx are upscaled in a similar manner without the
necessity of computing the patch priority. Hy is computed in
the same structure utilizing Ly .

2.2. Image Level Inpainting

To ensure a robust enhancement performance in constructing
the final HR enhanced image, we also execute the image level
inpainting on the input LR image L before the final recon-
struction step.

Priorities for every pixel along the boundary of the mask
region in L are calculated according to Eq. (1). We then form
a patch pool with all the patches (size a× a) in the unmasked
region of L. The k most similar patches of patch p whose
center pixel has the highest priority are searched within the
patch pool. Then the k found patches are combined weight-
edly in a softmax way based on their similarity with the query
patch. The unknown pixel values in patch p are filled with the
corresponding values in the combined patch.

After updating the confidence term and data term for the
filling pixels, the above process is repeated until all the pix-
el values within the mask region are predicted. Finally, the
inpainted image LI along with the HR gradients Hx, Hy are
utilized for the final reconstruction of the target HR image
HE .

2.3. Final Image Reconstruction

After obtaining the inpainted LR image LI and the HR gra-
dients Hx, Hy , the output HR image HE is reconstructed
through minimizing the following energy function:

Fig. 3. Enhancement result on image ‘snow’ (×2). Left: input
LR image; Right: result after enhancement. The figure is
better viewed on screen with HR display.

HE = argmin
H
{λ|∇H−∇HD|2+|(H ∗G) ↓s −LI |2}, (2)

where ∇HD indicates the computed Hx and Hy . λ is the
weighting factor between two terms of the cost function. G
represents a Gaussian kernel whose standard variance σ is set
according to the scaling factor s: σ = {0.8, 1.2, 1.6} if s =
{2, 3, 4}.

Two terms are included in the energy function shown in
Eq. (2): the first term poses a constraint on the gradients of
the target HR image based on the gradients calculated after
‘gradient-level upscaling with inpainting’ step. The second
term ensures the consistency between the output HR image
and the completed input LR image. The cost function can
be easily optimized through the gradient descent algorithm
iteratively with:

Ht+1 = Ht−δ·(((Ht∗G) ↓ −LI) ↑ ∗G−λ(∇2Ht−∇2HD)),
(3)

where t represents the counter of iteration and δ stands for the
step width. As illustrated in Fig. 1, under different masks, the
proposed framework well enhances the resolution of the input
LR image and predicts the missing pixel values in a way that
is visually plausible with natural and realistic textures.

3. EXPERIMENTAL RESULTS

In this section, the proposed internal exemplar-based image
enhancement method is evaluated on multiple natural images



Fig. 4. Enhancement results on images in BSDS[14] (×2)
with different masks. Left: input LR images with missing
region(s). Right: output HR images after enhancement. The
figure is better viewed on screen with HR display.

with different masks at a magnification factor of 2. Generally,
patch size used in internal exemplar-based super-resolution
approaches is not large since patch recurrence occur among
small patches within the same image or across scales. How-
ever, for patch-based image inpainting algorithms, we need
a relatively large patch to retain local structure information
and ensure a robust inpainting performance. Therefore, in the
proposed framework, to balance between these two tasks, we
set the patch size a to 7. In calculation of the pixel priority,
normalization factor N is 255 for grey images. During the
nearest neighbor search, number k of similar patches extract-
ed is set to 10. The weighting factor λ is 0.1 in final image
reconstruction step.

Fig. 3 presents the image enhancement result on image ‘s-
now’. As illustrated by the zoom-in region, the missing pixels

are restored and upsampled with textures consistent with the
overall structure. After image enhancement, sharper edges
and more realistic textures are restored. Fig. 4 provides more
results on images in the Berkeley Segmentation Dataset (BS-
DS) [14] under different masks. Enhancement for certain in-
put low-quality images is challenging due to the existence of
complicated textures, e.g., fur, trees, body patterns. Zoom-in
areas clearly indicate that our method correctly predicts the
missing pixel values and reconstructs more natural contours
and clearer details with minimal visual artifacts.

4. CONCLUSION

In this paper, we have proposed a novel robust image en-
hancement framework which accomplishes both super-resolution
and inpainting given a LR input image with missing pixels.
The input LR gradients are upscaled and inpainted utiliz-
ing internal across-scale patch similarities. Along with the
inpainted LR image, the HR enhanced gradients are incorpo-
rated into a straightforward cost function to reconstruct the
final output image. As demonstrated by the extensive exper-
imental results, the proposed approach is robust and capable
of generating visually pleasing results with sharp edges and
natural textures.
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