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Urban environments present unique challenges from the perspective of 

surveillance and security. High volumes of activity data, different weather 

conditions, crowded scenes, widespread geographical areas, and many 

other factors pose serious problems to traditional video analytics algo-

rithms and opens up opportunities for novel applications. In this chap-

ter, we present the IBM Smart Surveillance System, including our latest 

computer vision algorithms for automatic event detection in urban sur-

veillance scenarios. We cover standard video analysis methods based 

on tracking and also present non-tracking-based analytics specifi cally 

designed to handle crowded environments. Large-scale data indexing 

methods and scalability issues are also covered. Our experimental results 

are reported on various datasets and real-world deployments.

3.1 INTRODUCTION

Security incidents in urban environments span a wide range, start-

ing from property crimes, to violent crimes and terrorist events. Many 

large urban centers are currently in the process of developing secu-

rity infrastructures geared mainly to counter terrorism with secondary 

applications for police and emergency management purposes.
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Applying video analytics in urban scenarios involves many 

challenges. Urban surveillance systems generally encompass a large 

number of cameras spanning different geographical areas and captur-

ing hundreds of millions of events per day. Storing and enabling search 

for events in these large-scale settings is a diffi cult task. In addition, 

video analytics algorithms need to be robust to many typical urban 

environment conditions, such as weather changes (e.g., rain, snow, 

strong shadow effects), day/night times, and crowded scenes. The need 

to minimize cost by maximizing the number of video feeds per machine 

also imposes critical constraints in the time and memory complexity of 

the algorithms.

In this chapter, as part of the IBM Smart Surveillance System (IBM 

SSS), we present our latest video analytics methods for monitoring 

urban environments. We also analyze scalability factors and large-scale 

indexing for event search. Next, we describe the main architecture of 

IBM SSS and give an overview of the main sections of this chapter.

3.1.1  IBM Smart Surveillance System 
Architecture

Figure 3.1 shows the architecture of the IBM Smart Surveillance 

Solution. IBM SSS is designed to work with a number of video man-

agement systems from partner companies. The video analytics tech-

nology within the SSS system provides two distinct functionalities:

Real-time user-defi ned alerts:•  The user defi nes the criteria for 

alerting with reference to a specifi c camera view, for example, 

parked car detection, tripwire, etc. (see Section 3.3).

Indexed event search:•  The system automatically generates 

descriptions of events that occur in the scene and stores them in 

an indexed database to allow the user to perform rapid search 

(see Section 3.4).

The video analytics-based index refers to specifi c clips of video that are 

stored in the video management system. The SSS system has video 

analysis engines called SSEs (smart surveillance engines), which host a 
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50 Intelligent Video Surveillance: Systems and Technology

number of video processing algorithms. The SSEs generate metadata, 

which gets automatically uploaded into the backend database system 

through a Web-based service-oriented architecture. The application 

layer of SSS combines the metadata from the database with video from 

the video management system, to provide the user with a seamless 

view of the environment of interest. Details of IBM SSS can be found 

in several previous publications (Shu et al. 2005).

3.1.2 Chapter Overview

This chapter is organized as follows. In Section 3.2, we describe our 

video analytics modules for urban surveillance, including moving object 

detection, tracking, object classifi cation, two approaches for color 

retrieval targeting low- and high-activity-level scenarios, and a peo-

ple search method based on fi ne-grained human parts and attributes. 

In Section 3.3, we present a set of real-time alerts which work well 

SSE: Smart surveillance engine
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    type and location
3. The index features are inserted into 
    database table
4. Alerts are directed application layer
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Figure 3.1 (See color insert following page xxx.) IBM SSS architecture.AQ1
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in crowded scenes, including parked car detection and non-tracking-

based virtual boundary crossing. Finally, we cover our database design 

for large-scale searching of video in Section 3.4 and analyze practical 

challenges with respect to scalability issues in Section 3.5.

3.2  VIDEO ANALYTICS FOR URBAN 
SURVEILLANCE

3.2.1 Moving Object Detection

Background subtraction (BGS) is a conventional and effective 

approach to detect moving objects in videos captured by fi xed 

cameras. In urban environments, more sophisticated background 

modeling algorithms are required to handle snow, rain, shadows, 

refl ections, quick lighting changes, day and night transitions, slow-

moving objects, and other diffi cult conditions that naturally arise in 

city surveillance scenarios.

In order to address these issues, we use an adaptive background 

subtraction technique similar to the method proposed by Stauffer 

and Grimson (1999), which relies on a Gaussian mixture model for 

each pixel in the scene. In this way, multimodal backgrounds can be 

described by the pixel-wise mixture models. For instance, during snow 

conditions, a particular background pixel may be represented by two 

Gaussian encodings, for example, the mode “road” and another mode 

“snow,” respectively, so that only objects of interest are detected.

In contrast to Stauffer and Grimson (1999), our method is improved 

to remove shadows and to enable the algorithm to work for quick light-

ing changes by combining the intensity and texture information of the 

foreground pixels. In addition, the foreground regions are classifi ed as 

moving objects, abandoned objects, or removed objects without using 

any tracking or motion information (see Tian et al. 2005 for details). 

This capability not only can avoid a common problem in background 

subtraction—fragmentation (one object is partitioned into multiple 

parts), but also allows real-time alert detection such as abandoned and 

removed object detection alerts (see more details in Section 3.3.1).
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3.2.2 Object Tracking

After a number of moving objects are detected by our background 

subtraction algorithm, we track them along the video sequence so that 

each object is given a unique identifi cation number. This is a prereq-

uisite for other higher-level modules, such as object and color classifi -

cation, and several real-time alerts. As we will show later, in crowded 

urban environments, tracking turns out to be a very diffi cult and com-

putationally expensive task, so it can be intentionally disabled at spe-

cifi c hours of the day when the activity level is high. In these cases, 

analytics that do not rely on tracking are enabled (see, e.g., Sections 

3.2.4.3 and 3.3.2).

The fi rst step of our tracking method consists of simple association 

of foreground blobs across the temporal domain. In each frame, we 

create a list of the foreground blobs found by the background subtrac-

tion algorithm. From preceding frames, we have a list of recent tracks 

of objects, together with their bounding boxes. Each foreground blob 

in the current frame is then matched against all existing object tracks 

based on the distance and areas of the corresponding bounding boxes, 

so that tracks can be updated, created, or deleted.

In a simple scene, with well-separated tracks, the association gives 

a one-to-one mapping between tracks and the foreground regions in 

the current frame, except when tracks are created or deleted. In more 

complex scenes, however, we may have situations where a single track 

is associated with more than one foreground blob (object split), or the 

opposite—several tracks can be associated with a single foreground 

region (object merge). In addition, when one object passes in front of 

another, partial or total occlusion takes place, with background sub-

traction detecting a single moving region. The tracking method should 

be able to segment this region, label each part appropriately, and label 

the detected objects when they separate.

We resolve these issues using an online appearance model which 

consists of a 2D array of color values with an associated probability 

mask, as described in Senior et al. (2006). This appearance model is 

used to resolve object splits and merges, handle occlusions, and pro-

vide depth ordering. We refer the reader to Senior et al. (2006) for 

more details and performance evaluation.
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3.2.3 Object Classifi cation with Calibration

Classifying objects in urban surveillance scenes is an important task 

that allows searches and alerts based on object type. In this section, 

we address a simplifi ed two-class object recognition problem: Given a 

moving object in the scene, our goal is to classify the object into either 

a person (including groups of people) or a vehicle. This is a very impor-

tant problem in city surveillance, as many existing cameras are point-

ing to areas where the majority of moving objects are either humans or 

vehicles. The classifi cation problem is very challenging as we desire to 

satisfy the following requirements:

Real-time processing and low memory consumption• 

The system should work for arbitrary camera views• 

Correct discrimination under different illumination conditions • 

and shadow effects

Able to distinguish similar objects (such as vehicles and groups • 

of people)

Our approach to address these issues consists of three elements: (1) an 

interactive interface to set regions of interest and correct for perspec-

tive distortions; (2) discriminative features, including a novel effective 

measurement based on differences of histograms of oriented gradients 

(DHOG); and (3) estimation and adaptation based on a probabilistic 

framework for feature fusion. We briefl y describe these modules in the 

following text.

3.2.3.1 Interactive Interface for Calibration

In many situations, objects of one class are more likely to appear in cer-

tain regions in the camera view. For instance, in the city street environ-

ment, people usually walk along the sidewalk, while on the other hand 

vehicles mainly run in the middle of the road. This is a strong cue in the 

object classifi cation process. In our system, we classify tracked objects 

into two classes, people and vehicles, and users can specify the regions 

of interest (ROIs) of each object class in the camera view through our 

calibration tool. In this interactive calibration tool, one or multiple ROIs 
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54 Intelligent Video Surveillance: Systems and Technology

for the target class can be created, modifi ed, and deleted as needed. 

Screenshots of the interface are shown in Figure 3.2a and b. Note that 

this information is just used as a prior for the location feature. The fi nal 

class estimation is based on probabilistic fusion of multiple features, as 

we will describe later.

Another purpose of our calibration tool is to correct for perspec-

tive distortions by specifying different sizes in different locations of the 

camera fi eld of view. A continuous, interpolated size map is then cre-

ated from the sample sizes specifi ed by the user. Since we use view-

dependent features such as object size and velocity, among others, for 

classifi cation, the use of this information in our system allows it to nor-

malize these features and thus work for arbitrary camera viewpoints, 

while signifi cantly improving the accuracy of classifi cation. Figure 3.2c 

shows our interface.

3.2.3.2 Feature Extraction

Given the limited computational resources and the real-time require-

ment in practical video surveillance applications, the features used for 

object classifi cation must be low cost and effi cient for computation. In 

our framework, we have used four object features: object size, veloc-

ity direction, object location, and differences of histograms of oriented 

gradients (DHOG).

The purpose of using object size is that size information is the 

most distinctive feature to distinguish single persons from vehicles 

AQ2

(a) (b) (c)

Figure 3.2 Calibration tool interface. (a) ROI for people—entire camera view. (b) 

ROI for vehicles–driveways. (c) Person-sized models specifi ed by the user. In (c), the 

user can create, move, and resize a target size sample (the largest box in the fi gure).
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since persons possess much smaller shapes than vehicles at the same 

location in the fi eld of view. The size of an object at a specifi c frame is 

computed as the area of the corresponding foreground blob and then 

normalized by the size obtained from the interpolated size map (previ-

ous section) at the same position.

In many scenarios, velocity direction of moving objects can be a 

distinctive feature. For instance, at a street intersection, pedestrians 

typically walk along the zebra crossings which are perpendicular to 

vehicle movements. We equally discretize the velocity direction mea-

surement into 20 bins and normalize it in a similar way to the object 

size feature.

There is an additional straightforward yet very informative feature: 

the location of the moving object. The location feature relates to the 

context of the environment, and its usage is applied through the set-

tings of regions of interest specifi ed by our calibration tool. This is a 

strong cue for identifying people in views such as roads and building 

entrances where vehicles seldom appear.

Lastly, we have developed a novel view-independent feature—

differences of histograms of oriented gradients (DHOG). Given an 

input video image with a foreground blob mask generated by the 

background subtraction module, the histogram of oriented gradients 

(HOG) is computed. It is well known that the HOG is robust to lighting 

condition changes in the scene. The HOG of the foreground object 

is computed at every frame in the track, and the DHOG is calculated 

in terms of the difference between HOGs obtained in consecutive 

frames in terms of histogram intersection. The DHOG models the 

intra-object deformation in the temporal domain. Thus, it is invari-

ant to different camera views. In general, vehicles produce smaller 

DHOG than people since vehicles are more rigid when in motion. 

This feature is useful to distinguish large groups of people from vehi-

cles, in which case they have similar shapes and sizes. Examples are 

shown in Figure 3.3 to demonstrate the effectiveness of using DHOG 

to distinguish vehicles from people (both single persons and groups 

of people). DHOG features have similar motivation as the recurrent 

motion image method (Javed and Shah 2002), but offer advantages 

as no precise object alignment is required.

AQ3
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3.2.3.3 Estimation and Adaptation

We pose the moving object classifi cation task as a maximum a poste-

riori (MAP) problem. The classifi cation is performed by analyzing the 

features of the entire object track, that is, the classifi cation decision is 

made after the tracking is fi nished. We refer the reader to Chen et al. 

(2008) for a detailed explanation of our MAP inference and probabilis-

tic feature fusion. In that work, we also provide details about our model 

adaptation mechanism, which makes use of high confi dence predic-

tions to update our probabilistic model in an online fashion.

3.2.3.4 Results

To demonstrate the effectiveness of our proposed object classifi -

cation framework in far-fi eld urban scenarios, we have tested our 

system on a variety of video data, including different scenes and 
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Figure 3.3 DHoG plots for three types of objects: (a) person, (b) group of people, 

and (c) vehicle. Horizontal axis represents the track length of the samples, and verti-

cal axis represents the DHoG values. Note that the overall DHoG values for person 

and group of people are much higher than the one for vehicle, and thus, it is a very 

discriminative feature to separate people from vehicles.
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different views of the same scene. There are two urban data sets 

used in our experiments. The fi rst set is the PETS 2001 dataset. 

The second data set is a collection of videos obtained from different 

sources, ranging from 15 min to 7 h long.

Figure 3.4 presents the object classifi cation results on both testing 

data sets and shows a few key frames of testing videos. The overall clas-

sifi cation accuracy is 97.7% for over 1100 moving objects. Currently, 

our framework assumes tracking results are perfect before performing 

object classifi cation. Thus, if the background subtraction and/or tracking 

module fail to produce reliable results, the object classifi er will also fail 

due to incorrect input data. This is the main reason for the lower perfor-

mance on the sequences “PETS D3TeC1” and “PETS D3TeC2.”

3.2.3.5 Discussion

Similar to far-fi eld object classifi cation approaches such as Bose and 

Grimson (2004) and Brown (2004), our method relies on background 
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Figure 3.4 (See color insert following page xxx.) Results for our object clas-

sifi cation approach and some testing video frames.
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subtraction and object tracking to perform object classifi cation. This 

works reasonably well in urban scenes with low or medium activity. 

However, crowded scenarios pose serious problems for our approach 

as many objects can be merged together in a single foreground blob, 

causing features like object size to be unreliably estimated from BGS. 

An alternative solution to this problem is to use appearance-based 

detectors such as those proposed by Dalal and Triggs (2005) or Viola 

and Jones (2001). The disadvantage of these approaches is that they 

often require large amounts of data to learn a robust classifi er and suf-

fer from object pose variability.

3.2.4 Color Classifi cation

In this section, we describe our method to retrieve objects of specifi ed 

colors. We start with our color quantization algorithm that operates on 

a frame by frame level. Then, we describe our algorithm for color clas-

sifi cation that is built on top of the tracking module, thus providing a spe-

cifi c color for each object track in the scene. Finally, we show a method 

that enables color search without relying on tracking, which is appropri-

ate for crowded urban environments where tracking is not reliable.

3.2.4.1 Bi-Conic Color Quantization

In our system, color information is quantized into six colors: black, white, 

red, blue, green, and yellow. For each video frame, we fi rst convert 

the 24 bit RGB pixels to the bi-conic hue, saturation, lightness (HSL) 

space. This color space is used because Euclidean distances in this 

space closely map to human perception color differences. Figure 3.5 

shows an illustration of the HSL space—the vertical axis represents 

“lightness”; this ranges from white (full brightness) to black. Hues are 

represented at different angles and color saturation increases radially.

In order to quantize this space into a small number of colors, we 

determine the angular cutoffs between colors. Since we use six col-

ors (black, white, yellow, green, blue, red), we need only four cutoffs 

between the hues: yellow/green, green/blue, blue/red, and red/yellow. 

Empirically, we determined the following effective cutoffs: 60°, 150°, 

225°, and −15°, which worked for most outdoor urban scenes.
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Since the time of day and weather conditions affect the brightness 

and corresponding color saturation, we also need to specify lightness 

and saturation cutoffs. It is interesting to note, here, that saturation and 

intensity are related. Both properties can make the hue of a pixel indis-

cernible. For intensity, this occurs when the light is too bright or too 

dark. For saturation, it happens when there is insuffi cient saturation. 

However, as the brightness (we refer to the intensity as the “lightness” 

or “brightness” interchangeably) gets too low or too high, the neces-

sary saturation increases. In general, as intensity increases from zero 

up to halfway (the central horizontal cross section of the bi-conic) or 

decreases from the maximum (white) down to halfway, the range of 

pixels with visible or discernable hue increases.

This is shown by the 2D intensity/saturation curves in Figure 3.5. 

These 2D curves represent 3D curves, which are circularly symmet-

ric since they are independent of hue. Because of this symmetry and 

the coarse quantization needed, these curves can be represented by 

a small number of 2D (lightness, saturation) points which are marked 

on the curve. Above the horizontal plane (i.e., for suffi cient lightness), 

points whose intensity and saturation lie outside the curve are consid-

ered white. Below the horizontal plane, they are considered black.

In summary, we fi rst quantize HSL space based on hue. We subse-

quently relabel pixels either white or black depending on whether they 

lie outside the lightness/saturation curve above or below the horizontal 

mid-plane. This is related to earlier work in color segmentation per-

formed by Tseng and Chang (1994).

H

L

S

Figure 3.5 (See color insert following page xxx.) Hue/saturation/lightness 

(HSL) color space showing saturation/lightness curves and threshold points.
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3.2.4.2 Tracking-Based Color Retrieval

Each moving object is tracked as it moves across the scene. The object 

is fi rst detected by background subtraction and tracked using an appear-

ance-based tracker, as described previously. For each track, the color 

classifi er creates an accumulated histogram of the six quantized colors 

and then selects the dominant color of the object, that is, the color with 

the largest number of votes in the histogram. Because of the computa-

tional cost, we do not consider every frame of the tracked object. The 

system is performing real-time background subtraction and tracking as 

well as other high-level analysis such as object classifi cation and alert 

notifi cation; consequently it is important to conserve resources and 

computational cost. Instead, the classifi er subsamples the frames of 

the object track in real time. Since we do not know ahead of time how 

long the track will be, the classifi er initially acquires color information 

frequently and gradually decreases this frequency as the track’s life con-

tinues. In this way, we ensure that there are suffi cient samples for short 

tracks, and periodically update the samples so that a spread of data 

throughout the track life of the track is considered for longer tracks.

We ran tests of the color classifi er for tracked objects on two data-

sets with low or medium activity. The fi rst video is a 12 min scene of 

194 vehicles driving along in one direction on a two-lane highway. The 

second scene is from a live video from a parking lot. In this scene, we 

captured 72 vehicles driving by. Note that in these scenes, object track-

ing was feasible although the actual segmentation of the vehicle from 

the background did include signifi cant portions of the road. Figure 3.6 

shows results for these two datasets and Figure 3.7 shows sample key 

frames. The results are pretty good, but there is still some confusion 

between black and white on the second test data. We believe this is due 

to the variable amount of road (that appeared white) that was present 

in the tracked objects.

3.2.4.3 Non-Tracking-Based Color Retrieval

In order to handle high-activity scenes, which are typical in certain 

hours of the day in urban scenarios, our system also has the capability 

to perform color retrieval without object tracking. Our method relies 
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on color segmentation inside the foreground objects detected using 

background subtraction. The system uses a time interval, typically 2 or 

3 s, and a size threshold per color, set by the user.

For each foreground object, we quantize the colors, as described in 

Section 3.2.4.1 and perform segmentation using connected compo-

nent analysis for each color. In each time interval (say, 3 s), we detect, 

for each color, if a connected component of that color is found which 

is bigger than the predefi ned size threshold. If such a component is 

found, we store the largest component for that color in the time inter-

val as the key frame for color retrieval.

We tested our method in a crowded street intersection, as shown 

in Figure 3.8a. As it is diffi cult to obtain ground truth data for these 

True 
Positives

False 
Positives

Bad 
Segments

True 
Positives

False 
Positives

Bad 
Segments

Red  11 0 0 Red  4  0 0
Yellow   2 0 0 Yellow  0  0 0
Green   4 0 0 Green  1  0 0
Blue   0 0 0 Blue  4  0 0
White  83 0 3 White 24  4 1
Black  94 0 2 Black 29  6 2
Total 194 0 5 Total 62 10 3
Percent 100%    0% Percent   86%    14%

(a) (b)

Figure 3.6 Results of tracking-based color classifi cation on low/medium activity 

scenes. (a) Highway test set. (b) Parking lot test set.

(a) (b)

Figure 3.7 (a) Parking lot sample frame with tracking information superimposed. 

(b) Sample key frame of the highway scene.
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scenes, we only compute the precision for our method. We obtained 

78% accuracy with few false alarms, mostly due to slow-moving objects, 

which generate multiple events, since tracking is not applied. Note that 

the method described in Section 3.2.4.2 is not suitable for this crowded 

scenario, due to unreliable tracking. Another advantage of our non-

tracking-based color retrieval is the capability of fi nding colored parts 

of objects, such as green hats and red bags, as shown in Figure 3.8b.

3.2.5 Face Capture and Human Parsing

In urban environments, there are several scenarios in which it is desir-

able to monitor people’s activities. Applications such as fi nding suspects 

or locating missing people involve searching through large amounts 

of video and looking for events where people are present. This pro-

cess can be tedious, resource consuming, and prone to error, incurring 

high costs of hiring security personnel. In a previous work (Feris et al. 

2007), we described our face capture system that automatically detects 

the presence of people in surveillance scenes by using a face detector. 

The system is suitable for environments where there is enough resolu-

tion to detect faces in images. Examples include cameras placed at 

ATM cabins or entrances of buildings.

The face capture system greatly reduces the search time by enabling 

the user to browse only the video segments that contain faces; however, 

fi nding a specifi c person among the extracted video clips can still be 

time consuming, especially in high traffi c environments. Research on 

fi nding people in videos has been focused on approaches based on face 

recognition (Sivic et al. 2005), which is still a very challenging problem, 

(a) (b)

Figure 3.8 (a) Crowded scene. (b) Examples of non-tracker-based color retrieval, 

where red bag parts and green hats can be found by the user.
AQ4
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especially in low-resolution images with variations in pose and lighting. 

State-of-the-art face recognition systems (http://www.frvt.org/) require a 

fair amount of resolution in order to produce reliable results, but in many 

cases this level of detail is not available in surveillance applications.

As a solution to overcome these diffi culties, we have developed an 

approach for people search based on fi ne-grained personal attributes 

such as facial hair type, eyewear type, hair type, presence of hats, and 

clothing color. We leverage the power of machine learning techniques 

(Viola and Jones 2001) by designing attribute detectors from large sets 

of training images. Our technique enables queries such as “show me 

the people who entered the IBM Hawthorne building last Saturday 

wearing a hat, sunglasses, a blue jacket, and black pants,” and is based 

on parsing the human body in order to locate regions from which 

attributes are extracted. Our approach is described in detail in another 

chapter of this book.

3.3 REAL-TIME ALERTS

In this section, we describe a set of real-time alerts provided by our 

system, which are useful to detect potential threats in urban environ-

ments. Later, in Section 3.4, we describe another mode of operation—

indexing and search—which allows the user to fi nd after-the-fact events 

for forensics.

3.3.1 Parked Car Detection

Automatically detecting parked cars in urban scenarios can help secu-

rity guards to quickly identify illegal parking, stopped vehicles in a free-

way, or suspicious cars parked in front of security buildings at certain 

times. We developed a robust parked car detection system which is 

currently running in the city of Chicago, using various video cameras 

capturing images under a wide variety of conditions, including rain, 

day/night scenarios, etc. Our approach is similar to the technique pre-

sented in Tian et al. (2008), but has novel aspects, which substantially 

reduce the rate of false alarms, as we will see next.

We use the background modeling algorithm described in Section 

3.2.1 to detect foreground blobs in the scene. We also detect when 
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these foreground blobs are static for a period of time, since our goal 

is to detect stopped vehicles. An important observation is that static 

foreground blobs may arise in the scene due to abandoned objects (e.g., 

parked cars) or due to removed objects (e.g., a car leaving a parking 

lot). As described in Tian et al. (2008), we provide a method to clas-

sify whether a static foreground region is abandoned or removed by 

exploiting context information about the static foreground regions. In 

case the region is classifi ed as abandoned object, then a set of user-

defi ned requirements is verifi ed (e.g., minimum blob size and ROI) and 

a template-matching process is started to confi rm that the object is 

parked for a user-defi ned period of time. If these conditions are satis-

fi ed, a parked car detection alert is triggered.

The method described above (Tian et al. 2008) is enhanced in two 

novel ways. First, we use a naïve tracking algorithm (only across a user-

defi ned alert region of interest) to improve the classifi cation of whether 

an object is abandoned or removed, for example, by looking at direction 

of movement and object speed as features. The second improvement 

addresses nighttime conditions where the template-matching process 

can fail due to low-contrast images. Note that this matching scheme 

is designed to verify whether the vehicle is parked for the minimum 

time specifi ed by the user. In many nighttime cases the car leaves the 

scene before this specifi ed time, but the matcher still reports the car is 

there due to low contrast. To handle this problem, we verify whether 

we have removed object notifi cations during the matching step, and, if 

so, we remove the candidate parked car alert.

Our approach substantially reduces the number of false alarms in 

challenging conditions, involving high volumes of data and weather 

changes, while keeping high detection rates. We tested our system in 

53 h of data split into fi ve different videos. Figure 3.9 shows our results, 

comparing with the method presented in Tian et al. (2008). We are not 

allowed to show sample key frames of our test data due to customer-

related agreements.

3.3.2 Virtual Boundary Crossing

Virtual boundaries (often referred as tripwires) are defi ned as continu-

ous lines or curves drawn in the image space to capture directional 
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crossings of target objects. Due to their intuitive concepts and reliable 

performance under well-controlled conditions, they are widely used in 

many surveillance applications, such as detecting illegal entries in bor-

der security and display effectiveness estimation in the retail sector.

In urban surveillance, we mainly utilize the tripwires for vehicle 

counting, wrong-way traffi c detection, building perimeter protection, 

etc. Different attribute-based fi lters can be applied to the tripwire 

defi nition to constrain the search range. For instance, the object size 

range specifi es the type of objects to be counted, that is, single per-

sons have much smaller sizes than vehicles, and vehicles like buses 

and 18-wheeler trucks are much larger than regular personal vehicles. 

Other types of features are also deployed, including object type (person/

vehicle), object color, and minimum and maximum object speeds. The 

tripwire is confi gured as an alert feature in the IBM SSS solution, and 

a graphical user interface for setting up the tripwire alert is shown in 

Figure 3.10.

In heavy traffi c situations, vehicles are often occluded from each 

other and also piled up together if a traffi c light is present or conges-

tion occurs. In this case, reliable object detection and tracking are very 

diffi cult to achieve. Consequently, the tripwire crossing detections that 

are based on tracking results are erroneous and barely meaningful. To 

overcome this shortcoming, particularly in the urban surveillance appli-

cations, we developed a new type of tripwire, called appearance-based 

tripwire (ABT), to replace the conventional tracker-based tripwires. 
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Figure 3.9 Parked car detection evaluation in the city of Chicago, using 53 h of 

video data captured under challenging conditions (day, night, rain, etc.).
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The ABT does not rely on the explicit object tracking output. Instead 

of considering object trajectories in the entire camera fi eld of view 

(FOV), the appearance-based tripwire reduces its focus of analysis to 

the surrounding area of the tripwire. This signifi cantly eliminates the 

interference of the noisy data in the tripwire crossing detection infer-

ence. In the ABT, a set of ground patches (GP) are sampled around 

the tripwire’s envelope, which covers a spatial extension of the tripwire 

(a graphical illustration is shown in Figure 3.11).

Figure 3.10 Graphical user interface of IBM SSS tripwire alert.

Outer patches

Inner patches Radius
r

P1
0, ..., Pm

0

P1
I , ..., Pm

I

Figure 3.11 (See color insert following page xxx.) A graphical illustration of 

the appearance-based tripwire. Ground patches are generated to model the appear-

ance and motion patterns of the tripwire region.
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Appearance and motion direction features are extracted from each 

patch region over a history of time. Patches on the opposite sides of 

the tripwire are compared against each other. Tripwire crossings are 

detected by analyzing the patch matching candidates with spatiotem-

poral constraints. The appearance-based tripwire is compared with the 

conventional tracking-based tripwire in both low traffi c and crowded 

scenes. In low traffi c scenes, the object detection module is able to 

achieve good spatiotemporal segmentation of objects. Thus, both trip-

wire types have similar high accuracy of more than 90% at the equal 

error rate (EER). The superior performance of ABT is demonstrated 

in crowded scenes where tracking does not work well. Based on a 

comparison set for vehicle counting tasks, the proposed ABT presents 

its ability to capture over 20% more vehicles than tracking-based trip-

wires, in average. Therefore, the appearance-based tripwire can be a 

replacement for the conventional tripwire in high-activity scenarios, 

maintaining the system’s performance.

3.3.3 Motion and Region Alerts

Motion detection and region alerts are two other important features 

offered by the IBM Smart Surveillance Solution. Motion detection 

alerts are triggered when the target region-of-interest (ROI) possesses a 

suffi cient amount of motion energy that lasts within the desired tempo-

ral interval. Applications of this feature include loitering detection, ROI 

occupancy estimation, and object access detection. In urban scenes, 

it could be used as a simplifi ed version of the abandoned object alert, 

where the parked vehicles are detected by specifying an ROI around 

the parking area. One thing to note is that motion detection alerts 

consider the global motion energy of the ROI without distinction of 

individual objects.

The region alert, on the other hand, provides a set of different func-

tionalities that are based on the object tracking output. A ROI is con-

fi gured to represent the target region. Different rules can be specifi ed 

to capture the region alert, such as object initiated inside/outside the 

region, object passing through the region, object entering the region 

from outside, or object is ever being inside of the region. The loca-

tion relativity can be inferred by different parts of the object, including 
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the object’s head (topmost point), centroid, foot part (lowest point), 

and whole (entirety of the object). In addition, a sizing threshold can 

be applied to the target objects in order to trigger alerts. Figure 3.12 

shows the graphical user interfaces for confi guring the motion detec-

tion and region access alerts.

3.3.4 Composite Alert Detection

The above-mentioned alerts (referred to as primitive alerts) are gener-

ated based on the visual analysis of single camera views. Given the 

rapid improvement of digital video technologies, large-scale surveil-

lance networks are becoming more practical and affordable. With hun-

dreds (or even thousands) of camera inputs, cross-camera analytics 

are attracting increasing attention. Due to the current development 

in this area and the complex settings of the scenes, direct operational 

multi-camera event modeling still remains a very challenging problem. 

In addition to this, a new trend in surveillance networks nowadays is 

the effective integration of non-video signals, such as combining speed 

detection radars with video capture from a nearby camera to determine 

a speeding violation. To address these problems, we have developed an 

open infrastructure to detect composite events with multiple cameras 

and auxiliary sensors.

(a) (b)

Figure 3.12 User interfaces for confi guring motion detection (a) and region 

(b) alerts.
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The proposed framework combines the primitive alerts to formulate 

high-level composite events using logical operators with applicable 

spatiotemporal constraints. The primitives can occur on the same 

camera as well as being distributed among different machines in a 

network. Logically, composite events are formulated as multilevel full-

binary trees, where the root node represents the target composite 

event, the leaf nodes represent the primitive events, and the mid-

dle nodes represent the rule operators that combine the primitives. 

Intuitively, rules are composed of binary operators with operands that 

could be either primitives and/or other rules. The multilevel and dis-

tributive design enables the extensibility and scalability of the pro-

posed system.

In our system, we incorporate four different binary operators in 

the rules: AND, OR, FOLLOWED BY, and WITHOUT. Other binary 

operators can also be easily added to the system without signifi cantly 

changing its basic infrastructure. Each rule also possesses a spatial and 

a temporal constraint to represent the physical occurrence locations 

and the occurrence temporal distance, respectively. A standardized 

XML event language is developed for the effi cient storage and trans-

mission of the composite event and its primitives.

3.4 SEARCHING SURVEILLANCE VIDEOS

In addition to providing real-time alerts, IBM SSS also allows the user 

to search for data based on attributes extracted from analytics modules 

such as object type (person, vehicle), color, size, speed, human body 

parts, and many others. These attributes are constantly ingested as 

XML metadata into a DB2 database as new events are detected. In this 

way, our system also allows composite search by combining different 

visual attributes or even nonvisual data captured from multiple data 

sources.

Figure 3.13 shows examples of composite search results. Note that 

simple attribute combinations can lead to very powerful retrieval of 

events. If we search by [object type = car, color = yellow, size > 1500 

pixels] we can fi nd all DHL trucks in the scene. Searching by [object 

type = person, track duration > 30 s], we can fi nd people loitering in 

front of a building.
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3.4.1 Large-Scale Data Indexing

A large urban surveillance system typically has the profi le depicted 

in Figure 3.14. Hundreds of billions of events need to be archived 

per month, which is a very challenging task. Next, we describe our 

approach to handle high volumes of real-time transactions and how we 

minimize the transaction/inquiry response time.

3.4.1.1 Approach to High-Volume Scaling

Given the event volume in Figure 3.14, the data management layer 

(web application server and database) is required to support an 

(a)

(b)

Figure 3.13 (See color insert following page xxx.) Composite search in our 

system. (a) Finding DHL trucks based on object type, size, and color. (b) Finding 

people loitering based on object type and duration.

Estimated events from vehicle traffi  c in a metro city
Number of pole mounted street cameras in a large metro city 1000–5000
Number of events per camera. Vehicle traffi  c only 50,000/day/camera
Total number of events generated by the surveillance system/day 50 M–250 M
Number of events archived per month 150B–750B

Figure 3.14 Typical number of events in urban environments.
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ingestion rate of millions of events per day. IBM SSS accomplishes 

this by using a combination of web application server clustering and 

database partitioning. In a clustered implementation of the web appli-

cation server, a central node redirects traffi c from cameras to sec-

ondary nodes to balance the load. As the number of cameras in the 

system increases, the system can be scaled by adding new web app 

server nodes that run on independent hardware, thus allowing scal-

ing. At a secondary level, a similar philosophy is used to scale the 

database server using database partitioning where a single logical 

view of the database is supported by multiple instances of the soft-

ware running on independent servers.

3.4.1.2 Minimizing Transaction/Inquiry Response Time

Most transaction and inquiry response delays can be attributed to either 

a nonoptimized physical design or an insuffi cient disk storage layout for 

the data store. In a high volume environment, the characteristics of the 

metadata are highly important when designing the appropriate table 

and indexing mix for a highly scalable solution. We use the 20/80 rule 

to optimize access to the 20% of the metadata that supports 80% of 

the customer queries.

It is also important to utilize a disk array, which has been confi g-

ured to accommodate the amount of information that is being writ-

ten from the data store. The following tasks need to be reviewed and 

implemented prior to installation: (1) Hardware disk controller with 

an adequate amount of cache to easily handle the known transaction 

volume; (2) total size of the data store with respect to the number of 

physical disks in the storage array; (3) maximize the number of disk 

“spindles” to handle the current storage requirements; and (4) ability 

to add more storage space in the event that the number of cameras in 

scope increases.

In addition to using the above design principles, we leverage 

the hardware-driven scalability of the database platform (DB2). 

This approach has resulted in event indexing systems that can 

handle hundreds to thousands of cameras on high-activity urban 

environments.
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3.5  PRACTICAL CHALLENGES: SCALABILITY ISSUES

As the need for intelligent video surveillance systems grows, with cus-

tomers requiring analytics on hundreds or even thousands of cameras, 

scalability becomes more and more of a concern. Often, there are very 

strict space and cost constraints that limit the computing resources 

that can be deployed at a given site, so we must scale our algorithms 

accordingly.

We have found that the CPU consumption of our system is strongly 

related to the amount of activity that is taking place in the scene. We 

characterize activity level at a point in time as a function of the number 

of moving objects in the camera view and the foreground occupancy 

(the ratio of foreground area to background area). We provide rough 

defi nitions for three activity levels in terms of these metrics:

 1. Low: Less than three moving objects AND/OR less than .05 

foreground occupancy.

 2. Medium: Between 3 and 10 moving objects AND/OR between 

.05 and .2 foreground occupancy.

 3. High: Greater than 10 moving objects AND/OR greater than .2 

foreground occupancy.

We purposely make the categories ambiguous in the defi nitions above 

to allow some fl exibility for human judgment during the categorization 

process. For example, a scene may be considered to have a medium 

level of activity if there are three moving objects and .3 foreground 

occupancy by applying OR in the 2nd rule while applying AND in the 

3rd rule.

In medium- and high-activity scenarios, the scene is often clut-

tered due to high traffi c volume and crowds of people that cluster 

together. These situations not only create a challenging task for our 

object  tracking, but also result in a larger computational burden. In 

Figure 3.15, total CPU usage is shown for 4, 8, 12, and 16 channels 

over a 45 min interval of a typical urban surveillance scene with activ-

ity levels that range from medium to high. The test was performed on 

Windows 2003 Server Service Pack 2 with Intel Xeon 2.33 GHz dual 

quad-core processor and 2 GB memory. Measurements were taken 
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using Windows Performance Monitor at 15 s intervals. As can be seen, 

CPU usage steadily rises as more channels are added, with the CPU 

often saturated at 16 channels. We believe the relatively large vari-

ance observed with increased numbers of channels is related to higher 

cache fault and page fault rates.

When the CPU becomes saturated, we begin to experience more 

dropped frames and decoding errors. In Figure 3.16, we show CPU 

usage for all 16 channels on a similar scene with frame drop rates for 

three of these channels. Frame drop rate is defi ned as

Actual frame rate
Frame drop rate 1

Requested frame rate
= −

In this experiment, we request 15 fps from the video decoder. We have 

found that we often begin to experience decreases in accuracy when 

4 channels
8 channels

12 channels
16 channels
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40

%C
PU

20

0

Figure 3.15 (See color insert following page xxx.) CPU load according to 

the number of channels in a single IBM blade.
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we fall below 10 fps, meaning that frame drop rates that are greater 

than .33 may result in accuracy degradations.

3.6 SUMMARY

We have presented our video analytics algorithms specifi cally designed 

to handle urban environments. Although we have already described 

several computer vision modules that work well under high-activity-level 

scenarios, our current work addresses a complete framework to maxi-

mize the effi ciency and accuracy in low activity and crowded scenes.

The framework being developed has an activity level predictor module 

which can automatically switch the system to low or high-activity modes. 

In the low activity mode, we use object tracking based on detected fore-

ground blobs by background subtraction, and higher-level analytics built 

on top of tracking. In the high-activity mode, we use non-tracking-based 

analytics which are more effi cient and accurate in crowded scenes. Some 

of the non-tracking-based modules have been described in this chap-

ter, but we are working on more algorithms such as appearance-based 

detectors for object classifi cation, motion fl ow analysis, and others.

120

100

80

60

40

20

0

CPU%
Channel 2 frame drop rate

Channel 1 frame drop rate
Channel 3 frame drop rate

Figure 3.16 (See color insert following page xxx.) CPU load according to 

frame drop rate.
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3.7  BIBLIOGRAPHICAL AND HISTORICAL REMARKS

In this chapter, we covered a broad range of video analytics for urban 

surveillance, as part of the IBM Smart Surveillance System. Many other 

commercial systems for intelligent urban surveillance exist in the market. 

Examples include the systems of companies such as Siemens (http://

www.siemens.com), ObjectVideo (http://www.objectvideo.com), and 

Honeywell (http://www.honeywell.com), to mention just a few. One of 

the key advantages of the IBM system is its ability to index and search 

large amounts of video data, leveraging IBM cutting-edge technology 

on data storage and retrieval.

Although the main focus of this chapter was on urban surveillance, 

intelligent video analytics can be applied to enhance security in many 

other areas. As an example, IBM has developed video analytics for 

retail stores with the goal of loss prevention (returns fraud and cashiers 

fraud), store operations (customer counting), and merchandising (dis-

play effectiveness). We refer the reader to Senior et al. (2007) and Fan 

et al. (2009) for more information. Other application areas include 

fraud detection in Casinos, monitoring airports, etc.
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