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Abstract 
 

In this paper, we propose an effective method to 

recognize human actions from 3D positions of body joints. 

With the release of RGBD sensors and associated SDK, 

human body joints can be extracted in real time with 

reasonable accuracy. In our method, we propose a new 

type of features based on position differences of joints, 

EigenJoints, which combine action information including 

static posture, motion, and offset. We further employ the 

Naïve-Bayes-Nearest-Neighbor (NBNN) classifier for 

multi-class action classification. The recognition results 

on MSR Action3D dataset demonstrate that our approach 

significantly outperforms the state-of-the-art methods. In 

addition, we investigate how many frames are necessary 

for our method to recognize actions in MSR Action3D 

dataset. We observe that 15-20 frames are sufficient to 

achieve comparable results to that using the entire video 

sequences.      

1. Introduction 

Automatic human action recognition has been widely 

applied in a number of real-world applications, e.g. video 

surveillance, content-based video search, human-computer 

interaction, and health care. Traditional research mainly 

concentrates on action recognition from video sequences 

captured by a single camera. In this case, a video is a 

sequence of 2D frames with RGB channels in 

chronological order. There has been extensive research in 

the literature on action recognition for such videos. The 

spatio-temporal volume-based method is extensively used 

by measuring the similarity between two action volumes. 

In order to compute accurate similarity measurement, a 

variety of spatio-temporal volume detection and 

representation approaches have been proposed [2, 4-7]. 

Trajectory-based methods have also been widely explored 

for recognizing human activities [11, 14]. In these 

methods, human actions can be interpreted by a set of 

body joints or other interesting points. However, it is not 

trivial to quickly and reliably extract and track body joints 

from traditional 2D videos. On the other hand, as the 

imaging technique advances, especially the launch of 

Microsoft Kinect, it has become practical to capture RGB 

sequences as well as depth maps in real time. Depth maps 

are able to provide additional body shape information to 

differentiate actions that have similar 2D projections from 

a single view. Li et al. [8] sampled 3D representative 

points from the contours of depth maps of a body surface 

projected onto three orthogonal Cartesian planes. An 

action graph was then used to model the sampled 3D 

points for recognition. Their promising recognition results 

on MSR Action3D dataset [15] validated the superiority of 

3D silhouettes over 2D silhouettes that are from a single 

view. However, in their experiments depth maps incurred 

a great amount of data which resulted in prohibitively 

expensive computations in clustering training samples of 

all classes. 

The biological observation from Johansson [9] 

suggested that human actions could be modeled by the 

motion of a set of key joints. With the release of RGBD 

sensors and the associated SDK, we are able to obtain 3D 
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Figure 1: The sequences of depth maps and body joints for 

actions of (a) Tennis Serve, (b) Draw Circle, and (c) Side Kick. 

Each depth map includes 20 joints. The joint of each body part 

is encoded in corresponding color.  
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positions of body joints in real time with reasonable 

accuracy [13]. In this paper, we focus on recognizing 

human actions using body joints extracted from sequences 

of depth maps. Fig. 1 demonstrates the depth sequences 

with 20 extracted body joints of each depth map for 

actions Tennis Serve, Draw Circle, and Side Kick. As 

shown in Fig. 1, the perception of actions can be reflected 

by the motions of individual joints and the configuration 

of different joints (i.e. static postures). Compared to the 

original depth data of human body, these joints are more 

compact and more distinctive. We propose a type of 

features by adopting the differences of joints in both 

temporal and spatial domains to explicitly model the 

dynamics of individual joints and the configuration of 

different joints. We then apply Principal Component 

Analysis (PCA) to joint differences to obtain EigenJoints 

by reducing redundancy and noise. We employ non-

parametric Naïve-Bayes-Nearest-Neighbor (NBNN) [3] as 

a classifier to recognize multiple action categories. In 

accordance with the principles behind NBNN-based image 

classification, we avoid quantization of frame descriptors 

and compute Video-to-Class distance, instead of Video-to-

Video distance. In addition, most existing methods [2, 4-7, 

11-14] perform action recognition by operating on entire 

video sequences. We further explore how many frames are 

sufficient for action recognition in our framework. The 

experimental results on the MSR Action3D dataset show 

that a short sub-sequence (15-20 frames) is sufficient to 

perform action recognition, with quite limited gains as 

more frames are added in. This observation is important 

for making online decisions and reducing observational 

latency when humans interact with computers. 

The remainder of this paper is organized as follows. 

Section 2 reviews existing methods for action recognition. 

In Section 3, we provide detailed procedures of extracting 

EigenJoints features for each frame. Section 4 describes 

the NBNN classifier. A variety of experimental results and 

discussions are presented in Section 5. Finally, Section 6 

summarizes the remarks of this paper.      

2. Related Work 

In traditional 2D videos captured by a single camera, 

action recognition mainly focuses on analyzing spatio-

temporal volumes. The core of these approaches is in the 

detection and representation of space-time volumes. For 

example, Bobick and Davis [2] stacked foreground regions 

of a person to explicitly track shape changes. The stacked 

silhouettes formed Motion History Images (MHI) and 

Motion Energy Images (MEI), which served as action 

descriptors for template matching. In most recent work, 

local spatio-temporal features have been widely used. 

Similar to object recognition using sparse local features in 

2D images, an action recognition system first detects 

interesting points (e.g. STIPs [6] and Cuboids [4]) and 

then computes descriptors (e.g. HOG/HOF [7] and 

HOG3D [5]) based on the detected local motion volumes. 

These local features are then combined (e.g. bag-of-

words) to model different activities. The trajectory-based 

approaches are more similar to our method that models 

actions by the motion of a set of points. For instance, Rao 

and Shah [11] used skin color detection to track a hand 

position to record its 3D (XYT) space-time trajectory 

curve. They represented actions by a set of peaks of 

trajectory curves and intervals between the peaks. Sun et 

al. [14] extracted trajectories through pair-wise SIFT 

matching between neighboring frames. The stationary 

distribution of a Markov chain model was then used to 

compute a velocity description.           

As RGBD sensors becomes available, research of action 

recognition based on depth information has been explored. 

Li et al. [8] proposed a bag of 3D points model for action 

recognition. They sampled a set of 3D points from a body 

surface to characterize the posture being performed in 

each frame. In order to select the representative 3D points, 

they first sampled 2D points at equal distance along the 

contours of projections formed by mapping the depth map 

onto three orthogonal Cartesian planes, i.e. XY, XZ, and 

YZ planes. The 3D points were then retrieved in the 3D 

depth map. The experiments showed that their method 

considerably outperformed the methods only using 2D 

silhouette and were more robust to occlusion.   

Motivated by the robust joints extraction of RGBD 

sensors and associated SDK, we propose to compute 

EigenJoints for action recognition. In contrast to 

traditional trajectory-based methods, EigenJoints are able 

to model actions by more informative and more accurate 

body joints without background noisy points. Compared to 

the 3D silhouette based recognition, EigenJoints are more 

discriminative and much more compact. 

3. Representation of EigenJoints 

The proposed framework to compute EigenJoints is 

demonstrated in Fig. 2. We employ 3D position 

differences of joints to characterize action information 

including posture feature    , motion feature    , and 

offset feature     in each frame- . We then concatenate the 

three features channels as                 . According to 

different experimental settings in Section 5.1, two 

normalization schemes are introduced to obtain      . In 

the end, PCA is applied to       to compute EigenJoints.     

As shown in Fig. 2, the 3D coordinates of   joints are 

available in each frame:               . To 

characterize the static posture information of current 

frame- , we compute pair-wise joints differences within 

the current frame: 
 

                            (1) 
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To capture the motion property of current frame- , the 

pair-wise joints differences are computed between the 

current frame-  and the preceding frame- : 

 

 
 

Figure 2: The framework of representing EigenJoints. In each 

frame, we compute three feature channels    ,    , and     to 

capture the information of  offset, posture, and motion. The 

normalization and PCA are then applied to obtain EigenJoints 

descriptor for each frame.    
 

       
    

 
   

       
 

     (2) 

 

To represent the offset feature or the overall dynamics of 

the current frame-  with respect to the initial frame- , we 

calculate the pair-wise joints differences between frame-  

and frame- : 
 

       
    

    
       

      (3) 

 

The initial frame tends to approximate the neutral posture. 

The combination of the three feature channels forms the 

preliminary feature representation for each frame: 

                . 

However, the 3 attributes         of a joint   might be 

of inconsistent coordinates, e.g.       are screen 

coordinates and   is world coordinate. So the 

normalization is then applied to    to avoid attributes in 

greater numeric ranges dominating those in smaller 

numeric ranges. We use linear normalization scheme to 

scale each attribute in    to the range        . The other 

advantage of normalization is to reduce intra-class 

variations under different test sets. So we normalize    

based on a single video for cross-subject test and based on 

entire training videos for non-cross-subject test.  

As shown in Fig. 1, in each frame we use      joints 

which result in a huge feature dimension.    ,    , and     

contains 190, 400, and 400 pair-wise comparisons, 

respectively. Each comparison generates 3 attributes 

          . In the end,       is with the dimension of 

                    . We employ PCA to 

reduce redundancy and noise in      , and to obtain the 

EigenJoints representation for each frame. In the 

experimental results of Section 5.2, we observe that most 

energy is covered in a first few leading eigenvectors, e.g. 

the first 128 eigenvalues weight over 95%. 

4. Naïve-Bayes-Nearest-Neighbor Classifier 

We employ the Naïve-Bayes-Nearest-Neighbor 

(NBNN) [3] as the classifier for action recognition. The 

Nearest-Neighbor (NN) is a non-parametric classifier 

which has some advantages over most learning-based 

classifiers: (1) naturally deal with a large number of 

classes; (2) avoid the overfitting problem; (3) require no 

learning process. Boiman et al. [3] argued that the 

effectiveness of NN was largely undervalued by the 

quantization of local image descriptors and the 

computation of Image-to-Image distance. Their 

experiments showed that frequent descriptors had low 

quantization error but rare descriptors had high 

quantization error. However, discriminative descriptors 

tend to be rare. So quantization significantly degrades the 

discriminative power of descriptors. In addition, they 

observed that Image-to-Class that made use of the 

descriptor distribution over an entire class provided better 

generalization capacity than Image-to-Image.      

 We extend these concepts of NBNN-based image 

classification to NBNN-based video classification (action 

recognition). We directly use the frame descriptors of 

EigenJoints without quantization, and compute Video-to-

Class distance rather than Video-to-Video distance. In the 

context of NBNN, the action recognition is performed by: 
 

         
 

             
 

 

   

 (4) 

 

where              is an EigenJoints descriptor of 

frame-  in a testing video;   is the number of frames; 

        is the nearest neighbor of    in class- . The 

experimental results in Section 5.3 show that the 

recognition accuracy based on NBNN outperforms that 

based on SVMs. The efficient approximate- -nearest-

neighbours algorithm and KD-tree [1] can be used to 

reduce the computational cost in NBNN classification. 

5. Experiments and Discussions 

We evaluate our proposed method on the MSR 

Action3D dataset [8, 15]. We extensively compare the 

state-of-the-art methods to our approach under different 

experimental settings. In addition, we investigate how 

many frames in a testing video are sufficient to perform 

action recognition in our framework.    

5.1. Experimental Setup 

The MSR Action3D [15] is a public dataset that 

provides sequences of depth maps and skeletons captured 

by a RGBD camera. It includes 20 actions performed by 
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10 subjects facing the camera during performance. Each 

subject performed each action 2 or 3 times. The depth 

maps are with the resolution of        . For each 

skeleton joint, the horizontal and vertical positions are 

stored in screen coordinates, and depth value is stored in 

world coordinate. The 20 actions are chosen in the context 

of interactions with game consoles. As shown in Fig. 1, 

actions in this dataset reasonably capture a variety of 

motions related to arms, legs, torso, and their 

combinations.  

In order to facilitate a fair comparison, we follow the 

same experimental settings as [8] to split 20 actions into 

three subsets as listed in Table 1. In each subset, there are 

three different tests: Test One (One), Test Two (Two), and 

Cross Subject Test (CrSub). In Test One, 1/3 of the subset 

is used as training and the rest as testing; in Test Two, 2/3 

of the subset is used as training and the rest as testing. 

Both of them are non-cross-subject tests. In Cross Subject 

Test, 1/2 of subjects are used as training and the rest ones 

used as testing. 

 
Table 1: The three action subsets used in our experiments. 

 

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3) 

Horizontal Wave(HoW) 

Hammer(H) 

Forward Punch(FP) 

High Throw(HT) 

Hand Clap(HC) 

Bend(B) 

Tennis Serve(TSr) 

Pickup Throw(PT) 

High Wave(HiW) 

Hand Catch(HC) 

Draw X(DX) 

Draw Tick(DT) 

Draw Circle(DC) 

Hands Wave(HW) 

Forward Kick(FK) 

Side Boxing(SB) 

High Throw(HT) 

Forward Kick(FK) 

Side Kick(SK) 

Jogging(J) 

Tennis Swing(TSw) 

Tennis Serve(TSr) 

Golf Swing(GS) 

Pickup Throw(PT) 

 

5.2. Evaluations of EigenJoints and NBNN 

We first evaluate the energy distributions of joints 

differences to determine the dimensionality of 

EigenJoints. Fig. 3 shows the ratios between the sum of 

first few eigenvalues and the sum of all eigenvalues of 

      under different test sets. As shown in this figure, the 

first 128 eigenvalues (out of 2970) occupy over 95% 

energy for all experimental settings. The distributions 

concentrate more in the first few leading eigenvalues for 

Test One and Test Two, where the first 32 eigenvalues 

have already weighted over 95%. The distribution scatters 

relatively more for Cross Subject Test, where the leading 

32 eigenvalues cover about 85% of overall energy. 

Fig. 4 demonstrates the action recognition rates of 

EigenJoints-based NBNN with different dimensions under 

different test sets. It’s interesting to observe that the 

overall recognition rates of various test sets are very 

similar across different dimensions. As for each 

dimensionality, our method performs very well for Test 

One and Test Two which are non-cross-subject tests. 

While the performance in AS3CrSub is promising, the 

accuracies in AS1CrSub and AS2CrSub are relatively low. 

This is probably because actions in AS1 and AS2 are with 

similar movements, but AS3 groups complex but distinct 

actions. For example, in AS1 Hammer tends to be 

confused with Forward Punch and Pickup Throw consists 

of Bend and High Throw. Furthermore, in Cross Subject 

Test subset, different subjects perform actions with 

considerable variations but the number of subjects is 

small. For example, some subjects perform action of 

Pickup Throw using only one hand whereas others using 

two hands, which result in great intra-class variations. The 

cross subject performance can be improved by adding 

more subjects.  

 Considering the recognition accuracy and the 

computational cost in NBNN classification, we choose 32 

as the dimensionality for EigenJoints in all of our 

experiments. As high accuracies of Test One and Test 

Two (over 95%, see Table 2), we only show the confusion 

matrix of our method under Cross Subject Test in Fig. 5. 

Because of the considerable variations in actions 

performed by different subjects, cross subjects generate 

much larger intra-class variance than non-cross subjects. 

In AS1CrSub, most actions are confused with Pickup 

Throw, especially for Bend and High Throw. In 

AS2CrSub, Draw X, Draw Tick, and Draw Circle are 

Figure 3: The ratios (%) between the sum of the first few (8, 16, 

32, 64, 128, and 256) leading eigenvalues and the sum of all 

eigenvalues of       under different test sets.   

Figure 4: The recognition rates (%) of NBNN-based EigenJoints 

with different dimensionalities under various test sets. 

 



 

4325 

mutually confused, as they contain highly similar 

movements. As actions in AS3 are with significant 

differences, the recognition results are greatly improved in 

AS3CrSub. 

5.3. Comparison with State-of-the-art 

SVMs have been extensively used in computer vision to 

achieve the state-of-the-art performances in image and 

video classifications. We employ bag-of-words to 

represent an action video by quantizing EigenJoints of 

each frame. K-means clustering is employed to build the 

codebook. We empirically choose K = 100 and RBF 

kernels to perform classification. The optimal parameters 

of RBF kernels are obtained by 5-fold cross-validation. 

Fig. 6 compares the recognition results based on NBNN 

and SVMs. As shown in this figure, NBNN consistently 

outperforms SVMs in all test sets. This result validates the 

superiority of the two schemes used in NBNN, i.e. non-

quantization of EigenJoints and Video-to-Class distance. 

 

 
Figure 6: The comparison of action recognition rates (%) based 

on NBNN and SVMs.  

 

We further compare our approach with the state-of-the-

art method [8] for action recognition on the MSR 

Action3D dataset [15] in Table 2. The results of bag of 3D 

points or 3D silhouettes are obtained from paper [8]. The 

best recognition rates of various test sets are highlighted in 

bold. As shown in Table 2, our method consistently and 

significantly outperforms 3D silhouettes. For example, the 

average accuracies of our method in Test One, Test Two, 

and Cross Subject Test are 95.8%, 97.8%, and 81.4%, 

which outperform the average accuracies of using 3D 

silhouettes [8] by 4.2%, 3.6%, and 6.7% respectively. In 

non-cross subject tests, our method achieves over 95% 

accuracies in most cases. While the accuracy of 

AS3CrSub is 96.4%, the recognition rates of cross subject 

tests in AS1CrSub (74.5%) and AS2CrSub (76.1%) are 

relatively low. This is probably because similar actions in 

AS1CrSub and AS2CrSub are more sensitive to the larger 

intra-class variations generated in the cross subject tests. 

In addition to recognition accuracy, our method is much 

more compact than the bag of 3D points. 
 

 

Table 2: Recognition rates (%) of our method compared to the 

state-of-the-art approaches on MSR Action3D dataset. 
 

 bag of 3D points [8] our method 

AS1One 89.5 94.7 

AS2One 89.0 95.4 

AS3One 96.3 97.3 

AS1Two 93.4 97.3 

AS2Two 92.9 98.7 

AS3Two 96.3 97.3 

AS1CrSub 72.9 74.5 

AS2CrSub 71.9 76.1 

AS3CrSub 79.2 96.4 

5.4. How Many Frames Are Sufficient 

Li et al. [8] recognized actions using entire video 

sequences (about 40-50 frames) in the MSR Action3D 

dataset. We perform experiments to investigate how many 

Figure 5: Confusion matrix of EigenJoints-based NBNN in different action sets of Cross Subject Test. Each row corresponds to 

ground truth label and each column denotes the recognition results.  
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frames are sufficient for action recognition in our 

framework. The recognition accuracies using different 

number of frames under a variety of test sets are given in 

Fig. 7. The sub-sequences are extracted from the first   

frames of a given video. As shown in this figure, in most 

cases 15-20 frames are sufficient to achieve comparable 

recognition accuracies to the ones using entire sequences. 

There are rapid diminishing gains as more frames are 

added in. This result is also in accordance with the 

observations in [10] that a 66% reduction in frames only 

results in a 6.6% reduction in classification accuracy. 

These results are highly relevant for action recognition 

systems where decisions have to be made on line.   

6. Conclusion 

In this paper, we have proposed an EigenJoints-based 

action recognition system using an NBNN classifier. The 

compact and discriminative frame representation of 

EigenJoints is able to capture the properties of posture, 

motion, and offset of each frame. The comparisons 

between NBNN and SVMs show that non-quantization of 

descriptors and computation of Video-to-Class distance 

are more effective for action recognition. The 

experimental results on the MSR Action3D dataset 

demonstrate our approach significantly outperforms the 

state-of-the-art method based on 3D silhouettes. In 

addition, we observe that 15-20 frames are sufficient to 

perform action recognition with reasonably accurate 

results. Future work will focus on incorporating more 

subjects to improve recognition in the cross subject test.      
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