
ACKNOWLEDGMENTS

The work of Shizhi Chen and YingLi Tian was partially developed under an appoint-
ment to the DHS Summer Research Team Program for Minority Serving Institutions,
administered by the Oak Ridge Institute for Science and Education (ORISE) through
an interagency agreement between the U.S. Department of Energy (DOE) and U.S.
Department of Homeland Security (DHS). ORISE is managed by Oak Ridge As-
sociated Universities (ORAU) under DOE contract number DE-AC05-06OR23100.
It has not been formally reviewed by DHS. The views and conclusions contained
in this document are those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or implied, of DHS, DOE,
or ORAU/ORISE. DHS, DOE and ORAU/ORISE do not endorse any products or
commercial services mentioned in this article.

i





CHAPTER 1

BODILY EXPRESSION FOR AUTOMATIC
AFFECT RECOGNITION

Hatice Gunes, Ph.D.1, Caifeng Shan, Ph.D.2, Shizhi Chen3, and

YingLi Tian, Ph.D.3

1 School of Computer Science and Electronic Engineering, Queen Mary University of London,
U.K.

2 Philips Research, High Tech Campus, Eindhoven, The Netherlands
3 Department of Electrical Engineering, The City College of New York, USA

This chapter focuses on the why, what, and how of bodily expression analysis for automatic
affect recognition. It first asks the question of ‘why bodilyexpression?’ and attempts to
find answers by reviewing the latest bodily expression perception literature. The chapter
then turns its attention to the question of ‘what are the bodily expressions recognized auto-
matically?’ by providing an overview of the automatic bodily expression recognition liter-
ature. The chapter then provides representative answers tohow bodily expression analysis
can aid affect recognition by describing three case studies: (1) data acquisition and anno-
tation of the first publicly available database of affectiveface-and-body displays (i.e., the
FABO database); (2) a representative approach for affective state recognition from face-
and-body display by detecting the space-time interest points in video, and using Canonical
Correlation Analysis (CCA) for fusion, and (3) a representative approach for explicit de-
tection of the temporal phases (segments) of affective states (start/end of the expression
and its subdivision into phases such as neutral, onset, apex, and offset) from bodily expres-
sions. The chapter concludes by summarizing the main challenges faced, and discussing
how we can advance the state of the art in the field.

Please enter\offprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.

1



2 BODILY EXPRESSION FOR AUTOMATIC AFFECT RECOGNITION

1.1 INTRODUCTION

Humans interact with others and their surrounding environment using their visual,
auditory, and tangible sensing. The visual modality is the major input/output channel
utilized for next generation human-computer interaction.Within the visual modality,
the body has recently started gaining a particular interestdue to the fact that in daily
life body movements and gestures are an indispensable meansfor interaction. Not
many of us realize the myriad ways and the extent to which we use our hands in ev-
eryday life: when we think, talk, and work. The gaming and entertainment industry
is the major driving force behind putting the human body in the core of technology
design by creating controller-free human-technology interaction experiences. Con-
sequently, technology today has started to rely on the humanbody as direct input
by reacting to and interacting with its movement [1],[3]. One example of this is the
Kinect project [3] that enables users to control and interact with a video game con-
sole (the Xbox 360 [2]) through a natural user interface using gestures and spoken
commands instead of a game controller.

Bodily cues (postures and gestures) have also started attracting the interest of
researchers as a means to communicate emotions and affective states. Psycholo-
gists have long explored mechanisms with which humans recognize others’ affective
states from various cues and modalities, such as voice, face, and body gestures. This
exploration has led to identifying the important role played by the modalities’ dy-
namics in the recognition process. Supported by the human physiology, the temporal
evolution of a modality appears to be well approximated by a sequence of temporal
segments called onset, apex, and offset. Stemming from these findings, computer sci-
entists, over the past 20 years, have proposed various methodologies to automate the
affect recognition process. We note, however, two main limitations to date. The first
is that much of the past research has focused on affect recognition from voice and
face, largely neglecting the affective body display and bodily expressions. Although
a fundamental study by Ambady and Rosenthal suggested that the most significant
channels for judging behavioral cues of humans appear to be the visual channels of
facial expressions and body gestures, affect recognition via body movements and
gestures has only recently started attracting the attention of computer science and
human-computer interaction (HCI) communities. The secondlimitation is that auto-
matic affect analyzers have not paid sufficient attention tothe dynamics of the (facial
and bodily) expressions: The automatic determination of the temporal segments and
their role in affect recognition are yet to be adequately explored.

To address these issues, this chapter focuses on the why, what, and how of au-
tomatic bodily expression analysis. It first asks the question of ‘why bodily expres-
sion?’ and attempts to find answers by reviewing the latest bodily expression per-
ception literature. The chapter then turns its attention tothe question of ‘what are the
bodily expressions recognized automatically?’ by providing an overview of the auto-
matic bodily expression recognition literature and summarizing the main challenges
faced in the field. The chapter then provides representativeanswers to how bodily
expression analysis can aid affect recognition by describing three case studies: (1)
data acquisition and annotation of the first publicly available database of affective



BACKGROUND AND RELATED WORK 3

face-and-body displays (i.e., the FABO database); (2) a representative approach for
affective state recognition from face-and-body display bydetecting the space-time
interest points in video, and using Canonical Correlation Analysis (CCA) for fusion,
and (3) a representative approach for explicit detection ofthe temporal phases (seg-
ments) of affective states (start/end of the expression andits subdivision into phases
such as neutral, onset, apex, and offset) from bodily expressions.

Due to its popularity and extensive exploration, emotion communication through
facial expressions will not be covered in this chapter. The interested readers are
referred to [14], [21], [36], [37], [38], [70], [73], [90].

1.2 BACKGROUND AND RELATED WORK

Emotion communication through bodily expressions has beena neglected area for
much of the emotion research history [26], [66]. This is illustrated by the fact that
95 per cent of the literature on human emotions has been dedicated to using face
stimuli, majority of the the remaining 5 per cent on audio-based research, and the
remaining small number on whole-body expressions [26]. This is indeed puzzling
given the fact that early research on emotion by Darwin [24] and James [53] has paid
a considerable attention to emotion-specific body movements and postural configu-
rations. De Gelder argues that the reason why whole-body expressions have been
neglected in emotion research is mainly due to the empiricalresults dating from the
first generation of investigations of whole-body stimuli [26]. There are potentially
other reasons as to why the body may seem a less reliable source of affective infor-
mation (i.e., the face bias), its cultural and ideological reasons and heritage, which
have been discussed in detail in [26].

Overall, the body and hand gestures are much more varied thanfacial changes.
There is an unlimited vocabulary of body postures and gestures with combinations
of movements of various body parts (with multiple degrees offreedom) [22], [42],
[66]. Therefore, using bodily expression for emotion communication and perception
has a number of advantages:

• Bodily expression provides a means for recognition of affect from a distance.
When we are unable to tell the emotional state from the face, we can still
clearly read the action from the sight of the body [26]. This has direct implica-
tions for designing affective interfaces that will work in realistic settings (e.g.,
affective tutoring systems, humanoid robotics, affectivegames, etc.).

• Some of the basic mental states are most clearly expressed bythe face while
others are least ambiguous when expressed by the whole body (e.g., anger
and fear) [26]. Perception of facial expression is heavily influenced by bodily
expression as in most situations people do not bother to censor their body
movements and therefore, the body is at times referred to as the leakysource
[33]. Consequently, bodily expression, when used as an additional channel
for affect communication, can provide a means to resolve ambiguity for affect
detection and recognition.
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Due to such advantages, automatic recognition of bodily expressions has increas-
ingly started to attract the attention and the interest of the affective computing re-
searchers. In this section, we will firstly review existing methods that achieve af-
fect recognition and/or temporal segmentation from body display. Secondly, we
will summarize existing systems that combine bodily expression with other cues or
modalities in order to achieve multi-cue and multi-modal affect recognition.

1.2.1 Body as an autonomous channel for affect perception and
analysis

Human recognition of emotions from body movements and postures is still an un-
resolved area of research in psychology and non-verbal communication. There are
numerous works suggesting various opinions in this area. Ekman and Friesen have
touched upon the possibility that some bodily (and facial) cues might be able to com-
municate both the quantity and quality aspects of emotionalexperience [35]. This
leads to two major perspectives regarding the emotion perception and recognition
from bodily posture and movement. The first perspective claims that there are body
movements and postures that mostly contribute to the understanding of the activity
(and intensity) level of the underlying emotions. For instance, Wallbot provided as-
sociations between body movements and the arousal dimension of emotion. More
specifically, lateralized hand/arm movements, arms stretched out to the front, and
opening and closing of the hands, were observed during active emotions, such as
hot anger, cold anger, and interest [88]. This can somewhat be seen as contributing
toward the dimensional approach to emotion perception and recognition from bodily
cues. The second perspective considers bodily cues (movements and postures) to be
an independent channel of expression able to convey discrete emotions. An example
is De Meijer’s work that illustrated that observers are ableto recognize emotions
from body movements alone [27].

In general, recognition of affect from bodily expressions is mainly based on cat-
egorical representation of affect. The categories happy, sad, and angry appear to be
more distinctive in motion than categories such as pride anddisgust. Darwin sug-
gested that in anger, for instance, among other behaviors, the whole body trembles,
the head is erect, the chest is well expanded, feet are firmly on the ground, elbows
are squared [24], [88]. Wallbot also analyzed emotional displays by actors and con-
cluded that discrete emotional states can be recognized from body movements and
postures. For instance, hot anger was encoded by shoulders moving upwards, arms
stretched frontally, or lateralized, the execution of various hand movements, as well
as high movement activity, dynamism, and expansiveness. Analysis of the arm move-
ments (drinking and knocking) shows that, discrete affective states are aligned with
the arousal–pleasure space [75]; and arousal was found to behighly correlated with
velocity, acceleration, and jerk of the movement.

To date, the bodily cues that have been more extensively considered for affect
recognition are (static) postural configurations of head, arms, and legs [22], [59],
dynamic hand/arm movements [88], head movements (e.g., position and rotation)
[20] and head gestures (e.g., head nods and shakes) [23], [45].
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1.2.1.1 Body posture Coulson [22] presented experiments on attributing six
universal emotions (anger, disgust, fear, happiness, sadness, and surprise) to static
body postures using computer-generated mannequin figures.His experimental re-
sults suggested that recognition from body posture is comparable to recognition from
voice, and some postures are recognized as well as facial expressions.

When it comes to automatic analysis of affective body postures the main em-
phasis has been on using the tactile modality (for gross bodily expression analysis)
via body-pressure-based affect measurement (e.g., [67]),and on using motion cap-
ture technology (e.g., [59]). Mota and Picard [67] studied affective postures in an
e-learning scenario, where the posture information was collected through a sensor
chair. Kleinsmith et al. [59] focused on the dimensional representation of emo-
tions and on acquiring and analyzing affective posture datausing motion capture
technology [59]. They examined the role of affective dimensions in static postures
for automatic recognition, and showed that it is possible toautomatically recognize
the affect dimensions of arousal, valence, potency, and avoidance with acceptable
recognition rates (i.e., error rates lower than 21%).

1.2.1.2 Body movement Compared to the facial expression literature, attempts
for recognizing affective body movements are few and efforts are mostly on the anal-
ysis of posed bodily expression data. Burgoonet al. discussed the issue of emotion
recognition from bodily cues and provide useful referencesin [13]. They claimed
that affective states are conveyed by a set of cues and focus on the identification
of affective states such as positivity, anger and tension invideos from body and
kinesics cues. Meservyet al. [65] focused on extracting body cues for detecting
truthful (innocent) and deceptive (guilty) behavior in thecontext of national secu-
rity. They achieved a recognition accuracy of 71% for the two–class problem (i.e.,
guilty/innocent). Bernhardt and Robinson analyzed non-stylised body motions (e.g.,
walking, running) for affect recognition [10] using kinematic features (e.g., velocity,
acceleration, and jerk measured for each joint) and reported that the affective states
angry and sad are more recognizable than neutral or happy.

Castellanoet al. [18] presented an approach for the recognition of acted emo-
tional states based on the analysis of body movement and gesture expressivity. They
used the non-propositional movement qualities (e.g. amplitude, speed and fluidity of
movement) to infer emotions (anger %90, joy %44, pleasure %62, sadness %48). A
similar technique was used to extract expressive descriptors of movement (e.g., quan-
tity of motion of the body and velocity of the head movements)in a music perfor-
mance, and to study the dynamic variations of gestures used by a pianist [17]. They
found that the timing of expressive motion cues (i.e., the attack and release of the
temporal profile of the velocity of the head and the quantity of motion of the upper
body) is important in explaining emotional expression in piano performances.[43]
present a framework for analysis of affective behavior starting with a reduced amount
of visual information related to human upper-body movements. The work uses the
EyesWeb Library (and its extensions) for extracting a number of expressive gesture
features (e.g., smoothness of gesture, gesture duration, etc.) by tracking of trajecto-
ries of head and hands (from a frontal and a lateral view), andthe GEMEP corpus
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(120 posed upper body gestures for 12 emotion classes from 10subjects) for vali-
dation. The authors conclude that for distinguishing bodily expression of different
emotions dynamic features related to movement quality (e.g., smoothness of gesture,
duration of gesture, etc.) are more important than categorical features related to the
specific type of gesture.

A number of researchers have also investigated how to map various visual signals
onto emotion dimensions. Cowie et al. [23] investigated theemotional and com-
municative significance of head nods and shakes in terms of Arousal and Valence
dimensions, together with dimensional representation ofsolidarity, antagonismand
agreement. Their findings suggest that both head nods and shakes clearly carry infor-
mation about arousal. However, their significance for evaluating the valence dimen-
sions is less clear (affected by access to words) [23]. In particular, the contribution
of the head nods for valence evaluation appears to be more complicated than head
shakes (e.g., ’I understand what you say, and I care about it,but I dont like it’).

1.2.1.3 Gait Gait, in the context of perception and recognition, refers to a per-
son’s individual walking style. Therefore, gait is a sourceof dynamic information by
definition. Emotion perception and recognition from gait patterns is also a relatively
new area of research [54], [57]. Janssen et al. in [54] focused on emotion recogni-
tion from human gait by means of kinetic and kinematic data using artificial neural
nets. They conducted two experiments: (1) identifying participants’ emotional states
(normal, happy, sad, angry) from gait patterns, and (2) analyzing effects on gait pat-
terns of listening to to different types of music (excitatory, calming, no music) while
walking. Their results showed that subject-independent emotion recognition from
gait patterns is indeed possible (up to 100% accuracy). Karget al. [57] focused
on using both discrete affective states and affective dimensions for emotion model-
ing from motion capture data. Person-dependent recognition of motion capture data
reached 95% accuracy based on the observation of a single stride. This work showed
that gait is a useful cue for the recognition of arousal and dominance dimensions.

1.2.1.4 Temporal dynamics An expression is a dynamic event, which evolves
from neutral, onset, apex to offset [32], a structure usually referred to astempo-
ral dynamicsor temporal phases. Evolution of such a temporal event is illustrated,
for a typical facial expression, in Figure 1.5. The neutral phase is a plateau where
there are no signs of muscular activation, the face is relaxed. Theonsetof the ac-
tion/movement is when the muscular contraction begins and increases in intensity
and the appearance of the face changes. Theapexis a plateau usually where the in-
tensity reaches a stable level and there are no more changes in facial appearance. The
offsetis the relaxation of the muscular action. A natural facial movement evolves
over time in the following order: neutral(N)−→ onset(On)−→ apex(A)−→ off-
set(Of)−→ neutral(N). Other combinations such as multiple-apex facial actions are
also possible.

Similarly, the temporal structure of a body gesture consists of (up to) five phases:
preparation−→ (pre-stroke) hold−→ stroke−→ (post-stroke) hold−→ retraction.
The preparationmoves to the stroke’s starting position and thestroke is the most
energetic part of the gesture.Holdsare optional still phases which can occur before
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and/or after the stroke. Theretraction returns to arest pose (e.g., arms hanging
down, resting in lap, or arms folded). Some gestures (e.g., finger tapping) have
multiple strokes that include small beat-like movements that follow the first stroke,
but seem to belong to the same gesture [89].

Studies demonstrate that the temporal dynamics play an important role for inter-
preting emotional displays [78], [83]. It is believed that information about the time
course of a facial action may have psychological meaning relevant to the intensity,
genuineness, and other aspects of the expresser’s state. Among the four tempo-
ral phases of neutral, onset, apex and offset, features during the apex phase result
in maximum discriminative power for expression recognition. Gunes and Piccardi
showed that, during automatic affect recognition from facial/bodily gestures, decou-
pling temporal dynamics from spatial extent significantly reduces the dimensionality
of the problem compared to dealing with them simultaneously, and improves affect
recognition accuracy [49]. Thus, successful temporal segmentation can not only
help to analyze the dynamics of an (facial/bodily) expression, but also improve the
performance of expression recognition. However, in spite of their usefulness, the
complex spatial properties and dynamics of face and body gestures also pose a great
challenge to affect recognition. Therefore, interest in the temporal dynamics of af-
fective behavior is recent (e.g., [49], [72], [84], [90]). The work of [72] temporally
segmented facial action units (AUs) using geometric features of 15 facial key points
from profile face images. In [89], a method for the detection of the temporal phases
in natural gesture was presented. For body movement, a finitestate machine (FSM)
was used to spot multi-phase gestures against a rest state. In order to detect the
gesture phases, candidate rest states were obtained and evaluated. Three variables
were used to model the states: distance from rest image, motion magnitude and du-
ration. Other approaches have exploited dynamics of the gestures without attempting
to recognize their temporal phases or segments explicitly (e.g., [15], [18] and [65]).

1.2.2 Body as an additional channel for affect perception and analysis

Ambady and Rosenthal reported that human judgment of behaviors based jointly on
face and body proved 35% more accurate than those based on theface alone [6].
The face and the body, as part of an integrated whole, both contribute in conveying
the emotional state of the individual. A single body gesturecan be ambiguous. For
instance, the examples shown in the second and fourth row in Figure 1.1 have similar
bodily gestures, but the affective state they express are quite different, as shown by
the corresponding facial expressions. In light of such findings, instead of looking
at the body as an independent and autonomous channel of emotional expression,
researchers have increasingly focused on the relationshipbetween bodily postures
and movement with other expressive channels such as voice and face (e.g., [16],
[49], [81]).

It is important to state that automatic affect recognition does not aim to replace
one expression channel (e.g., the facial expressions) as input by another expression
channel (e.g., bodily expressions). Instead, the aim is to explore various communica-
tive channels more deeply and more fully in order to obtain a thorough understanding
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of cross-modal interaction and correlations pertaining tohuman affective display. An
example is the work of Van den Stocket al. investigating the influence of whole-body
expressions of emotions on the recognition of facial and vocal expressions of emo-
tion [86]. They found that recognition of facial expressionwas strongly influenced
by the bodily expression. This effect was a function of the ambiguity of the facial ex-
pression. Overall, during multisensory perception, judgments for one modality seem
to be influenced by a second modality, even when the latter modality can provide
no information about the judged property itself or increaseambiguity (i.e., cross-
modal integration) [31], [47]. Meerenet al.[63] showed that the recognition of facial
expressions is strongly influenced by the concurrently presented emotional body lan-
guage, and that the affective information from the face and the body start to interact
rapidly, and the integration is a mandatory automatic process occurring early in the
processing stream. Therefore, fusing facial expression and body gesture in video
sequences provides a potential way to accomplish improved affect analysis.

When it comes to using the body as an additional channel for automatic analysis,
the idea of combining face and body expressions for affect recognition is relatively
new. Balomenoset al. [7] combined facial expressions and hand gestures for recog-
nition of six prototypical emotions. They fused the resultsfrom the two subsystems
at a decision-level using pre-defined weights. An 85% accuracy was achieved for
emotion recognition from facial features alone. An overallrecognition rate of 94.3%
was achieved for emotion recognition from hand gestures. Karpouziset al. [58]
fused data from facial, bodily and vocal cues using a recurrent network to detect
emotions. They used data from 4 subjects and reported the following recognition
accuracies for a 4 class problem: 67% (visual), 73% (prosody), 82% (all modalities
combined). The fusion was performed on a frame basis, meaning that the visual
data values were repeated for every frame of the tune. Neither work has focused on
explicit modeling and detection of the (facial/bodily) expression temporal segments.
Castellano et al. considered the possibility of detecting eight emotions (some basic
emotions plus irritation, despair, etc.) by monitoring facial features, speech contours,
and gestures [16]. Their findings suggest that incorporating multiple cues and modal-
ities helps with improving the affect recognition accuracy, and the best channel for
affect recognition appears to be the gesture channel followed by the audio channel.

Hartmannet al. in [50] defined a set of expressivity parameters for the generation
of expressive gesturing for virtual agents. The studies conducted on perception of ex-
pressivity showed that only a subset of parameters and a subset of expressions were
recognized well by users. Therefore, further research is needed for the refinement
of the proposed parameters (e.g., the interdependence of the expressivity parame-
ters). Valstar et al. [85] investigated separating posed from genuine smiles in video
sequences using facial, head, and shoulder movement cues, and the temporal corre-
lation between these cues. Their results seem to indicate that using video data from
face, head and shoulders increases the accuracy, and the head is the most reliable
source, followed closely by the face. Nicolaouet al.capitalize on the fact that the
arousal and valence dimensions are correlated, and presentan approach that fuses
spontaneous facial expression, shoulder gesture and audiocues for dimensional and
continuous prediction of emotions in valence-arousal space [68]. They propose an
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output-associative fusion framework that incorporates correlations between emotion
dimensions. Their findings suggest that incorporating correlations between affect
dimensions provides greater accuracy for continuous affect prediction. Audio cues
appear to be better for predicting arousal, and visual cues (facial expressions and
shoulder movements) appear to perform better for predicting valence.

A number of systems use the tactile modality for gross bodilyexpression analysis
via body-pressure-based affect measurement (measuring participants’ back and seat
pressure) [29], [56]. Kapoor and Picard focused on the problem of detecting the af-
fective states of high-interest, low-interest and refreshing in a child who is solving
a puzzle [56]. They combined sensory information from the face video, the pos-
ture sensor (a chair sensor) and the game being played in a probabilistic framework.
The classification results obtained by Gaussian Processes for individual modalities
showed that affective states are best classified by the posture channel (82%), fol-
lowed by the features from the upper face (67%), the game (57%) and the lower
face (53%). Fusion significantly outperformed classification using the individual
modalities and resulted in 87% accuracy. D’Mello and Graesser [29] considered
a combination of facial features, gross body language, and conversational cues for
detecting some of the learning-centered affective states.Classification results sup-
ported achannel∗judgmenttype interaction, where the face was the most diagnostic
channel for spontaneous affect judgments (i.e., at any timein the tutorial session),
while conversational cues were superior for fixed judgments(i.e., every 20 seconds in
the session). The analyzes also indicated that the accuracyof the multichannel model
(face, dialog, and posture) was statistically higher than the best single-channel model
for the fixed but not spontaneous affect expressions. However, multichannel models
reduced the discrepancy (i.e., variance in the precision ofthe different emotions) of
the discriminant models for both judgment types. The results also indicated that the
combination of channels yielded enhanced effects for some states but not for others.

1.2.3 Bodily expression data and annotation

Communication of emotions by body gestures is still an unresolved area in psychol-
ogy. Therefore, the number of databases and corpus that contain expressive bodily
gestures and are publicly available for research purposes is scarce, and there exists
no annotation scheme commonly used by all researchers in thefield.

Data. To the best of our knowledge there exist three publicly available databases
that contain expressive bodily postures or gestures.The UCLIC Database of Affec-
tive Postures and Body Movements[4] contains acted emotion data (angry, fearful,
happy, and sad) collected using a VICON motion capture system, and non-acted
affective states (frustration, concentration, triumphant, and defeated) in a computer
game setting collected using a Gypsy5 (Animazoo UK Ltd.) motion capture sys-
tem.The GEMEP Corpus(The Geneva Multimodal Emotion Portrayals Corpus) [8]
contains 120 posed face and upper-body gestures (head and hand gestures), for 12
emotion classes (pride , joy, amusement, interest, pleasure, relief, hot anger, panic
fear, despair, irritation, anxiety, sadness) from 10 subjects recorded by multiple cam-
eras (e.g., frontal and lateral view). The Bimodal Face and Body Gesture Database
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(the FABO Database) comprises of face-and-body expressions [46], and will be re-
viewed in detail in the next sections.

Annotation. Unlike the facial actions, there is not one common annotation scheme
that can be adopted by all the research groups [66] to describe and annotate the body
action units that carry expressive information. Therefore, it is even harder to create
a common benchmark database for affective gesture recognition. The most common
annotation has been command-purpose annotation, for instance calling the gesture as
rotate or click gesture. Another type of annotation is basedon the gesture phase, e.g.
start of gesture stroke–peak of gesture stroke–end of gesture stroke. Rudolf Laban
was a pioneer in attempting to analyze and record body movement by developing a
systematic annotation scheme called Labanotation [61]. Traditionally Labanotation
has been used mostly in dance choreography, physical therapy and drama for explor-
ing natural and choreographed body movement. Despite the aforementioned effort
of Laban in analyzing and annotating body movement, a more detailed annotation
scheme, similar to that of Facial Action Coding Scheme (FACS) is needed. A gesture
annotation scheme, possibly named as Body Action Unit Coding System (BACS),
should include information and description as follows: body part (e.g. left hand),
direction (e.g. up/down), speed (e.g. fast/slow), shape (clenching fists), space (flexi-
ble/direct), weight (light/strong), time (sustained/quick), and flow (fluent/controlled)
as defined by Laban and Ullman [61]. Additionally, temporal segments (neutral-start
of gesture stroke-peak of gesture stroke-end of gesture stroke-neutral) of the gestures
should be included as part of the annotation scheme. Overall, the most time-costly
aspect of current gesture manual annotation is to obtain theonset-apex-offset time
markers. This information is crucial for coordinating facial/body activity with simul-
taneous changes in physiology, or speech [5].

1.3 CREATING A DATABASE OF FACIAL AND BODILY
EXPRESSIONS: THE FABO DATABASE

The Bimodal Face and Body Gesture Database (the FABO Database, henceforth) was
created with the aim of using body as an additional channel, together with face, for
affect analysis and recognition. The goal was to study how affect can be expressed,
and consequently analyzed, when using both the facial and the bodily expression
channels simultaneously. Details on the recordings and data annotation are described
in the following sections.

Recordings. We recorded the video sequences simultaneously using two fixed
cameras with a simple setup and uniform background. One camera was placed to
specifically capture the face alone and the second camera wasplaced in order to
capture face-and-body movement from the waist above. Priorto recordings subjects
were instructed to take a neutral position, facing the camera and looking straight to
it with hands visible and placed on the table. The subjects were asked to perform
face and body gestures simultaneously by looking at the facial camera constantly.
The recordings were obtained by using ascenario approachthat was also used in
previous emotion research [87]. In this approach, subjectsare provided with situa-
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Table 1.1 List of the affective face and upper-body gestures performed for the
recordings of FABO Database.

expression face gesture body gesture

neutral lips closed, eyes open, muscles relaxed hands on the table, relaxed

uncertainty
& puzzle-
ment

lip suck, lid droop, eyes closed, eyes turn
right/left/up/down.

head tilt left/right/up/down, shoulder shrug, palms
up, palms up+ shoulder shrug, right/left hand
scratching the head/hair, right/left hand touching
the right/left ear, right/left hand touching the nose,
right/left hand touching the chin, right/left hand
touching the neck, right/left hand touching the fore-
head, both hands touching the forehead, right/left
hand below the chin, elbow on the table, two hands
behind the head.

anger brows lowered and drawn together; lines appear be-
tween brows; lower lid tense/ may be raised; upper
lid tense/ may be lowered due to brows’ action; lips
are pressed together with corners straight or down
or open; nostrils may be dilated.

open/expanded body; hands on hips/waist; closed
hands / clenched fists; palm-down gesture; lift the
right/ left hand up; finger point with right/left hand;
shake the finger/hand; crossing the arms.

surprise brows raised; skin below brow stretched not wrin-
kled;horizontal wrinkles across forehead; eyelids
opened; jaw drops open or stretching of the mouth.

right/left hand moving toward the head; both hands
moving toward the head; moving the right/left
hand up; two hands touching the head; two
hands touching the face/mouth; both hands over
the head; right/left hand touching the face/mouth;
self-touch/two hands covering the cheeks; self-
touch/two hands covering the mouth; head shake;
body shift/backing.

fear brows raised and drawn together; forehead wrin-
kles drawn to the center; upper eyelid is raised and
lower eyelid is drawn up; mouth is open; lips are
slightly tense or stretched and drawn back.

body contracted; closed body/closed hands /
clenched fist; body contracted; arms around the
body; self-touch (disbelief)/ covering the body
parts/ arms around the body/shoulders; body shift-
backing; hand covering the head; body shift-
backing; hand covering the neck; body shift-
backing; hands covering the face; both hands over
the head; self-touch (disbelief) covering the face
with hands.

anxiety lip suck; lip bite; lid droop; eyes closed; eyes turn
right/left/up/down.

hands pressed together in a moving sequence; tap-
ping the tips of the fingers on the table; biting the
nails; head tilt left/right/up/down.

happiness corners of lips are drawn back and up; mouth may
or may not be parted with teeth exposed or not;
cheeks are raised; lower eyelid shows wrinkles be-
low it; and may be raised but not tense; wrinkles
around the outer corners of the eyes.

body extended; hands clapping; arms lifted up or
away from the body with hands made into fists.

disgust upper lip is raised; lower lip is raised and pushed
up to upper lip or it is lowered; nose is wrinkled;
cheeks are raised; brows are lowered.

hands close to the body; body shift-backing; orien-
tation changed/moving to the right or left; backing;
hands covering the head; backing; hands covering
the neck; backing; right/left hand on the mouth;
backing; move right/left hand up.

bored lid droop, eyes closed, lip suck, eyes turn
right/left/up/down

body shift; change orientation; move to the
right/left; hands behind the head; body shifted;
hands below the chin, elbow on the table.

sadness inner corners of eyebrows are drawn up; upper lid
inner corner is raised; corners of the lips are drawn
downwards.

contracted/closed body; dropped shoulders; bowed
head; body shift- forward leaning trunk; cover-
ing the face with two hands; self-touch (disbe-
lief)/ covering the body parts/ arms around the
body/shoulders; body extended +hands over the
head; hands kept lower than their normal position,
hands closed, slow motion; two hands touching the
head move slowly; one hand touching the neck,
hands together closed, head to the right, slow mo-
tion.
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Figure 1.1 Example images from the FABO database recorded by the face (top) and body
(bottom) cameras separately. Representative images of non-basic facial expressions (a1-h1)
and their corresponding body gestures (a2-h2): (a) neutral, (b) negative surprise, (c) positive
surprise, (d) boredom, (e) uncertainty, (f) anxiety, and (g) puzzlement.

tion vignettes or short scenarios describing an emotion eliciting situation. They are
instructed to imagine these situations and act out as if theywere in such a situation.
In our case the subjects were asked what they would do when ‘itwas just announced
that they won the biggest prize in lottery’ or ‘the lecture isthe most boring one and
they can’t listen to it anymore’ etc. More specifically, although the FABO database
was created in laboratory settings, the subjects were not instructed on emotion/case
basis as to how to move their facial features and how to exactly display the specific
facial expression. In some cases the subjects came up with a variety of combina-
tions of face and body gestures. As a result of the feedback and suggestions obtained
from the subjects, the number and combination of face and body gestures performed
by each subject varies. A comprehensive list is provided in Table 1.1. The FABO
database contains around 1,900 gesture sequences from 23 subjects in age from 18 to
50 years. Figure 1.1 shows example images of non-basic facial expressions and their
corresponding body gestures for neutral, negative surprise, positive surprise, bore-
dom, uncertainty, anxiety and puzzlement. Further detailson the FABO Database
recordings can be found in [46].

Annotation. We obtained the annotations for face and body videos separately, by
asking human observers to view and label the videos. The purpose of this annotation
was to obtain independent interpretations of the displayedface and body expressions,
and evaluate the performance (i.e. how well the subjects were displaying the affect
they intended to communicate using their face and bodily gesture) by a number of
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human observers from different ethnic and cultural background. To this aim, we
developed a survey for face and body videos separately, using the labeling schemes
for affective content (e.g., happiness) and signs (e.g., how contracted the body is) by
asking six independent human observers. We used two main labeling schemes in line
with the psychological literature on descriptors of emotion: (a) verbal categorical la-
beling (perceptually determined, i.e. happiness) in accordance with Ekman’s theory
of emotion universality [34] and (b) broad dimensional labeling: arousal/activation
(arousal–sleep/ activated–deactivated) in accordance with Russell’s theory of arousal
and valence [77]. The participants were first shown the wholeset of facial videos and
only after finishing with the face they were shown the corresponding body videos.
For each video they were asked to choose one label only, from the list provided: sad-
ness, puzzlement/thinking, uncertainty/‘I don’t know’, boredom, neutral surprise,
positive surprise, negative surprise, anxiety, anger, disgust, fear, and happiness. For
the temporal segment annotation, one human coder repeatedly viewed each face and
body sequence, in slowed and stopped motion, to determine when (in which frame)
the neutral-onset-apex-offset-neutral phases start and end [48]. Further details on the
FABO data annotation can be found in [47].

1.4 AUTOMATIC RECOGNITION OF AFFECT FROM BODILY
EXPRESSIONS

1.4.1 Body as an autonomous channel for affect analysis

In this section, we firstly investigate affective body gesture analysis in video se-
quences by approaching the body as an autonomous channel. Tothis aim, we exploit
spatial-temporal features [30], which makes few assumptions about the observed
data, such as background, occlusion and appearance.

1.4.1.1 Spatial-Temporal Features In recent years, spatial-temporal features
have been used for event detection and behavior recognitionin videos. We extract
spatial-temporal features by detecting space-time interest points [30]. We calculate
the response function by application of separable linear filters. Assuming a stationary
camera or a process that can account for camera motion, the response function has
the form:

R = (I ∗ g ∗ hev)
2 + (I ∗ g ∗ hod)

2 (1.1)

whereI(x, y, t) denotes images in the video,g(x, y;σ) is the 2D Gaussian smooth-
ing kernel, applied only along the spatial dimensions(x, y), andhev andhod are a
quadrature pair of 1D Gabor filters applied temporally, which are defined ashev(t; τ, ω) =

− cos(2πtω)e−t2/τ2

andhod(t; τ, ω) = − sin(2πtω)e−t2/τ2

. In all cases we use
ω = 4/τ [30]. The two parametersσ andτ correspond roughly to the spatial and
temporal scales of the detector. Each interest point is extracted as a local maxima of
the response function. As pointed out in [30], any region with spatially distinguish-
ing characteristics undergoing a complex motion can inducea strong response, while
region undergoing pure translational motion, or areas without spatially distinguish-
ing features, will not induce a strong response.
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Figure 1.2 (Best viewed in color) Examples of spatial-temporal features extracted from
videos: the first row is the original input video; the second row visualizes the cuboids extracted,
where each cuboid is labeled with a different color; the third row shows some cuboids, which
are flattened with respect to time.

At each detected interest point, a cuboid is extracted whichcontains the spatio-
temporally windowed pixel values. See Figure 1.2 for examples of cuboids extracted.
The side length of cuboids is set as approximately six times the scales along each di-
mension, so containing most of the volume of data that contribute to the response
function at each interest point. After extracting the cuboids, the original video is dis-
carded, which is represented as a collection of the cuboids.To compare two cuboids,
different descriptors for cuboids have been evaluated in [30], including normalized
pixel values, brightness gradient and windowed optical flow, followed by a conver-
sion into a vector by flattening, global histogramming, and local histogramming. As
suggested, we adopt the flattened brightness gradient as thecuboid descriptor. To
reduce the dimensionality, the descriptor is projected to alower dimensional PCA
space [30]. By clustering a large number of cuboids extracted from the training data
using the K-Means algorithm, we derive a library of cuboid prototypes. So each
cuboid is assigned a type by mapping it to the closest prototype vector. Following
[30], we use the histogram of the cuboid types to describe thevideo.

1.4.1.2 Classifier We adopt the Support Vector Machine (SVM) classifier to
recognize affective body gestures. SVM is an optimal discriminant method based
on the Bayesian learning theory. For the cases where it is difficult to estimate the
density model in high-dimensional space, the discriminantapproach is preferable to
the generative approach. SVM performs an implicit mapping of data into a higher
dimensional feature space, and then finds a linear separating hyperplane with the
maximal margin to separate data in this higher dimensional space. SVM allows
domain-specific selection of the kernel function, and the most commonly used kernel
functions are the linear, polynomial, and Radial Basis Function (RBF) kernels.
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1.4.2 Body as an additional channel for affect analysis

In this section, we investigate how body contributes to the affect analysis when
used as an additional channel. For combining the facial and bodily cues, we ex-
ploit Canonical Correlation Analysis (CCA), a powerful statistical tool that is well
suited for relating two sets of signals, to fuse facial expression and body gesture at
the feature level. CCA derives a semantic “affect” space, inwhich the face and body
features are compatible and can be effectively fused.

We propose to fuse the cues from the two channels in a joint feature space, rather
than at the decision-level. The main difficulties for the feature-level fusion are the
features from different modalities may be incompatible, and the relationship between
different feature spaces is unknown. Here we fuse face and body cues at the feature
level using CCA. Our motivation is that, as face and body cuesare two sets of mea-
surements for affective states, conceptually the two modalities are correlated, and
their relationship can be established using CCA.

1.4.2.1 Canonical Correlation Analysis CCA [51] is a statistical technique
developed for measuring linear relationships between two multidimensional vari-
ables. It finds pairs of base vectors (i.e., canonical factors) for two variables such
that the correlations between the projections of the variables onto these canonical
factors are mutually maximized.

Given two zero-mean random variablesx ∈ Rm andy ∈ Rn, CCA finds pairs
of directionswx andwy that maximize the correlation between the projectionsx =
wT

x x andy = wT
y y. The projectionsx andy are calledcanonical variates. More

formally, CCA maximizes the function:

ρ =
E[xy]

√

E[x2]E[y2]
=

E[wT
x xy

Twy]
√

E[wT
x xx

Twx]E[wT
y yy

Twy]
=

wT
xCxywy

√

wT
xCxxwxwT

y Cyywy

(1.2)

whereCxx ∈ Rm×m andCyy ∈ Rn×n are thewithin-set covariance matricesof
x andy, respectively, whileCxy ∈ Rm×n denotes theirbetween-sets covariance
matrix. A number of at mostk = min(m,n) canonical factor pairs〈wi

x,w
i
y〉, i =

1, . . . , k can be obtained by successively solvingargmax
w

i
x,w

i
y
{ρ} subject toρ(wj

x,w
i
x) =

ρ(wj
y,w

i
y) = 0 for j = 1, . . . , i − 1, i.e., the next pair of〈wx,wy〉 are orthogonal

to the previous ones.
The maximization problem can be solved by setting the derivatives of Eqn. (1.2),

with respect towx andwy, equal to zero, resulting in the eigenvalue equations as:
{

C−1
xxCxyC

−1
yy Cyxwx = ρ2wx

C−1
yy CyxC

−1
xxCxywy = ρ2wy

(1.3)

Matrix inversions need to be performed in Eqn. (1.3), leading to numerical insta-
bility if Cxx andCyy are rank deficient. Alternatively,wx andwy can be obtained
by computing principal angles, as CCA is the statistical interpretation of principal
angles between two linear subspace.
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1.4.2.2 Feature Fusion of Facial and Bodily Expression Cues Given
B = {x|x ∈ Rm} andF = {y|y ∈ Rn}, wherex andy are the feature vectors
extracted from bodies and faces respectively, we apply CCA to establish the rela-
tionship betweenx andy. Suppose〈wi

x,w
i
y〉, i = 1, . . . , k are the canonical factors

pairs obtained, we can used (1 ≤ d ≤ k) factor pairs to represent the correlation in-
formation. WithWx = [w1

x, . . . ,w
d
x] andWy = [w1

y, . . . ,w
d
y], we project the orig-

inal feature vectors asx′ = WT
x x = [x1, . . . , xd]

T andy′ = WT
y y = [y1, . . . , yd]

T

in the lower dimensional correlation space, wherexi andyi are uncorrelated with the
previous pairsxj andyj, j = 1, . . . , i − 1. We then combine the projected feature
vectorx′ andy′ to form the new feature vector as

z =
(x′

y′

)

=
(WT

x x

WT
y y

)

=
(Wx

0

0

Wy

)T(x

y

)

(1.4)

This fused feature vector effectively represents the multimodal information in a joint
feature space for affect analysis.

1.4.2.3 Experiments and Results In our experiments we used the FABO
database [46]. We selected 262 videos of seven emotions (Anger, Anxiety, Bore-
dom, Disgust, Joy, Puzzle, and Surprise) from 23 subjects. To evaluate the algo-
rithms’ generalization ability, we adopted a 5-fold cross-validation test scheme in all
recognition experiments. That is, we divided the data set randomly into five groups
with roughly equal number of videos, and then used the data from four groups for
training, and the left group for testing; the process was repeated five times for each
group in turn to be tested. We report the average recognitionrates here. In all exper-
iments, we set the soft marginC value of SVMs to infinity so that no training error
was allowed. Meanwhile, each training and testing vector was scaled to be between
-1 and 1. In our experiments, the RBF kernel always provided the best performance,
so we report the performance of the RBF kernel. With regard tothe hyper-parameter
selection of RBF kernels, as suggested in [52], we carried out grid-search on the ker-
nel parameters in the 5-fold cross-validation. The parameter setting producing the
best cross-validation accuracy was picked. We used the SVM implementation in the
publicly available machine learning library SPIDER1 in our experiments. To see
how the body contributes to the affect analysis when used as an additional channel
we extracted the spatial-temporal features from the face video and the body video,
and then fused the cues from the two channels at the feature level using CCA.

We first report the classification performance (the confusion matrix) based on
bodily cues only in Figure 1.3 (left). The average recognition rate of the SVM clas-
sifier using the bodily cues is 72.6%. When we look at the affect recognition using
the facial cues only, the recognition rate obtained is 79.2%. Looking at the confusion
matrix shown in Figure 1.3 we observe that the emotion classification based on facial
expressions is better than that of bodily gesture. This is possibly because there are
much variation in affective body gestures.

1http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html
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Figure 1.3 Confusion matrices for affect recognition from bodily gestures (left) and facial
expressions (left).

We then fused facial expression and body gesture at the feature level using CCA.
Different numbers of CCA factor pairs can be used to project the original face and
body feature vectors to a lower dimensional CCA feature space, and the recogni-
tion performance varies with the dimensionality of the projected CCA features. We
report the best result obtained here. We compared the CCA feature fusion with an-
other three feature fusion methods: (1) Direct feature fusion, that is, concatenating
the original body and face features to derive a single feature vector; (2) PCA fea-
ture fusion: the original body and face features are first projected to the PCA space
respectively, and then the PCA features are concatenated toform the single feature
vector. In our experiments, all principle components were kept. (3) PCA+LDA
feature fusion: for each modality, the derived PCA featuresare further projected
to the discriminant LDA space; the LDA features are then combined to derive the
single feature vector. We report the experimental results of different feature fusion
schemes in Table 1.2. The confusion matrices of the CCA feature fusion and the
direct feature fusion are shown in Figure 1.4. We can see thatthe presented CCA
feature fusion provides best recognition performance. This is because CCA captures
the relationship between the feature sets in different modalities, and the fused CCA
features effectively represent information from each modality.

Feature Fusion CCA Direct PCA PCA+LDA

Recognition Rate 88.5% 81.9% 82.3% 87.8%

Table 1.2 Experimental results of affect recognition by fusing body and face cues.

1.5 AUTOMATIC RECOGNITION OF BODILY EXPRESSION
TEMPORAL DYNAMICS

Works focusing on the detection of the expression temporal segments modeled tem-
poral dynamics of facial or bodily expressions by extracting and tracking geometric
or appearance features from a set of fixed interest points (e.g., [49], [71]). However,
such approaches have two limitations. First, the selectionof the fixed interest points
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Figure 1.4 Confusion matrices of affect recognition by fusing facial expression and body
gesture. (left) Direct feature fusion; (right) CCA feature fusion.

Figure 1.5 (a) Sample image of boredom expression to extract body gesture feature (body
camera), (b) sample image of boredom expression to extract facial feature (face camera), and
(c) the corresponding temporal segments from body gesture and facial features respectively.

requires human expertise and mostly needs human intervention. Second, tracking
is usually sensitive to occlusions and illumination variations (e.g., the facial point
tracking will fail when the hands touch the face). Inaccuracy in tracking will signif-
icantly degrade the temporal segmentation performance. Tomitigate the aforemen-
tioned issues, we propose two types of novel and efficient features in this section,
i.e., motion area and neutral divergence, to simultaneously segment and recognize
temporal phases of an (facial/bodily) expression. The motion area feature is calcu-
lated by simple motion history image [12], [25], which does not rely on any facial
points tracking or body tracking, and the neutral divergence feature is based on the
differences between the current frame and the neutral frame.

1.5.1 Feature Extraction

The motion area and the neutral divergence features are extracted from both facial
and body gesture information without any motion tracking, so the approach avoids
losing informative apex frames due to the unsynchronized face and body gesture
temporal phases. Furthermore, both features are efficient to compute.
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Figure 1.6 (a) A surpriseexpression, (b) Motion History Image of thesurpriseexpression
shown in (a), and (c) ground truth temporal segments of the expression.

1.5.1.1 Motion Area We extract the motion area based on the motion history
image (MHI), which is a compact representation of a sequenceof motion movement
in a video [12], [25]. Pixel intensity of MHI is a function of the motion history at that
location, where brighter values correspond to more recent motions. The intensity at
pixel (x, y) decays gradually until a specified motion history duration t and the MHI
image can be constructed using the equation below.

MHIτ (x, y, t) = D(x, y, t)∗τ+[1−D(x,y, t)]∗U [MHIτ (x, y, t−1)−1]∗ [MHIτ(x, y, t−1)−1])
(1.5)

whereU [x] is a unit step function andt represents the current video frame in-
dex. D(x, y, t) is a binary image of pixel intensity difference between the current
frame and the previous frame.D(x, y, t) = 1 if the intensity difference greater than
a threshold, otherwise,D(x, y, t) = 0. τ is the maximum motion duration. In our
system, we setthreshold = 25 andτ = 10. Figure 1.6(b) shows the generated
motion history image of asurpriseexpression. The motion area of each video frame
is the total number of the motion pixels in the correspondingMHI image. The mo-
tion pixels are defined as the pixels with non-zero intensityin the MHI image. The
calculation of the motion areaMAτ (t) can be described by the following equation:

MAτ (t) =
W∑

x=1

H∑

y=1

U [MHIτ (x, y, t) − e]) (1.6)

where0 < e < 1, U [x] is a unit step function, andW andH are the width and
the height of theMHI image.

Figure 1.7(left) illustrates how the (normalized) motion area of thesurpriseex-
pression (shown in Figure 1.6) is obtained. The expression starts from the neutral
(frames0 − 10, hands on desk) followed by the onset (frames11− 24, hands move
up), the apex, the offset and back to the neutral. As shown in Figure 1.7(left), the
motion areaMAτ (t) is almost 0 at neutral phase, and increases and fianlly reaches
the peak at frame15. As the expression approaches itsapex, the motion begins to
slow down, which causesMAτ (t) to decrease between frame15 to frame24. The
apexoccurs between frames25 and34 in Figure 1.7(left). During theapexphase,
the expression reaches its maximum spatial extent and lastsfor some time. Hence,
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Figure 1.7 The motion area feature representation of the current frameis a vector of
normalized motion area (left), and the neutral divergence feature representation of the current
frame is a vector of normalized neutral divergence(right).

there is relatively small (or no motion) during that phase. During theoffsetphase,
both the facial expression and the body gesture are moving from theapexphase back
to theneutral phase. This is illustrated in Figure 1.7(left) between frames35 and
54. Finally, the expression enters itsneutralphase between frames55 and70 (with
very small motion area). The motion area is further normalized to the range of[0, 1]
with maximum motion area corresponding to1. The normalization is done in order
to handle variation due to different expressions or subjects.

1.5.1.2 Neutral Divergence The neutral divergence feature measures the de-
gree of difference between the current frame and the neutralframe of an expressive
display. Since all videos in the FABO database [46] start from a neutral position,
the current frame’s neutral divergence ND(t) is calculatedby summing up the abso-
lute intensity difference between the current frame imageI(x, y, d, t) and the neutral
frame imageI(x, y, d, t0) over three color channels, as shown in Eq. 1.7.

ND(t) =

3∑

d=1

W∑

x=1

H∑

y=1

abs[I(x, y, d, t) − I(x, y, d, t0)] (1.7)

whered is the number of color channels of the frame.
Figure 1.7(right) plots the (normalized) neutral divergences of thesurpriseex-

pression shown in Figure 1.6. Similar to the motion area normalization, the neutral
divergence is also normalized to range of[0, 1]. The neutral divergence is0 at the
neutralphase. During theonsetphase, the neutral divergence increases (as can be
observed in Figure 1.7(right)). During theapexphase, the neutral divergence remains
relatively stable (with a large neutral divergence value) as there is little movement
in the facial expression or the body gesture. However, theapexphase is quite dif-
ferent from theneutralphase. The neutral divergence decreases at theoffsetphase.
When the expression enters itsneutralphase again, between frames55 and70, as
shown in Figure 1.7(right), the neutral divergence does notgo back to0 as would
be expected. This indicates that the facial and bodily partsdo not return back to
their exact starting position. Nevertheless, the difference between the finalneutral
phase and theapexphase using the neutral divergence feature is still recognizable
(see Figure 1.7(right)).
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1.5.2 Feature Representation and Combination

1.5.2.1 Feature Representation The normalized motion area and the neutral
divergence are extracted for every frame in an expression video. To recognize the
expression phases of the current frame, we employ a fixed-size temporal window
with the center located at the current frame as shown in Figure 1.7(a). The normal-
ized motion area of every frame within the temporal window isextracted (forming
a vector in chronological order). Similar to the motion areafeature, as shown in
Figure 1.7(b), the normalized neutral divergence of every frame within the temporal
window is also extracted (forming a vector in chronologicalorder). In our experi-
ments, we set the temporal window size to31, for both the motion area features and
the neutral divergence features.

1.5.2.2 Feature Combination The motion area and the neutral divergence
features provide complementary information regarding temporal dynamics of an ex-
pression. The motion area is able to separate the onset/offset from the apex/neutral
phases, since the onset/offset generates large movements.However, the motion area
can neither distinguish theapexphase from theneutral, nor theonsetphase from
theoffset. Nevertheless, theapexphase has large intensity deviation from the initial
neutral frame. Therefore, the neutral divergence is able toseparate theneutralphase
from theapexphase. During theonsetphase, the neutral divergence is increasing
(the opposite occurs during theoffsetphase). Consequently, the neutral divergence
is able to separate theonsetphase from theoffsetphase as well. The combination
of both features is obtained by simply concatenating the motion area feature vector
with the neutral divergence feature vector.

1.5.2.3 Classifier We employ SVM with a RBF kernel as our multi-class clas-
sifier [19]. SVM is used to find a set of hyper-planes which separate each pair of
classes with a maximum margin. The temporal segmentation ofan expression phase
can be considered as a multi-class classification problem. In other words each frame
is classified into neutral, onset, apex, and offset temporalphases.

1.5.3 Experiments

1.5.3.1 Experimental Setup We conducted experiments using the FABO database
[46]. We chose 288 videos where the ground truth expressionsfrom both the face
camera and the body camera were identical. We used 10 expression categories, in-
cluding both basic expressions (disgust, fear, happiness,surprise, sadness and anger)
and non-basic expressions (anxiety, boredom, puzzlement and uncertainty). For each
video, there are2 to 4 complete expression cycles. Videos of each expression cate-
gory are randomly separated into three subsets. Then two of these subsets are chosen
for training and the remaining subset is kept for testing. Due to the random separa-
tion process, the subjects may overlap between the trainingand the testing sets.

1.5.3.2 Experimental Results We first perform a three-fold cross-validation
by combining the motion area and the neutral divergence features. Two subsets are
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Figure 1.8 Temporal segmentation results corresponding to thesurpriseexpression video
shown in Figure 1.6.

used for training, and the remaining subset is used for testing. The procedure is
repeated three times, each of the three subsets being used asthe testing data exactly
once. The accuracy is calculated by averaging the true positive rate of each class
(i.e., the neutral, the onset, the apex, and the offset). Theaverage accuracy obtained
by the three-fold cross validation is 83.1%.

Figure1.8 shows the temporal segmentation results of thesurpriseexpression
video shown in Figure 1.6. The ground truth temporal phase ofeach frame in the
expression video is indicated by the solid line, while the corresponding predicted
temporal phase is plotted using the dash line withx. The predicted temporal seg-
mentation of the expression video matches the ground truth temporal phase quite
well (except at the phase transition frames). For example, frames 22 and 23 are
predicted as the apex phase while the ground truth indicatesthat they are the onset
frames right before the apex.

Table 1.3 Summary of the three-fold cross validation results.

true/model neutral onset apex offset accuracy (%)

neutral 2631 121 208 161 84.3
onset 113 2253 324 31 82.8
apex 187 282 4365 251 85.8
offset 171 70 227 2539 84.4

Table 1.3 shows the confusion matrix resulting from the temporal phase segmen-
tation. Each row is the ground truth temporal segment while the columns are the
classified temporal segments. Based on the confusion matrix, both theonsetand the
offsetphase appear to be confused mostly with theapexphase. Theapexphase is
temporally adjacent to both theonsetphase and theoffsetphase. This is mainly due
to the fact that the temporal boundary between these phases is not straightforward.
However, as shown in the last column of Table 1.3, the overallperformance of each
temporal phase is fairly stable.

We also conducted an experiment in order to evaluate the effectiveness of the
combined feature set (combining the motion area and the neutral divergence). This
experiment uses the first subset of expression videos as the testing data and the other
two subsets as the training data. Using the motion area alone, the temporal phase de-
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tection rate is 68.5%. The neutral divergence feature aloneachieves 74.1% detection
rate. By combining both the motion area and the neutral divergence, the expression
phase segmentation performance has boosted up to 82%. In order to understand why
the combined feature set significantly improves the performance, we compare the
confusion matrices obtained from the motion area (alone) and the combined feature
set. Table 1.4 (top) reports the confusion matrix using the motion area feature alone.
From the matrix, we can see that the apex frames are mostly confused with the neu-
tral frames. As an example, there are 757 neutral frames misclassified as theapex
phase, while there are 691apexframes misclassified as theneutralphase. Similarly,
the onsetphase is mostly confused with theoffsetphase. Therefore, we conclude
that the motion area can neither distinguish theapexphase from theneutral, nor the
onsetphase from theoffset.

Table 1.4 Confusion matrices using motion area feature alone (top), and using the
combined feature set (bottom). Rows indicate the ground truth temporal phases while
columns indicate the recognized temporal phases.

true/model neutral onset apex offset

neutral 1739 75 757 125
onset 73 1745 288 429
apex 691 222 3079 225
offset 102 472 278 1792

neutral 2213 107 226 150
onset 106 2037 246 146
apex 261 227 3553 176
offset 150 104 245 2145

As can be observed in Table 1.4 (bottom) combining the motionarea and the
neutral divergence features reduces the confusion betweentheneutralphase andapex
phase, significantly. For instance, there are only 226 neutral frames misclassified as
apex, and 261 apex frames misclassified as neutral. Similarly, the confusion between
theonsetphase and theoffsetphase is also reduced. These comparisons confirm the
effectiveness of combining both the motion area and the neutral divergence features
on the temporal segmentation. The neutral divergence and the motion area provide
complementary information for identifying the temporal dynamics of an expression.

1.6 DISCUSSION AND OUTLOOK

Human affect analysis based on bodily expressions is still in its infancy. Therefore,
for the interested reader we would like to provide a number ofpointers for future
research as follows.

Representation-related issues. According to research in psychology, three major
approaches to affect modeling can be distinguished [44]:categorical, dimensional
andappraisal-basedapproach. The categorical approach claims that there exista
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small number of emotions that are basic, hard-wired in our brain and recognized uni-
versally (e.g.,[37]). This theory has been the most commonly adopted approach in
research on automatic measurement of human affect from bodily expressions. How-
ever, a number of researchers claim that a small number of discrete classes may
not reflect the complexity of the affective state conveyed [77]. They advocate the
use ofdimensional descriptionof human affect, where affective states are not in-
dependent from one another; rather, they are related to one another in a systematic
manner (e.g., [44], [77], [64], [82]). The most widely used dimensional model is a
circular configuration calledCircumplex of Affectintroduced by Russell [77]. This
model is based on the hypothesis that each basic emotion represents a bipolar en-
tity being a part of the same emotional continuum. The proposed polars are arousal
(relaxed vs. aroused) and valence (pleasant vs. unpleasant). Another well-accepted
and commonly used dimensional description is the 3D emotional space of pleasure
– displeasure, arousal – nonarousal and dominance – submissiveness [64], at times
referred to as thePAD emotion space. Scherer and colleagues introduced another set
of psychological models, referred to ascomponential modelsof emotion, which are
based on the appraisal theory [44], [82], [40]. In the appraisal-based approach emo-
tions are generated through continuous, recursive subjective evaluation of both our
own internal state and the state of the outside world (relevant concerns/needs) [44],
[82], [40], [41]. Although pioneering efforts have been introduced by Scherer and
colleagues (e.g., [79]), how to use the appraisal-based approach for automatic mea-
surement of affect is an open research question as this approach requires complex,
multicomponential and sophisticated measurements of change. Overall, despite the
existence of such diverse affect models, there is still not an agreement between re-
searchers on which model should be used for which affect measurement task, and
for each modality or cue.

Context. Context usually refers to the knowledge of who the subject is, where
she is, what her current task is, and when the observed behavior has been shown.
Majority of the works on automated affect analysis from bodily expressions focused
on context-free, acted, and emotional expressions (e.g., [16], [28], [49]). More re-
cently, a number of works started exploring automatic analysis of bodily postures in
an application-dependent and context-specific manner in non-acted scenarios. Ex-
amples include recognizing affect when the user is playing abody-movement-based
video game [60], and detecting the level of engagement when the user is interacting
with a game companion [80], etc. Defining and setting up a specific context enables
designing automatic systems that are realistic, and are sensitive to a specific target
user group and target application. Defining a context potentially simplifies the prob-
lem of automatic analysis and recognition as the setup chosen may encourage the
user to be in a controlled position (e.g., sitting in front ofa monitor or standing in a
predefined area), wearing specific clothes (e.g., wearing bright-colored t-shirts [80]
or a motion capture suit [60]), etc. Overall, however, how tobest incorporate and
model context for affect recognition from bodily expressions needs to be explored
further.

Data acquisition protocol. Defining protocols on how to acquire benchmark data
for affective bodily posture and gesture analysis is an ongoing research topic. Cur-
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rently it is difficult to state whether it is sufficient (or better) to have body-gesture-
only databases (e.g. The UCLIC Affective Posture database)or whether it is better
to record multiple cues and modalities simultaneously (e.g., recording face and up-
per body as was done for the FABO Database and the GEMEP Corpus). Overall,
data acquisition protocols and choices should be contextualized (i.e., by taking into
account the application, the user, the task, etc.).

Modeling expression variation. Emotional interpretation of human body mo-
tion is based on understanding the action performed. This does not cause major is-
sues when classifying stereotypical bodily expressions (e.g., clenched fists) in terms
of emotional content (e.g., anger, sadness, etc.). However, when it comes to an-
alyzing natural bodily expressions, the same emotional content (category) may be
expressed with similar bodily movements but with some variations, or with very
different bodily movements. This presents major challenges to machine learning
techniques trained to detect and recognize the movement patterns specific to each
emotion category. This, in turn, will hinder the discovery of underlying patterns due
to emotional changes. To mitigate this problem, recent works have focused on using
explicit models of action patterns to aid emotion classification (e.g., [11]).

Multiple cues/modalities and their dynamics. Although body has been investi-
gated as an additional channel for affect analysis and recognition, it is still not clear
what role it should play when combining multiple cues and modalities: Should it
be given higher or lower weight? Can it be the primary (or only) cue/modality? In
which context? When can gait be used as an additional modality for affect recog-
nition? How does it relate to, or differ from other bodily expression recognition?
These questions are likely to stir further investigations.Additionally, when dealing
with multiple cues, it is highly likely that the temporal segments of various cues may
not be aligned (synchronized) as illustrated in Figure 1.5(c) where the apex frames
for the bodily expression constitute the onset segment for the facial expression. One
noteworthy study that investigated fully the automatic coding of human behavior dy-
namics with respect to both the temporal segments (onset, apex, offset, and neutral)
of various visual cues and the temporal correlation betweendifferent visual cues (fa-
cial, head, and shoulder movements) is that of Valstar et al.[85], who investigated
separating posed from genuine smiles in video sequences. However, in practice, it
is difficult to obtain accurate detection of the facial/bodily key points and track them
robustly for temporal segment detection, due to illumination variations and occlu-
sions (see examples in Figure 1.1). Overall, integration, temporal structures, and
temporal correlations between different visual cues are virtually unexplored areas of
research, ripe for further investigation.

1.7 CONCLUSIONS

This chapter focused on a relatively understudied problem:bodily expression for
automatic affect recognition. The chapter explored how bodily expression analysis
can aid affect recognition by describing three case studies: (1) data acquisition and
annotation of the first publicly available database of affective face-and-body displays
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(i.e., the FABO database); (2) a representative approach for affective state recogni-
tion from face-and-body display by detecting the space-time interest points in video,
and using Canonical Correlation Analysis (CCA) for fusion,and (3) a representative
approach for explicit detection of the temporal phases (segments) of affective states
(start/end of the expression and its subdivision into phases such as neutral, onset,
apex, and offset) from bodily expressions. The chapter concluded by summarizing
the main challenges faced, and discussing how we can advancethe state of the art in
the field.

Overall, human affect analysis based on bodily expressionsis still in its infancy.
However, there is a growing research interest driven by various advances and de-
mands (e.g., real-time representation and analysis of naturalistic body motion for
affect-sensitive games, interaction with humanoid robots, etc.). The current auto-
matic measurement technology has already started moving its focus toward natural-
istic settings and less-controlled environments, using various sensing devices, and
exploring bodily expression either as an autonomous channel or as an additional
channel for affect analysis. The bodily cues (postures and gestures) are much more
varied than face gestures. There is an unlimited vocabularyof bodily postures and
gestures with combinations of movements of various body parts. Despite the effort
of Laban in analyzing and annotating body movement [61], unlike the facial ex-
pressions, communication of emotions by bodily movement and expressions is still
a relatively unexplored and unresolved area in psychology,and further research is
needed in order to obtain a better insight on how they contribute to the perception
and recognition of the various affective states. This understanding is expected to
pave the way for using the bodily expression to its full potential.
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