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This chapter focuses on the why, what, and how of bodily esgiom analysis for automatic
affect recognition. It first asks the question of ‘why bodéypression?’ and attempts to
find answers by reviewing the latest bodily expression gatioe literature. The chapter
then turns its attention to the question of ‘what are the lgakipressions recognized auto-
matically?’ by providing an overview of the automatic bgdéxpression recognition liter-
ature. The chapter then provides representative answamswtdodily expression analysis
can aid affect recognition by describing three case studigsdata acquisition and anno-
tation of the first publicly available database of affecti@ee-and-body displays (i.e., the
FABO database); (2) a representative approach for affestiate recognition from face-
and-body display by detecting the space-time interestgairvideo, and using Canonical
Correlation Analysis (CCA) for fusion, and (3) a represémgaapproach for explicit de-
tection of the temporal phases (segments) of affectivestatart/end of the expression
and its subdivision into phases such as neutral, onset, apeboffset) from bodily expres-
sions. The chapter concludes by summarizing the main ctggdkefaced, and discussing
how we can advance the state of the art in the field.
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1.1 INTRODUCTION

Humans interact with others and their surrounding envireminusing their visual,
auditory, and tangible sensing. The visual modality is tlagominput/output channel
utilized for next generation human-computer interacthfithin the visual modality,
the body has recently started gaining a particular intetestto the fact that in daily
life body movements and gestures are an indispensable maainseraction. Not
many of us realize the myriad ways and the extent to which weeous hands in ev-
eryday life: when we think, talk, and work. The gaming andeetatinment industry
is the major driving force behind putting the human body ia tlore of technology
design by creating controller-free human-technologyraxt8on experiences. Con-
sequently, technology today has started to rely on the humody as direct input
by reacting to and interacting with its movement [1],[3]. éexample of this is the
Kinect project [3] that enables users to control and intievath a video game con-
sole (the Xbox 360 [2]) through a natural user interface gigjastures and spoken
commands instead of a game controller.

Bodily cues (postures and gestures) have also startedtatyahe interest of
researchers as a means to communicate emotions and afstdies. Psycholo-
gists have long explored mechanisms with which humans réze@thers’ affective
states from various cues and modalities, such as voice,dadeébody gestures. This
exploration has led to identifying the important role pldy®/ the modalities’ dy-
namics in the recognition process. Supported by the humgsigbgy, the temporal
evolution of a modality appears to be well approximated bgguence of temporal
segments called onset, apex, and offset. Stemming frora fimeings, computer sci-
entists, over the past 20 years, have proposed various d@tigpes to automate the
affect recognition process. We note, however, two mairtétians to date. The first
is that much of the past research has focused on affect r#impgftom voice and
face, largely neglecting the affective body display andilyakpressions. Although
a fundamental study by Ambady and Rosenthal suggesteditatost significant
channels for judging behavioral cues of humans appear tbebeisual channels of
facial expressions and body gestures, affect recognitiarbedy movements and
gestures has only recently started attracting the atterticcomputer science and
human-computer interaction (HCI) communities. The sedonitiation is that auto-
matic affect analyzers have not paid sufficient attentiahéadynamics of the (facial
and bodily) expressions: The automatic determination ®témporal segments and
their role in affect recognition are yet to be adequately@qul.

To address these issues, this chapter focuses on the whiy, antahow of au-
tomatic bodily expression analysis. It first asks the qoestif ‘why bodily expres-
sion?’ and attempts to find answers by reviewing the latedilyoexpression per-
ception literature. The chapter then turns its attentiachéouestion of ‘what are the
bodily expressions recognized automatically?’ by prawichn overview of the auto-
matic bodily expression recognition literature and sumairag the main challenges
faced in the field. The chapter then provides representatigavers to how bodily
expression analysis can aid affect recognition by deswiliiree case studies: (1)
data acquisition and annotation of the first publicly avd#adatabase of affective
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face-and-body displays (i.e., the FABO database); (2) eesgmtative approach for
affective state recognition from face-and-body displaydeyecting the space-time
interest points in video, and using Canonical Correlatiomlisis (CCA) for fusion,
and (3) a representative approach for explicit detectiath@temporal phases (seg-
ments) of affective states (start/end of the expressioritarstdibdivision into phases
such as neutral, onset, apex, and offset) from bodily espes.

Due to its popularity and extensive exploration, emotiomouaunication through
facial expressions will not be covered in this chapter. Thterested readers are
referred to [14], [21], [36], [37], [38], [70], [73], [90].

1.2 BACKGROUND AND RELATED WORK

Emotion communication through bodily expressions has lzepaglected area for
much of the emotion research history [26], [66]. This isdthated by the fact that
95 per cent of the literature on human emotions has beenatedito using face
stimuli, majority of the the remaining 5 per cent on audisdxhresearch, and the
remaining small number on whole-body expressions [26].s Thindeed puzzling
given the fact that early research on emotion by Darwin [24] 2&ames [53] has paid
a considerable attention to emotion-specific body movesn@md postural configu-
rations. De Gelder argues that the reason why whole-bodsesgjpns have been
neglected in emotion research is mainly due to the empirgsallts dating from the
first generation of investigations of whole-body stimul6]2 There are potentially
other reasons as to why the body may seem a less reliableesofuaffective infor-
mation (i.e., the face bias), its cultural and ideologiessons and heritage, which
have been discussed in detail in [26].

Overall, the body and hand gestures are much more variedfdlcéal changes.
There is an unlimited vocabulary of body postures and gestwith combinations
of movements of various body parts (with multiple degreefeddom) [22], [42],
[66]. Therefore, using bodily expression for emotion conmication and perception
has a number of advantages:

e Bodily expression provides a means for recognition of affexm a distance.
When we are unable to tell the emotional state from the faeecan still
clearly read the action from the sight of the body [26]. Thas Mdirect implica-
tions for designing affective interfaces that will work iealistic settings (e.qg.,
affective tutoring systems, humanoid robotics, affectjaenes, etc.).

e Some of the basic mental states are most clearly expresstat igce while
others are least ambiguous when expressed by the whole leagly &nger
and fear) [26]. Perception of facial expression is heavifiuenced by bodily
expression as in most situations people do not bother toocehsir body
movements and therefore, the body is at times referred thedsakysource
[33]. Consequently, bodily expression, when used as artiaddi channel
for affect communication, can provide a means to resolveiguitly for affect
detection and recognition.
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Due to such advantages, automatic recognition of bodilyesgions has increas-
ingly started to attract the attention and the interest efaffective computing re-
searchers. In this section, we will firstly review existingtimods that achieve af-
fect recognition and/or temporal segmentation from bodypldy. Secondly, we
will summarize existing systems that combine bodily expi@swith other cues or
modalities in order to achieve multi-cue and multi-modé&tetf recognition.

1.2.1 Body as an autonomous channel for affect perception and
analysis

Human recognition of emotions from body movements and pestis still an un-
resolved area of research in psychology and non-verbal eoriwation. There are
numerous works suggesting various opinions in this areangfkand Friesen have
touched upon the possibility that some bodily (and faciamight be able to com-
municate both the quantity and quality aspects of emotierpérience [35]. This
leads to two major perspectives regarding the emotion p&oreand recognition
from bodily posture and movement. The first perspectiverdahat there are body
movements and postures that mostly contribute to the utashelisig of the activity
(and intensity) level of the underlying emotions. For imsta, Wallbot provided as-
sociations between body movements and the arousal dinmeaiemotion. More
specifically, lateralized hand/arm movements, arms s$teetout to the front, and
opening and closing of the hands, were observed duringeaetivotions, such as
hot anger, cold anger, and interest [88]. This can somewdhagebn as contributing
toward the dimensional approach to emotion perception@oagnition from bodily
cues. The second perspective considers bodily cues (mowsiaed postures) to be
an independent channel of expression able to convey disenedtions. An example
is De Meijer's work that illustrated that observers are ableecognize emotions
from body movements alone [27].

In general, recognition of affect from bodily expressionsnainly based on cat-
egorical representation of affect. The categories haguy, &d angry appear to be
more distinctive in motion than categories such as pridedisglust. Darwin sug-
gested that in anger, for instance, among other behaviwsyhole body trembles,
the head is erect, the chest is well expanded, feet are firmith® ground, elbows
are squared [24], [88]. Wallbot also analyzed emotiongildigs by actors and con-
cluded that discrete emotional states can be recognized ismly movements and
postures. For instance, hot anger was encoded by shouldeiagrupwards, arms
stretched frontally, or lateralized, the execution of @as hand movements, as well
as high movement activity, dynamism, and expansivenesalyais of the arm move-
ments (drinking and knocking) shows that, discrete affecttates are aligned with
the arousal—pleasure space [75]; and arousal was foundhigbly correlated with
velocity, acceleration, and jerk of the movement.

To date, the bodily cues that have been more extensivelyidenesl for affect
recognition are (static) postural configurations of heathsa and legs [22], [59],
dynamic hand/arm movements [88], head movements (e.gtjgroand rotation)
[20] and head gestures (e.g., head nods and shakes) [2B], [45
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1.2.1.1 Body posture  Coulson [22] presented experiments on attributing six
universal emotions (anger, disgust, fear, happiness.esadand surprise) to static
body postures using computer-generated mannequin figltissexperimental re-
sults suggested that recognition from body posture is coalyato recognition from
voice, and some postures are recognized as well as facig gsipns.

When it comes to automatic analysis of affective body pestuhe main em-
phasis has been on using the tactile modality (for grosslyoegpression analysis)
via body-pressure-based affect measurement (e.g., [@7d)on using motion cap-
ture technology (e.g., [59]). Mota and Picard [67] studiffecive postures in an
e-learning scenario, where the posture information walecteld through a sensor
chair. Kleinsmith et al. [59] focused on the dimensionalresgntation of emo-
tions and on acquiring and analyzing affective posture datag motion capture
technology [59]. They examined the role of affective dimens in static postures
for automatic recognition, and showed that it is possiblautomatically recognize
the affect dimensions of arousal, valence, potency, andlamoe with acceptable
recognition rates (i.e., error rates lower than 21%).

1.2.1.2 Bodymovement Comparedto the facial expression literature, attempts
for recognizing affective body movements are few and esfare mostly on the anal-
ysis of posed bodily expression data. Burg@bml. discussed the issue of emotion
recognition from bodily cues and provide useful refererindd3]. They claimed
that affective states are conveyed by a set of cues and fattiseoidentification
of affective states such as positivity, anger and tensiowideos from body and
kinesics cues. Meserwt al. [65] focused on extracting body cues for detecting
truthful (innocent) and deceptive (guilty) behavior in thentext of national secu-
rity. They achieved a recognition accuracy of 71% for the-telass problem (i.e.,
guilty/innocent). Bernhardt and Robinson analyzed ngftisstd body motions (e.g.,
walking, running) for affect recognition [10] using kinetitsfeatures (e.g., velocity,
acceleration, and jerk measured for each joint) and regantt the affective states
angry and sad are more recognizable than neutral or happy.

Castellancet al. [18] presented an approach for the recognition of acted emo-
tional states based on the analysis of body movement andrgestpressivity. They
used the non-propositional movement qualities (e.g. dog#i speed and fluidity of
movement) to infer emotions (anger %90, joy %44, pleasur, %&dness %48). A
similar technique was used to extract expressive descsipfanovement (e.g., quan-
tity of motion of the body and velocity of the head movememisa music perfor-
mance, and to study the dynamic variations of gestures usadlkanist [17]. They
found that the timing of expressive motion cues (i.e., thacktand release of the
temporal profile of the velocity of the head and the quantitynotion of the upper
body) is important in explaining emotional expression iarg performances.[43]
present a framework for analysis of affective behaviottstgmwith a reduced amount
of visual information related to human upper-body moverseiihe work uses the
EyesWeb Library (and its extensions) for extracting a nunolbexpressive gesture
features (e.g., smoothness of gesture, gesture duratohbg tracking of trajecto-
ries of head and hands (from a frontal and a lateral view),tbadSEMEP corpus
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(120 posed upper body gestures for 12 emotion classes frosulij@cts) for vali-
dation. The authors conclude that for distinguishing bodipression of different
emotions dynamic features related to movement quality,(@ngoothness of gesture,
duration of gesture, etc.) are more important than categldfiéatures related to the
specific type of gesture.

A number of researchers have also investigated how to mapugarisual signals
onto emotion dimensions. Cowie et al. [23] investigateddgh®tional and com-
municative significance of head nods and shakes in terms afigal and Valence
dimensions, together with dimensional representaticsobflarity, antagonisnand
agreementTheir findings suggest that both head nods and shakesycteary infor-
mation about arousal. However, their significance for eatiihg the valence dimen-
sions is less clear (affected by access to words) [23]. Itiquéar, the contribution
of the head nods for valence evaluation appears to be morpliwated than head
shakes (e.g., 'l understand what you say, and | care abduttit,dont like it’).

1.2.1.3 Gait Gait, in the context of perception and recognition, refera per-
son’s individual walking style. Therefore, gait is a souofeynamic information by
definition. Emotion perception and recognition from gaitt@@ans is also a relatively
new area of research [54], [57]. Janssen et al. in [54] fatwseemotion recogni-
tion from human gait by means of kinetic and kinematic datagiartificial neural
nets. They conducted two experiments: (1) identifyingipgrants’ emotional states
(normal, happy, sad, angry) from gait patterns, and (2)yaivad effects on gait pat-
terns of listening to to different types of music (excitgtaalming, no music) while
walking. Their results showed that subject-independerdtem recognition from
gait patterns is indeed possible (up to 100% accuracy). Kamj. [57] focused
on using both discrete affective states and affective dgioss for emotion model-
ing from motion capture data. Person-dependent recogrofionotion capture data
reached 95% accuracy based on the observation of a sinigle. sthis work showed
that gait is a useful cue for the recognition of arousal andidance dimensions.

1.2.1.4 Temporaldynamics Anexpressionis a dynamic event, which evolves
from neutral, onset, apex to offset [32], a structure uguadferred to agempo-
ral dynamicsor temporal phasesEvolution of such a temporal event is illustrated,
for a typical facial expression, in Figure 1.5. The neutiaghge is a plateau where
there are no signs of muscular activation, the face is relaéeonsetof the ac-
tion/movement is when the muscular contraction begins aockases in intensity
and the appearance of the face changes.apexis a plateau usually where the in-
tensity reaches a stable level and there are no more chamigesal appearance. The
offsetis the relaxation of the muscular action. A natural faciavement evolves
over time in the following order: neutral(N}— onset(On)— apex(A)— off-
set(Of)— neutral(N). Other combinations such as multiple-apexaleaitions are
also possible.

Similarly, the temporal structure of a body gesture coagi${up to) five phases:
preparation— (pre-stroke) hold— stroke— (post-stroke) hold— retraction.
The preparationmoves to the stroke’s starting position and Himkeis the most
energetic part of the gestureloldsare optional still phases which can occur before
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and/or after the stroke. Thretraction returns to arest pose (e.g., arms hanging
down, resting in lap, or arms folded). Some gestures (emgefitapping) have
multiple strokes that include small beat-like movemenéd tbllow the first stroke,
but seem to belong to the same gesture [89].

Studies demonstrate that the temporal dynamics play anrtangaole for inter-
preting emotional displays [78], [83]. It is believed thatdrmation about the time
course of a facial action may have psychological meanirgyagit to the intensity,
genuineness, and other aspects of the expresser’s statengAthe four tempo-
ral phases of neutral, onset, apex and offset, featureaglthie apex phase result
in maximum discriminative power for expression recogmiti@sunes and Piccardi
showed that, during automatic affect recognition fromd#biodily gestures, decou-
pling temporal dynamics from spatial extent significanégluces the dimensionality
of the problem compared to dealing with them simultanequsig improves affect
recognition accuracy [49]. Thus, successful temporal sgation can not only
help to analyze the dynamics of an (facial/bodily) expmssbut also improve the
performance of expression recognition. However, in spittheir usefulness, the
complex spatial properties and dynamics of face and bodyigesalso pose a great
challenge to affect recognition. Therefore, interest i tdmporal dynamics of af-
fective behavior is recent (e.g., [49], [72], [84], [90])h& work of [72] temporally
segmented facial action units (AUs) using geometric festof 15 facial key points
from profile face images. In [89], a method for the detectibthe temporal phases
in natural gesture was presented. For body movement, a $irsite machine (FSM)
was used to spot multi-phase gestures against a rest staterdeér to detect the
gesture phases, candidate rest states were obtained dndteda Three variables
were used to model the states: distance from rest imageomutagnitude and du-
ration. Other approaches have exploited dynamics of theigesswithout attempting
to recognize their temporal phases or segments explietty, ([15], [18] and [65]).

1.2.2 Body as an additional channel for affect perception and analysis

Ambady and Rosenthal reported that human judgment of betsabased jointly on
face and body proved 35% more accurate than those based éacthalone [6].
The face and the body, as part of an integrated whole, bottribate in conveying
the emotional state of the individual. A single body gesttae be ambiguous. For
instance, the examples shown in the second and fourth roigimé-1.1 have similar
bodily gestures, but the affective state they express ate different, as shown by
the corresponding facial expressions. In light of such figdj instead of looking
at the body as an independent and autonomous channel ofosrloéixpression,
researchers have increasingly focused on the relatiom&tipeen bodily postures
and movement with other expressive channels such as voitdéaar (e.g., [16],
[49], [81)).

It is important to state that automatic affect recogniti@esl not aim to replace
one expression channel (e.g., the facial expressionspas lry another expression
channel (e.g., bodily expressions). Instead, the aim igftoee various communica-
tive channels more deeply and more fully in order to obtalmadugh understanding
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of cross-modal interaction and correlations pertaininguiman affective display. An
example is the work of Van den Stoekal. investigating the influence of whole-body
expressions of emotions on the recognition of facial andaverpressions of emo-
tion [86]. They found that recognition of facial expressisas strongly influenced
by the bodily expression. This effect was a function of thémuity of the facial ex-
pression. Overall, during multisensory perception, judgta for one modality seem
to be influenced by a second modality, even when the latterafitpatan provide
no information about the judged property itself or increasgbiguity (i.e., cross-
modal integration) [31], [47]. Meereet al[63] showed that the recognition of facial
expressions is strongly influenced by the concurrentlygresi emotional body lan-
guage, and that the affective information from the face &edibdy start to interact
rapidly, and the integration is a mandatory automatic pgs@ecurring early in the
processing stream. Therefore, fusing facial expressiahbaaly gesture in video
sequences provides a potential way to accomplish impro¥ectanalysis.

When it comes to using the body as an additional channel fonzatic analysis,
the idea of combining face and body expressions for affexigeition is relatively
new. Balomenost al. [7] combined facial expressions and hand gestures foigreco
nition of six prototypical emotions. They fused the resirtsn the two subsystems
at a decision-level using pre-defined weights. An 85% aayuveas achieved for
emotion recognition from facial features alone. An overdiognition rate of 94.3%
was achieved for emotion recognition from hand gesturesipdéiaziset al. [58]
fused data from facial, bodily and vocal cues using a recumetwork to detect
emotions. They used data from 4 subjects and reported thevinb recognition
accuracies for a 4 class problem: 67% (visual), 73% (pros@2¢6 (all modalities
combined). The fusion was performed on a frame basis, mgahat the visual
data values were repeated for every frame of the tune. Neitbek has focused on
explicit modeling and detection of the (facial/bodily) egpsion temporal segments.
Castellano et al. considered the possibility of detectighteemotions (some basic
emotions plus irritation, despair, etc.) by monitoring&héeatures, speech contours,
and gestures [16]. Their findings suggest that incorpagaialtiple cues and modal-
ities helps with improving the affect recognition accuraayd the best channel for
affect recognition appears to be the gesture channel fetidwy the audio channel.

Hartmanret al. in [50] defined a set of expressivity parameters for the geier
of expressive gesturing for virtual agents. The studieslooted on perception of ex-
pressivity showed that only a subset of parameters and a&isabsxpressions were
recognized well by users. Therefore, further research ésle@ for the refinement
of the proposed parameters (e.g., the interdependence @xjressivity parame-
ters). Valstar et al. [85] investigated separating posechfgenuine smiles in video
sequences using facial, head, and shoulder movement cukt)atemporal corre-
lation between these cues. Their results seem to indicataiting video data from
face, head and shoulders increases the accuracy, and tthéshibe most reliable
source, followed closely by the face. Nicolastialcapitalize on the fact that the
arousal and valence dimensions are correlated, and praseagproach that fuses
spontaneous facial expression, shoulder gesture and ewe$ofor dimensional and
continuous prediction of emotions in valence-arousal sfjé8]. They propose an
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output-associative fusion framework that incorporatesatations between emotion
dimensions. Their findings suggest that incorporatingetations between affect
dimensions provides greater accuracy for continuous tgffiestliction. Audio cues
appear to be better for predicting arousal, and visual claesa( expressions and
shoulder movements) appear to perform better for predjatitence.

A number of systems use the tactile modality for gross basljyression analysis
via body-pressure-based affect measurement (measuritigjpants’ back and seat
pressure) [29], [56]. Kapoor and Picard focused on the prolif detecting the af-
fective states of high-interest, low-interest and refieglin a child who is solving
a puzzle [56]. They combined sensory information from theefaideo, the pos-
ture sensor (a chair sensor) and the game being played irbalglistic framework.
The classification results obtained by Gaussian Processésdividual modalities
showed that affective states are best classified by the qgoshannel (82%), fol-
lowed by the features from the upper face (67%), the game %#% the lower
face (53%). Fusion significantly outperformed classifmatusing the individual
modalities and resulted in 87% accuracy. D’Mello and Graef29] considered
a combination of facial features, gross body language, angdersational cues for
detecting some of the learning-centered affective stafdassification results sup-
ported achannekjudgmentype interaction, where the face was the most diagnostic
channel for spontaneous affect judgments (i.e., at any itintke tutorial session),
while conversational cues were superior for fixed judgméres every 20 seconds in
the session). The analyzes also indicated that the accof#oy multichannel model
(face, dialog, and posture) was statistically higher tiatest single-channel model
for the fixed but not spontaneous affect expressions. Howeudtichannel models
reduced the discrepancy (i.e., variance in the precisigheflifferent emotions) of
the discriminant models for both judgment types. The resallto indicated that the
combination of channels yielded enhanced effects for saatessbut not for others.

1.2.3 Bodily expression data and annotation

Communication of emotions by body gestures is still an wivesl area in psychol-
ogy. Therefore, the number of databases and corpus thaio@xpressive bodily
gestures and are publicly available for research purpesssarce, and there exists
no annotation scheme commonly used by all researchers fiettie

Data. To the best of our knowledge there exist three publicly avdd databases
that contain expressive bodily postures or gestufég UCLIC Database of Affec-
tive Postures and Body Movemef4$ contains acted emotion data (angry, fearful,
happy, and sad) collected using a VICON motion capture systéad non-acted
affective states (frustration, concentration, triumghand defeated) in a computer
game setting collected using a Gypsy5 (Animazoo UK Ltd.) iomotapture sys-
tem. The GEMEP CorpuéThe Geneva Multimodal Emotion Portrayals Corpus) [8]
contains 120 posed face and upper-body gestures (head addybstures), for 12
emotion classes (pride , joy, amusement, interest, pleaselief, hot anger, panic
fear, despair, irritation, anxiety, sadness) from 10 sttbjeecorded by multiple cam-
eras (e.g., frontal and lateral view). The Bimodal Face aodyBGesture Database
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(the FABO Database) comprises of face-and-body expres§idi, and will be re-
viewed in detail in the next sections.

Annotation. Unlike the facial actions, there is not one common annatatheme
that can be adopted by all the research groups [66] to desanith annotate the body
action units that carry expressive information. Therefaris even harder to create
a common benchmark database for affective gesture re@mgnithe most common
annotation has been command-purpose annotation, fontestalling the gesture as
rotate or click gesture. Another type of annotation is basethe gesture phase, e.g.
start of gesture stroke—peak of gesture stroke—end of gestitoke. Rudolf Laban
was a pioneer in attempting to analyze and record body mowebyedeveloping a
systematic annotation scheme called Labanotation [6 Hdifionally Labanotation
has been used mostly in dance choreography, physical tharaldrama for explor-
ing natural and choreographed body movement. Despite tireraEntioned effort
of Laban in analyzing and annotating body movement, a motaldd annotation
scheme, similar to that of Facial Action Coding Scheme (FA€8eeded. A gesture
annotation scheme, possibly named as Body Action Unit Gp&8iystem (BACS),
should include information and description as follows: p@art (e.g. left hand),
direction (e.g. up/down), speed (e.g. fast/slow), shalemébing fists), space (flexi-
ble/direct), weight (light/strong), time (sustainedfl), and flow (fluent/controlled)
as defined by Laban and Ullman [61]. Additionally, tempogegments (neutral-start
of gesture stroke-peak of gesture stroke-end of gesturesstreutral) of the gestures
should be included as part of the annotation scheme. Oyéralimost time-costly
aspect of current gesture manual annotation is to obtaioriset-apex-offset time
markers. This information is crucial for coordinating fadbody activity with simul-
taneous changes in physiology, or speech [5].

1.3 CREATING A DATABASE OF FACIAL AND BODILY
EXPRESSIONS: THE FABO DATABASE

The Bimodal Face and Body Gesture Database (the FABO Daatasceforth) was
created with the aim of using body as an additional chanaggther with face, for
affect analysis and recognition. The goal was to study hdeca€an be expressed,
and consequently analyzed, when using both the facial amdbdldily expression
channels simultaneously. Details on the recordings aradatatotation are described
in the following sections.

Recordings. We recorded the video sequences simultaneously using ted fix
cameras with a simple setup and uniform background. One reawas placed to
specifically capture the face alone and the second camergbaeesd in order to
capture face-and-body movement from the waist above. Rrigcordings subjects
were instructed to take a neutral position, facing the camed looking straight to
it with hands visible and placed on the table. The subject®wasked to perform
face and body gestures simultaneously by looking at thalfasimera constantly.
The recordings were obtained by usinge@enario approaclthat was also used in
previous emotion research [87]. In this approach, subg@gprovided with situa-
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Tablel1l.1 List of the affective face and upper-body gestures perfdrfoethe
recordings of FABO Database.

| expression | facegesture | body gesture |
| neutral | lips closed, eyes open, muscles relaxed | hands on the table, relaxed |
uncertainty| lip suck, lid droop, eyes closed, eyes tufn head tilt left/right/up/down, shoulder shrug, palnjs
& puzzle- | right/left/'up/down. up, palms up+ shoulder shrug, right/left harjd
ment scratching the head/hair, right/left hand touching
the right/left ear, right/left hand touching the nosg,
right/left hand touching the chin, right/left han
touching the neck, right/left hand touching the fore-
head, both hands touching the forehead, right/left
hand below the chin, elbow on the table, two hanfds
behind the head.
anger brows lowered and drawn together; lines appear beepen/expanded body; hands on hips/waist; cloged
tween brows; lower lid tense/ may be raised; upgethands / clenched fists; palm-down gesture; lift the
lid tense/ may be lowered due to brows’ action; lips right/ left hand up; finger point with right/left hand
are pressed together with corners straight or dovrshake the finger/hand; crossing the arms.
or open; nostrils may be dilated.
surprise brows raised; skin below brow stretched not wrifi- right/left hand moving toward the head; both hanfls
kled;horizontal wrinkles across forehead; eyelifismoving toward the head; moving the right/left
opened; jaw drops open or stretching of the mouthhand up; two hands touching the head; two
hands touching the face/mouth; both hands oyer
the head; right/left hand touching the face/mouth;
self-touch/two hands covering the cheeks; self-
touch/two hands covering the mouth; head shake;
body shift/backing.
fear brows raised and drawn together; forehead wrin-body contracted; closed body/closed hands| /
kles drawn to the center; upper eyelid is raised anctlenched fist; body contracted; arms around the
lower eyelid is drawn up; mouth is open; lips afe body; self-touch (disbelief)/ covering the body
slightly tense or stretched and drawn back. parts/ arms around the body/shoulders; body shjft-
backing; hand covering the head; body shift-
backing; hand covering the neck; body shift-
backing; hands covering the face; both hands oyer
the head; self-touch (disbelief) covering the fage
with hands.
anxiety lip suck; lip bite; lid droop; eyes closed; eyes tuin hands pressed together in a moving sequence; tap
right/left/up/down. ping the tips of the fingers on the table; biting the
nails; head tilt left/right/up/down.
happiness | corners of lips are drawn back and up; mouth maybody extended; hands clapping; arms lifted up [or
or may not be parted with teeth exposed or npt;away from the body with hands made into fists.
cheeks are raised; lower eyelid shows wrinkles he-
low it; and may be raised but not tense; wrinklgs
around the outer corners of the eyes.
disgust upper lip is raised; lower lip is raised and pushg¢dhands close to the body; body shift-backing; orieh-
up to upper lip or it is lowered; nose is wrinkled; tation changed/moving to the right or left; backing;
cheeks are raised; brows are lowered. hands covering the head; backing; hands coverjng
the neck; backing; right/left hand on the mouth;
backing; move right/left hand up.
bored lid droop, eyes closed, lip suck, eyes tufnbody shift; change orientation; move to the
right/left/up/down right/left; hands behind the head; body shiftef;
hands below the chin, elbow on the table.
sadness inner corners of eyebrows are drawn up; upper |idcontracted/closed body; dropped shoulders; bowed

inner corner is raised; corners of the lips are dra
downwards.

nhead; body shift- forward leaning trunk; cove
ing the face with two hands; self-touch (disbg-
lief)/ covering the body parts/ arms around th
body/shoulders; body extended +hands over
head; hands kept lower than their normal positign,
hands closed, slow motion; two hands touching the
head move slowly; one hand touching the neq
hands together closed, head to the right, slow nj
tion.
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Figure1.1 Example images from the FABO database recorded by the fapedhd body
(bottom) cameras separately. Representative images ebasin facial expressions (al-hl)
and their corresponding body gestures (a2-h2): (a) neiahegative surprise, (c) positive
surprise, (d) boredom, (e) uncertainty, (f) anxiety, ando{gzzlement.

tion vignettes or short scenarios describing an emotiaitieliy situation. They are
instructed to imagine these situations and act out as ifwee in such a situation.
In our case the subjects were asked what they would do whesstust announced
that they won the biggest prize in lottery’ or ‘the lecturdtie most boring one and
they can't listen to it anymore’ etc. More specifically, altitgh the FABO database
was created in laboratory settings, the subjects were stiuicted on emotion/case
basis as to how to move their facial features and how to exdigplay the specific
facial expression. In some cases the subjects came up wihietywof combina-
tions of face and body gestures. As a result of the feedbatkaggestions obtained
from the subjects, the number and combination of face angl festures performed
by each subject varies. A comprehensive list is providedaibld 1.1. The FABO
database contains around 1,900 gesture sequences frorj@&tsun age from 18 to
50 years. Figure 1.1 shows example images of non-basid éagieessions and their
corresponding body gestures for neutral, negative serppissitive surprise, bore-
dom, uncertainty, anxiety and puzzlement. Further detailshe FABO Database
recordings can be found in [46].

Annotation. We obtained the annotations for face and body videos segariay
asking human observers to view and label the videos. Theogerpf this annotation
was to obtain independent interpretations of the displégeeland body expressions,
and evaluate the performance (i.e. how well the subjecte wisplaying the affect
they intended to communicate using their face and bodilyugesby a number of
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human observers from different ethnic and cultural backgdo To this aim, we
developed a survey for face and body videos separatelyy tisenlabeling schemes
for affective content (e.g., happiness) and signs (e.gv,duntracted the body is) by
asking six independent human observers. We used two magliiglschemes in line
with the psychological literature on descriptors of emitita) verbal categorical la-
beling (perceptually determined, i.e. happiness) in ataoce with Ekman’s theory
of emotion universality [34] and (b) broad dimensional laige arousal/activation
(arousal-sleep/ activated—deactivated) in accordartbeRuissell’s theory of arousal
and valence [77]. The participants were first shown the weelef facial videos and
only after finishing with the face they were shown the coroesfing body videos.
For each video they were asked to choose one label only, fierist provided: sad-
ness, puzzlement/thinking, uncertainty/'l don’t knowgrbdom, neutral surprise,
positive surprise, negative surprise, anxiety, angegudis fear, and happiness. For
the temporal segment annotation, one human coder repgatedied each face and
body sequence, in slowed and stopped motion, to determiee \Wh which frame)
the neutral-onset-apex-offset-neutral phases startroh{i8]. Further details on the
FABO data annotation can be found in [47].

1.4 AUTOMATIC RECOGNITION OF AFFECT FROM BODILY
EXPRESSIONS

1.4.1 Body as an autonomous channel for affect analysis

In this section, we firstly investigate affective body gestanalysis in video se-
quences by approaching the body as an autonomous chanttleis &m, we exploit
spatial-temporal features [30], which makes few assumpt@mbout the observed
data, such as background, occlusion and appearance.

1.4.1.1 Spatial-Temporal Features  Inrecentyears, spatial-temporal features
have been used for event detection and behavior recogmitieideos. We extract
spatial-temporal features by detecting space-time istgreints [30]. We calculate
the response function by application of separable lindarsil Assuming a stationary
camera or a process that can account for camera motion,sperrse function has
the form:

R=(I%g%he)?®+ (I%g*he)? (1.1)
wherel(x,y,t) denotes images in the videg(z, y; o) is the 2D Gaussian smooth-
ing kernel, applied only along the spatial dimensi¢nsy), andh., andh,, are a
quadrature pair of 1D Gabor filters applied temporally, vatéce defined ab.,, (t; 7,w) =
— cos(2mtw)e /7" and hog(t; T, w) = —sin(2rtw)e /7. In all cases we use
w = 4/7 [30]. The two parameters andr correspond roughly to the spatial and
temporal scales of the detector. Each interest point isietdd as a local maxima of
the response function. As pointed out in [30], any regiorhwjatially distinguish-
ing characteristics undergoing a complex motion can indugteong response, while
region undergoing pure translational motion, or areasauitispatially distinguish-
ing features, will not induce a strong response.
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W/f/’/’//k/l_

Figure 1.2  (Best viewed in color) Examples of spatial-temporal feasuextracted from
videos: the firstrow is the original input video; the seconw visualizes the cuboids extracted,
where each cuboid is labeled with a different color; thedthaw shows some cuboids, which
are flattened with respect to time.

At each detected interest point, a cuboid is extracted wbisttains the spatio-
temporally windowed pixel values. See Figure 1.2 for exaspf cuboids extracted.
The side length of cuboids is set as approximately six tirhestales along each di-
mension, so containing most of the volume of data that douteito the response
function at each interest point. After extracting the cualsothe original video is dis-
carded, which is represented as a collection of the cub®@@sompare two cuboids,
different descriptors for cuboids have been evaluated O, [Bcluding normalized
pixel values, brightness gradient and windowed optical floflowed by a conver-
sion into a vector by flattening, global histogramming, amzhl histogramming. As
suggested, we adopt the flattened brightness gradient asibivéd descriptor. To
reduce the dimensionality, the descriptor is projected koaser dimensional PCA
space [30]. By clustering a large number of cuboids extchirtam the training data
using the K-Means algorithm, we derive a library of cuboidtptypes. So each
cuboid is assigned a type by mapping it to the closest prp&tector. Following
[30], we use the histogram of the cuboid types to describeitten.

1.4.1.2 Classifier We adopt the Support Vector Machine (SVM) classifier to
recognize affective body gestures. SVM is an optimal disarant method based
on the Bayesian learning theory. For the cases where itfisdifto estimate the
density model in high-dimensional space, the discrimiagproach is preferable to
the generative approach. SVM performs an implicit mappihdata into a higher
dimensional feature space, and then finds a linear sepguayiperplane with the
maximal margin to separate data in this higher dimensiopates. SVM allows
domain-specific selection of the kernel function, and thetmommonly used kernel
functions are the linear, polynomial, and Radial Basis fiondRBF) kernels.
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1.4.2 Body as an additional channel for affect analysis

In this section, we investigate how body contributes to tfieca analysis when
used as an additional channel. For combining the facial atl\bcues, we ex-
ploit Canonical Correlation Analysis (CCA), a powerfultittcal tool that is well
suited for relating two sets of signals, to fuse facial egpi@n and body gesture at
the feature level. CCA derives a semantic “affect” spacehich the face and body
features are compatible and can be effectively fused.

We propose to fuse the cues from the two channels in a joitufeapace, rather
than at the decision-level. The main difficulties for thetfea-level fusion are the
features from different modalities may be incompatiblel e relationship between
different feature spaces is unknown. Here we fuse face ady tuees at the feature
level using CCA. Our motivation is that, as face and body @reswo sets of mea-
surements for affective states, conceptually the two nitekglare correlated, and
their relationship can be established using CCA.

1.4.2.1 Canonical Correlation Analysis CCA [51] is a statistical technique
developed for measuring linear relationships between twidtidimensional vari-
ables. It finds pairs of base vectors (i.e., canonical fagtfmr two variables such
that the correlations between the projections of the végbnto these canonical
factors are mutually maximized.

Given two zero-mean random variabkess R™ andy € R"™, CCA finds pairs
of directionsw,, andw,, that maximize the correlation between the projections
wlx andy = wgy. The projections: andy are calledcanonical variates More
formally, CCA maximizes the function:

_ Elzy] _ E[ngyTWy] _ Wgcrywy
VE[2?]Bly?] \/E[foxTWm]E[wgnywy] \/chmwmwgcyywy
(1.2)

p

whereC,, € R™*™ andC,, € R"*" are thewithin-set covariance matricesf
x andy, respectively, whileC,, € R™*™ denotes theibetween-sets covariance

matrix. A number of at mosk = min(m, n) canonical factor pairéw’,, w},),i =

1,.. x k can be obtained by successively solving max.,; ,,: {p} subject tp(wl, wi) =
p(w),w;) =0forj=1,...,i—1,ie., the next pair ofw,, w,) are orthogonal

to the previous ones.
The maximization problem can be solved by setting the déviesiof Eqn. (1.2),
with respect tow,, andw,, equal to zero, resulting in the eigenvalue equations as:

—1 =1 _ 2
C,y CyaCo Caywy = p7wy

Matrix inversions need to be performed in Eqn. (1.3), legdm numerical insta-
bility if C,, andC,,, are rank deficient. Alternativelyy,, andw, can be obtained
by computing principal angles, as CCA is the statisticariptetation of principal
angles between two linear subspace.
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1.4.2.2 Feature Fusion of Facial and Bodily Expression Cues Given

B = {x|x € R"} andF = {y|y € R"}, wherex andy are the feature vectors
extracted from bodies and faces respectively, we apply GCéstablish the rela-
tionship betweex andy. Supposéw? w;),z’ =1,..., k are the canonical factors
pairs obtained, we can ugg1 < d < k) factor pairs to represent the correlation in-
formation. WithW, = [w},..., wi]andW, = [w,,...,w], we project the orig-
inal feature vectors a8’ = Wlx = [z1,..., 24" andy’ = W]y = [y1,...,y4]"

in the lower dimensional correlation space, wherandy; are uncorrelated with the
previous pairsc; andy;,j = 1,...,7 — 1. We then combine the projected feature
vectorx’ andy’ to form the new feature vector as

x/ Wix W, 0 \T/x
= () =(wiy) = (0" w,) (§) a4
This fused feature vector effectively represents the maitial information in a joint
feature space for affect analysis.

1.4.2.3 Experiments and Results In our experiments we used the FABO
database [46]. We selected 262 videos of seven emotionse(AAgxiety, Bore-
dom, Disgust, Joy, Puzzle, and Surprise) from 23 subjectsevaluate the algo-
rithms’ generalization ability, we adopted a 5-fold crasdidation test scheme in all
recognition experiments. That is, we divided the data sedaaly into five groups
with roughly equal number of videos, and then used the data four groups for
training, and the left group for testing; the process wagsaggd five times for each
group in turn to be tested. We report the average recogmiit@s here. In all exper-
iments, we set the soft margiri value of SVMs to infinity so that no training error
was allowed. Meanwhile, each training and testing vecta sealed to be between
-1 and 1. In our experiments, the RBF kernel always providledest performance,
so we report the performance of the RBF kernel. With regatdddyper-parameter
selection of RBF kernels, as suggested in [52], we carriédod-search on the ker-
nel parameters in the 5-fold cross-validation. The paramsstting producing the
best cross-validation accuracy was picked. We used the Shfplementation in the
publicly available machine learning library SPIDERn our experiments. To see
how the body contributes to the affect analysis when used aglditional channel
we extracted the spatial-temporal features from the fadeosand the body video,
and then fused the cues from the two channels at the feauglaising CCA.

We first report the classification performance (the confusimatrix) based on
bodily cues only in Figure 1.3 (left). The average recognitiate of the SVM clas-
sifier using the bodily cues is 72.6%. When we look at the affecognition using
the facial cues only, the recognition rate obtained is 79.286king at the confusion
matrix shown in Figure 1.3 we observe that the emotion diaasion based on facial
expressions is better than that of bodily gesture. This ssibdy because there are
much variation in affective body gestures.

http://mww.kyb.tuebingen.mpg.de/bs/people/spideesichtml
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Figure 1.3 Confusion matrices for affect recognition from bodily gess (eft) and facial
expressionsléft).

We then fused facial expression and body gesture at theréelateel using CCA.
Different numbers of CCA factor pairs can be used to projeetdriginal face and
body feature vectors to a lower dimensional CCA feature spand the recogni-
tion performance varies with the dimensionality of the pod¢d CCA features. We
report the best result obtained here. We compared the CGArétusion with an-
other three feature fusion methods: (1) Direct featureofusihat is, concatenating
the original body and face features to derive a single feavector; (2) PCA fea-
ture fusion: the original body and face features are firsjgoted to the PCA space
respectively, and then the PCA features are concatenaftedothe single feature
vector. In our experiments, all principle components wegptk (3) PCA+LDA
feature fusion: for each modality, the derived PCA featwes further projected
to the discriminant LDA space; the LDA features are then ciowdb to derive the
single feature vector. We report the experimental restltifferent feature fusion
schemes in Table 1.2. The confusion matrices of the CCA fedtision and the
direct feature fusion are shown in Figure 1.4. We can seetligapresented CCA
feature fusion provides best recognition performances iEbecause CCA captures
the relationship between the feature sets in different tittets and the fused CCA
features effectively represent information from each ntibda

Feature Fusion | CCA  Direct PCA  PCA+LDA

Recognition Rate| 88.5% 81.9% 82.3% 87.8%

Table1l.2 Experimental results of affect recognition by fusing body éace cues.

1.5 AUTOMATIC RECOGNITION OF BODILY EXPRESSION
TEMPORAL DYNAMICS

Works focusing on the detection of the expression tempegh&nts modeled tem-
poral dynamics of facial or bodily expressions by extragtimd tracking geometric
or appearance features from a set of fixed interest poirgs (9], [71]). However,

such approaches have two limitations. First, the selectidhe fixed interest points
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Figure1.4 Confusion matrices of affect recognition by fusing faciapeession and body
gesture. left) Direct feature fusion;r{ght) CCA feature fusion.

Ground Truth Temporal Segment
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Onset Offset Onset Offset

(2) Face
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Onset Offset Onset ﬂ offset

2 2 4 62 82 102 122 142 162 182
Video Frame Index

(c)

Figure15 (a) Sample image of boredom expression to extract body igefgature (body
camera), (b) sample image of boredom expression to extaic feature (face camera), and
(c) the corresponding temporal segments from body gestutdaaial features respectively.

requires human expertise and mostly needs human inteoven8econd, tracking
is usually sensitive to occlusions and illumination vaaas (e.g., the facial point
tracking will fail when the hands touch the face). Inaccyriacracking will signif-
icantly degrade the temporal segmentation performancenifigate the aforemen-
tioned issues, we propose two types of novel and efficienttifea in this section,
i.e., motion area and neutral divergence, to simultangaegment and recognize
temporal phases of an (facial/bodily) expression. The omadirea feature is calcu-
lated by simple motion history image [12], [25], which doex rely on any facial
points tracking or body tracking, and the neutral divergefeature is based on the
differences between the current frame and the neutral frame

1.5.1 Feature Extraction

The motion area and the neutral divergence features aracéxtr from both facial
and body gesture information without any motion trackirmttee approach avoids
losing informative apex frames due to the unsynchronized fnd body gesture
temporal phases. Furthermore, both features are effidemrhpute.
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Ground Truth Temporal Segments

Apex Apex

Onset offset Onse!
Neutrgl Neutrpl eutral

2 12 22 32 42 52 62 72 82 92 102 112 122
Video Frame

()

Figure1.6 (a) A surpriseexpression, (b) Motion History Image of tserpriseexpression
shown in (a), and (c) ground truth temporal segments of tpeession.

1.5.1.1 Motion Area  We extract the motion area based on the motion history
image (MHI), which is a compact representation of a sequeho®tion movement
inavideo [12], [25]. Pixel intensity of MHI is a function dfie motion history at that
location, where brighter values correspond to more recetioms. The intensity at
pixel (x, y) decays gradually until a specified motion higtduration t and the MHI
image can be constructed using the equation below.

MHI; (z,y,t) = D(z,y,t)*7+[1—D(z,y, t) |« UMHI; (z,y,t—1) = 1]« [MHI (z,y, t—1) —1])
(1.5)

whereU[z] is a unit step function andrepresents the current video frame in-
dex. D(z,y,t) is a binary image of pixel intensity difference between tberent
frame and the previous framé(x, y,t) = 1 if the intensity difference greater than
a threshold, otherwisd)(z,y,t) = 0. 7 is the maximum motion duration. In our
system, we sethreshold = 25 andr = 10. Figure 1.6(b) shows the generated
motion history image of aurpriseexpression. The motion area of each video frame
is the total number of the motion pixels in the correspondittdl image. The mo-
tion pixels are defined as the pixels with non-zero intensithe MHI image. The
calculation of the motion are®/ A, (t) can be described by the following equation:

W H
MA.(t)=> "> U[MHI,(z,y,t) — ¢]) (1.6)
r=1y=1

where0 < e < 1, U[z] is a unit step function, antl” and H are the width and
the height of the\l H I image.

Figure 1.7(left) illustrates how the (normalized) motiaea of thesurpriseex-
pression (shown in Figure 1.6) is obtained. The expresgamtssfrom the neutral
(frames) — 10, hands on desk) followed by the onset (fram&s- 24, hands move
up), the apex, the offset and back to the neutral. As shownguar€ 1.7(left), the
motion areall A, (t) is almost O at neutral phase, and increases and fianlly reache
the peak at framé5. As the expression approachesafsex the motion begins to
slow down, which causes! A (t) to decrease between framg to frame24. The
apexoccurs between frame&$ and34 in Figure 1.7(left). During thapexphase,
the expression reaches its maximum spatial extent andftasteme time. Hence,
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Figure 1.7 The motion area feature representation of the current free vector of
normalized motion area (left), and the neutral divergeeegure representation of the current
frame is a vector of normalized neutral divergence(right).

there is relatively small (or no motion) during that phaseuriBg theoffsetphase,
both the facial expression and the body gesture are movamg tiheapexphase back
to theneutralphase. This is illustrated in Figure 1.7(left) between feai3b and
54. Finally, the expression enters itgutral phase between framés and70 (with
very small motion area). The motion area is further nornealito the range db), 1]
with maximum motion area correspondingltoThe normalization is done in order
to handle variation due to different expressions or subject

1.5.1.2 Neutral Divergence  The neutral divergence feature measures the de-
gree of difference between the current frame and the nefutirale of an expressive
display. Since all videos in the FABO database [46] stannfi neutral position,
the current frame’s neutral divergence ND(t) is calculdtgdumming up the abso-
lute intensity difference between the current frame im&gevy, d, t) and the neutral
frame imag€ (z, y, d, t0) over three color channels, as shown in Eq. 1.7.

3 W H
ND(t)=>_>" > abs[I(z,y,d,t) — I(x,y,d, 10)] (1.7)
d=1z=1y=1

whered is the number of color channels of the frame.

Figure 1.7(right) plots the (normalized) neutral diverges of thesurpriseex-
pression shown in Figure 1.6. Similar to the motion area dization, the neutral
divergence is also normalized to range[@fl]. The neutral divergence &at the
neutral phase. During thensetphase, the neutral divergence increases (as can be
observed in Figure 1.7(right)). During th@exphase, the neutral divergence remains
relatively stable (with a large neutral divergence valuejheere is little movement
in the facial expression or the body gesture. Howeveratiexphase is quite dif-
ferent from theneutralphase. The neutral divergence decreases aiffeetphase.
When the expression enters iteutral phase again, between fram&sand 70, as
shown in Figure 1.7(right), the neutral divergence doesgaoback to0 as would
be expected. This indicates that the facial and bodily pdotsot return back to
their exact starting position. Nevertheless, the diffeesbetween the finaleutral
phase and thapexphase using the neutral divergence feature is still recadphe
(see Figure 1.7(right)).
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1.5.2 Feature Representation and Combination

1.5.2.1 Feature Representation  The normalized motion area and the neutral
divergence are extracted for every frame in an expressideovi To recognize the
expression phases of the current frame, we employ a fixedtsiaporal window
with the center located at the current frame as shown in Eiguf(a). The normal-
ized motion area of every frame within the temporal windowigracted (forming

a vector in chronological order). Similar to the motion afeature, as shown in
Figure 1.7(b), the normalized neutral divergence of eveagne within the temporal
window is also extracted (forming a vector in chronologicader). In our experi-
ments, we set the temporal window size3fiq for both the motion area features and
the neutral divergence features.

1.5.2.2 Feature Combination = The motion area and the neutral divergence
features provide complementary information regardingaeral dynamics of an ex-
pression. The motion area is able to separate the onset/&rifien the apex/neutral
phases, since the onset/offset generates large moverkienisver, the motion area
can neither distinguish thepexphase from theneutral nor theonsetphase from
the offset Nevertheless, thepexphase has large intensity deviation from the initial
neutral frame. Therefore, the neutral divergence is abdeparate thaeutralphase
from theapexphase. During thensetphase, the neutral divergence is increasing
(the opposite occurs during tldfsetphase). Consequently, the neutral divergence
is able to separate tlensetphase from theffsetphase as well. The combination
of both features is obtained by simply concatenating theanarea feature vector
with the neutral divergence feature vector.

1.5.2.3 Classifier We employ SVM with a RBF kernel as our multi-class clas-
sifier [19]. SVM is used to find a set of hyper-planes which safgaeach pair of
classes with a maximum margin. The temporal segmentatian ekpression phase
can be considered as a multi-class classification problemthler words each frame
is classified into neutral, onset, apex, and offset tempurases.

1.5.3 Experiments

1.5.3.1 Experimental Setup  We conducted experiments using the FABO database
[46]. We chose 288 videos where the ground truth expres$ions both the face
camera and the body camera were identical. We used 10 ekpresgegories, in-
cluding both basic expressions (disgust, fear, happisesstise, sadness and anger)

and non-basic expressions (anxiety, boredom, puzzlemenirgcertainty). For each
video, there aré to 4 complete expression cycles. Videos of each expression cate
gory are randomly separated into three subsets. Then twesétsubsets are chosen

for training and the remaining subset is kept for testinge Buthe random separa-

tion process, the subjects may overlap between the traamdghe testing sets.

1.5.3.2 Experimental Results  We first perform a three-fold cross-validation
by combining the motion area and the neutral divergencerfest Two subsets are
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Sample Temporal Segment Results

——Ground Truth

Neutral e
<.t Model

17 27 37 47 57 67 77 87 97 107
Video Frame

Figure1.8 Temporal segmentation results corresponding tostiveriseexpression video
shown in Figure 1.6.

used for training, and the remaining subset is used fomigstiThe procedure is

repeated three times, each of the three subsets being utegltasting data exactly

once. The accuracy is calculated by averaging the trueip®sdte of each class

(i.e., the neutral, the onset, the apex, and the offset).aVbeage accuracy obtained
by the three-fold cross validation is 83.1%.

Figurel.8 shows the temporal segmentation results ofsthiprise expression
video shown in Figure 1.6. The ground truth temporal phaseach frame in the
expression video is indicated by the solid line, while theresponding predicted
temporal phase is plotted using the dash line withThe predicted temporal seg-
mentation of the expression video matches the ground tariporal phase quite
well (except at the phase transition frames). For exampénds 22 and 23 are
predicted as the apex phase while the ground truth indithétéshey are the onset
frames right before the apex.

Table1.3 Summary of the three-fold cross validation results.

| true/model | neutral | onset | apex | offset | accuracy (%) |
neutral 2631 121 208 161 84.3
onset 113 2253 324 31 82.8
apex 187 282 4365 251 85.8
offset 171 70 227 2539 84.4

Table 1.3 shows the confusion matrix resulting from the terapphase segmen-
tation. Each row is the ground truth temporal segment whiéedolumns are the
classified temporal segments. Based on the confusion mitrilk theonsetand the
offsetphase appear to be confused mostly with dpexphase. Thepexphase is
temporally adjacent to both tl@nsetphase and theffsetphase. This is mainly due
to the fact that the temporal boundary between these phases straightforward.
However, as shown in the last column of Table 1.3, the ovpeafiormance of each
temporal phase is fairly stable.

We also conducted an experiment in order to evaluate thete#@ess of the
combined feature set (combining the motion area and thealalitergence). This
experiment uses the first subset of expression videos asdtieg data and the other
two subsets as the training data. Using the motion area alomé&mporal phase de-
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tection rate is 68.5%. The neutral divergence feature adgh@eves 74.1% detection
rate. By combining both the motion area and the neutral desmee, the expression
phase segmentation performance has boosted up to 82%.dntonghderstand why
the combined feature set significantly improves the peréoroe, we compare the
confusion matrices obtained from the motion area (alond)the combined feature
set. Table 1.4 (top) reports the confusion matrix using tbéan area feature alone.
From the matrix, we can see that the apex frames are mostfyseshwith the neu-
tral frames. As an example, there are 757 neutral framedasgtied as thapex
phase, while there are 6@pexframes misclassified as tineutralphase. Similarly,
the onsetphase is mostly confused with tlndfsetphase. Therefore, we conclude
that the motion area can neither distinguishapexphase from thaeutral nor the
onsetphase from theffset

Table1.4 Confusion matrices using motion area feature alone (toy) using the
combined feature set (bottom). Rows indicate the grourtti temporal phases while
columns indicate the recognized temporal phases.

| true/model neutral onset apex offset |
neutral 1739 75 757 125
onset 73 1745 288 429
apex 691 222 3079 225
offset 102 472 278 1792
neutral 2213 107 226 150
onset 106 2037 246 146
apex 261 227 3553 176
offset 150 104 245 2145

As can be observed in Table 1.4 (bottom) combining the maodi@a and the
neutral divergence features reduces the confusion betiivearutralphase andpex
phase, significantly. For instance, there are only 226 akfrtames misclassified as
apex, and 261 apex frames misclassified as neutral. Siynilae confusion between
theonsetphase and theffsetphase is also reduced. These comparisons confirm the
effectiveness of combining both the motion area and therakditvergence features
on the temporal segmentation. The neutral divergence anchtition area provide
complementary information for identifying the temporahdynics of an expression.

1.6 DISCUSSION AND OUTLOOK

Human affect analysis based on bodily expressions is stitsiinfancy. Therefore,
for the interested reader we would like to provide a numbepaihters for future
research as follows.

Representation-related issues. According to research in psychology, three major
approaches to affect modeling can be distinguished [dd]egorica) dimensional
and appraisal-basedpproach. The categorical approach claims that there axist
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small number of emotions that are basic, hard-wired in ocaintaind recognized uni-
versally (e.g.,[37]). This theory has been the most comgnadbpted approach in
research on automatic measurement of human affect frontybedgiressions. How-
ever, a number of researchers claim that a small number ofediés classes may
not reflect the complexity of the affective state conveyed.[7They advocate the
use ofdimensional descriptiolof human affect, where affective states are not in-
dependent from one another; rather, they are related to mother in a systematic
manner (e.g., [44], [77], [64], [82]). The most widely usachdnsional model is a
circular configuration calle@€ircumplex of Affecintroduced by Russell [77]. This
model is based on the hypothesis that each basic emotioeses a bipolar en-
tity being a part of the same emotional continuum. The pregdgm®lars are arousal
(relaxed vs. aroused) and valence (pleasant vs. unplg@agardther well-accepted
and commonly used dimensional description is the 3D emaltigpace of pleasure
— displeasure, arousal — nonarousal and dominance — suenisss [64], at times
referred to as thBAD emotion spaceScherer and colleagues introduced another set
of psychological models, referred to esmponential modelsf emotion, which are
based on the appraisal theory [44], [82], [40]. In the agalabased approach emo-
tions are generated through continuous, recursive siNgeetaluation of both our
own internal state and the state of the outside world (refesancerns/needs) [44],
[82], [40], [41]. Although pioneering efforts have beenraduced by Scherer and
colleagues (e.g., [79]), how to use the appraisal-baseapp for automatic mea-
surement of affect is an open research question as this agprequires complex,
multicomponential and sophisticated measurements ofgeha@verall, despite the
existence of such diverse affect models, there is still nchgreement between re-
searchers on which model should be used for which affect uneasent task, and
for each modality or cue.

Context. Context usually refers to the knowledge of who the subjectvisere
she is, what her current task is, and when the observed lmhzas been shown.
Majority of the works on automated affect analysis from Iypdkpressions focused
on context-free, acted, and emotional expressions (6.6}, [28], [49]). More re-
cently, a number of works started exploring automatic asialgf bodily postures in
an application-dependent and context-specific manner imacted scenarios. Ex-
amples include recognizing affect when the user is playibhgdy-movement-based
video game [60], and detecting the level of engagement wienger is interacting
with a game companion [80], etc. Defining and setting up aip@ontext enables
designing automatic systems that are realistic, and agts@nto a specific target
user group and target application. Defining a context p@tynsimplifies the prob-
lem of automatic analysis and recognition as the setup chosg/ encourage the
user to be in a controlled position (e.qg., sitting in froniafonitor or standing in a
predefined area), wearing specific clothes (e.g., weariigdptscolored t-shirts [80]
or a motion capture suit [60]), etc. Overall, however, hovbést incorporate and
model context for affect recognition from bodily expressaeeds to be explored
further.

Data acquisition protocol. Defining protocols on how to acquire benchmark data
for affective bodily posture and gesture analysis is an orggresearch topic. Cur-
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rently it is difficult to state whether it is sufficient (or Ibet) to have body-gesture-
only databases (e.g. The UCLIC Affective Posture databasehether it is better
to record multiple cues and modalities simultaneously. (esgording face and up-
per body as was done for the FABO Database and the GEMEP Qorpwsrall,
data acquisition protocols and choices should be contkxéak(i.e., by taking into
account the application, the user, the task, etc.).

Modeling expression variation. Emotional interpretation of human body mo-
tion is based on understanding the action performed. Thés dot cause major is-
sues when classifying stereotypical bodily expressiong,(elenched fists) in terms
of emotional content (e.g., anger, sadness, etc.). Howexen it comes to an-
alyzing natural bodily expressions, the same emotionalertdr(category) may be
expressed with similar bodily movements but with some Ve, or with very
different bodily movements. This presents major challsnigemachine learning
techniques trained to detect and recognize the movemetetrpsitspecific to each
emotion category. This, in turn, will hinder the discovefyiaderlying patterns due
to emotional changes. To mitigate this problem, recent wbdve focused on using
explicit models of action patterns to aid emotion classifica(e.g., [11]).

Multiple cuessmodalities and their dynamics. Although body has been investi-
gated as an additional channel for affect analysis and retion, it is still not clear
what role it should play when combining multiple cues and alitiés: Should it
be given higher or lower weight? Can it be the primary (or plye/modality? In
which context? When can gait be used as an additional mydatitaffect recog-
nition? How does it relate to, or differ from other bodily egpsion recognition?
These questions are likely to stir further investigatioAdditionally, when dealing
with multiple cues, it is highly likely that the temporal segnts of various cues may
not be aligned (synchronized) as illustrated in Figured).@(here the apex frames
for the bodily expression constitute the onset segmenthiofdcial expression. One
noteworthy study that investigated fully the automaticingaf human behavior dy-
namics with respect to both the temporal segments (onsex, affset, and neutral)
of various visual cues and the temporal correlation betvdiféerent visual cues (fa-
cial, head, and shoulder movements) is that of Valstar €8al, who investigated
separating posed from genuine smiles in video sequencese\do, in practice, it
is difficult to obtain accurate detection of the facial/dgdtiey points and track them
robustly for temporal segment detection, due to illumimatvariations and occlu-
sions (see examples in Figure 1.1). Overall, integratiemptoral structures, and
temporal correlations between different visual cues ateally unexplored areas of
research, ripe for further investigation.

1.7 CONCLUSIONS

This chapter focused on a relatively understudied problbodily expression for
automatic affect recognition. The chapter explored howilpakpression analysis
can aid affect recognition by describing three case studigsdata acquisition and
annotation of the first publicly available database of dffedace-and-body displays
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(i.e., the FABO database); (2) a representative approachffiective state recogni-
tion from face-and-body display by detecting the space-fimerest points in video,
and using Canonical Correlation Analysis (CCA) for fusiand (3) a representative
approach for explicit detection of the temporal phasesniggys) of affective states
(start/end of the expression and its subdivision into phaseh as neutral, onset,
apex, and offset) from bodily expressions. The chapterlooled by summarizing
the main challenges faced, and discussing how we can adtlamestate of the art in
the field.

Overall, human affect analysis based on bodily expressgstll in its infancy.
However, there is a growing research interest driven byouariadvances and de-
mands (e.g., real-time representation and analysis ofadaic body motion for
affect-sensitive games, interaction with humanoid ropets.). The current auto-
matic measurement technology has already started mowirfigdtis toward natural-
istic settings and less-controlled environments, usimipua sensing devices, and
exploring bodily expression either as an autonomous cHaymas an additional
channel for affect analysis. The bodily cues (postures @&stlges) are much more
varied than face gestures. There is an unlimited vocabuaabpdily postures and
gestures with combinations of movements of various bodtsp&espite the effort
of Laban in analyzing and annotating body movement [61]ikenthe facial ex-
pressions, communication of emotions by bodily movemedtexpressions is still
a relatively unexplored and unresolved area in psycholagg, further research is
needed in order to obtain a better insight on how they cauniko the perception
and recognition of the various affective states. This ustaeiding is expected to
pave the way for using the bodily expression to its full pditdn
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