
� ��

VISUAL CLASSIFICATION BY MULTIPLE FEATURE
FUSION AND LARGE-SCALE LEARNING

Dissertation

Submitted in partial fulfillment of

the requirement for the degree

Doctor of Philosophy in Electrical Engineering

at

The City College of New York

of the

City University of New York

by

Shizhi Chen

August 2013

Approved:

Professor YingLi Tian, Dissertation Advisor

Professor Kenneth M. Sobel, Deputy Chair

Department of Electrical Engineering

���

VISUAL CLASSIFICATION BY MULTIPLE FEATURE
FUSION AND LARGE-SCALE LEARNING

by

Shizhi Chen

Submitted to the Department of Electrical Engineering

on August 5, 2013, in partial fulfillment of the
requirement for the degree of

Doctor of Philosophy in Electrical Engineering

Abstract

Robust visual classification can be applied to numerous practical

applications, such as augmented reality, personal robotics and medical image

analysis. The main challenges for visual classification are accuracy and

efficiency in terms of both computation and memory. This dissertation will

present efforts to address these challenges.

To improve accuracy, we propose a new feature representation, i.e.

EigenMap, and a novel multiple-kernel learning framework, i.e. margin-

constrained multiple-kernel learning. The EigenMap utilizes kernel density

estimation to approximate the location probability of features in an image.

Hence, the proposed feature representation incorporates both appearance and

spatial information of local regions.

A popular methodology is to utilize the complementarity of multiple

feature types, by either a simple concatenation or multiple-kernel learning

(MKL). The method of the simple concatenation of feature vectors from

different feature types requires manual feature selection and careful

parameter tuning. On the other hand, MKL can automatically combine

� ��

different feature types to achieve better performance. However, the MKL

tends to only select the most discriminative feature type and ignore other

less discriminative feature types, which may provide complementary

information for visual classification.

In order to better utilize complementary features with less

discriminative power, we propose a margin-constrained multiple-kernel

learning (MCMKL) method by extending MKL with margin constraints and

dimensionally normalized kernel. The proposed MCMKL method learns

weights of different feature types, i.e., base features, according to their

discriminative power. Unlike the conventional MKL, MCMKL incorporates

less discriminative base features by assigning smaller weights when

constructing the optimal combined kernel, so that we can fully take the

advantages of complementary multiple features to improve the accuracy of

visual classification.

To improve efficiency of visual classification, especially on a large-

scale classification with a large number of categories, a typical approach is

to use one-vs-all linear Support Vector Machine (SVM). However, it has

been criticized that the complexity increases linearly with the number of

categories. On the other hand, nearest-neighbor (NN) based classifiers can

naturally handle large numbers of categories and do not have learning step.

But the inferior performance, as compared with learning based classifiers, as

well as expensive computation and memory costs have hindered these

classifiers on large numbers of classification categories.

We propose a novel classifier scheme, i.e., the Discriminative

Hierarchical K-Means Tree (D-HKTree), which combines the advantages of

both NN-based and learning-based classifiers for large-scale classification. It

incorporates learning-based classifier into NN-based classifier, and extends

���

the NN-based classifier to large-scale dataset with significantly lower

computational cost and memory usage. At the same time, the D-HKTree can

still achieve the state-of-the-art classification accuracies on several

challenging datasets.

The main contributions of this dissertation include a new spatially

encoded object representation and novel classifier frameworks to improve

both accuracy and efficiency of visual classification. The proposed

EigenMap object representation incorporates spatial context into the popular

bag of words model without manually partitioning an image into a set of

sub-regions. We also extend the multiple-kernel learning framework, with

margin constraints and dimensionally normalized kernel, in order to

maximize joint discriminative power of multiple complementary features.

Finally, we propose a novel classifier scheme, i.e., Discriminative

Hierarchical K-Means Tree (D-HKTree), to take advantages of both learning

based and nearest neighbor based classifiers for large-scale visual

classification.

� ��

Acknowledgment

I would like to express my deepest appreciations to my advisor,

Professor YingLi Tian, for her guidance, patience and understanding. She

not only teaches me to become a good researcher in computer vision field,

but also encourages me to apply the research to benefit our society and help

people with special needs. This dissertation would not have been possible

without her consistent support and encouragements.

I would like to thank my dissertation committee members, Professor

Zhigang Zhu, Professor Fred Moshary and Dr. Rogerio Schmidt Feris for

their valuable comments and suggestions on revising the final dissertation.

I would also like to thank my colleagues and friends in the CCNY

Media Lab, including Xiaodong Yang, Chucai Yi, Chenyang Zhang, Yang

Xian, Carol Mazuera, Ze Ye, Hangrong Pan, Long Tian, Baiyu Xi, Shuai

Yuan, Shuihua Wang, Michael Quintian, Faiz Hasanuzzaman, and many

others for their friendship and supports. Special thanks go to Xiaodong and

Chucai for the discussions of many research topics and their constructive

comments on revising this dissertation. I also enjoy the collaboration with

Xiaodong for the large scale learning part of this dissertation.

Furthermore, I would like to acknowledge NOAA CREST with much

appreciation, which has been providing financial support for my Phd study.

Finally, I cannot make it so far without the unbound love and

continuous support from my family. I would like to express my deepest

gratitude to my parents for their dedication and love. I also want to say thank

you to my wife, Man Ting Wong, for her patience and understanding over

the Phd study. I appreciate my wonderful children, Shuyi Chen and Shuhui

Chen. They have given me so much fun and the experience as a parent.

���

List of Figures

Figure 1: Some sample images for objects and scenes 15

Figure 2: Box filter approximation of Gaussian function 25

Figure 3: Interest points detected by SURF 27

Figure 4: Construct SIFT descriptor 29

Figure 5: Haar wavelet filters . 29

Figure 6: Reprentation of an image 31

Figure 7: Bag of Words representation for visual classification . . . 32

Figure 8: Construction of Bag of Words model 33

Figure 9: Spatial layout of Spatial Pyramid Matching 37

Figure 10: Hyper-plane of linear SVM 43

Figure 11: One-vs.-all SVM and hierarchical SVM 53

Figure 12: Class taxonomy with four levels 54

Figure 13: Relaxed hierarchy for four class data 56

Figure 14: Concept of image-to-class distance 63

� ��

Figure 15: Difference between NBNN and local NBNN 66

Figure 16: EigenMap representation for visual classification 71

Figure 17: Segmentation example 73

Figure 18: EigenMap Generation 75

Figure 19: Location likelihood using kernel density estimation . . . 76

Figure 20: Sample images of UIUC Sport Scene Database 77

Figure 21: Sample images of the Natural Scene database 78

Figure 22: EigenMap result on scene databases 79

Figure 23: Five-fold cross validation result of EigenMap 81

Figure 24: Sample confusion matrices of EigenMap 82

Figure 25: Compare EigenMap with state of the arts 83

Figure 26: The effect of number of eigenvectors 84

Figure 27: Feature discrimination from SVM margin 89

Figure 28: Multi-modal fusion for affect recognition 93

Figure 29: Facial features . 94

�	�

Figure 30: Body gesture features 94

Figure 31: Temporal segmentation 96

Figure 32: Sample video in FABO database 98

Figure 33: The top 12 performances over fusion algorithms 98

Figure 34: Best performance of fusion algorithms 100

Figure 35: Feature weight distribution over base features 101

Figure 36: Optimal kernel parameter � vs. feature dimension 102

Figure 37: Contamination from noisy feature 104

Figure 38: Labeled Hierarchical K-means Tree (L-HKTree) 107

Figure 39: The framework of D-HKTree framework 108

Figure 40: Illustration of unit step function 111

Figure 41: Comparing memory usage 120

Figure 42: Comparing relative computational complexity 122

�
�

List of Tables

Table 1: YouTube statistics in 2012 16

Table 2: Feature dimension of base features 99

Table 3: Comparison to NN-based classifiers 118

Table 4: Comparison to learning based classifiers 121

Table 5: Comparison to the hybrid classifiers 125

���

Contents

1 Introduction 14

1.1 Applications and Challenges of Visual Classification . . . 14

1.2 Improving Classification Accuracy 16

1.2.1 Spatially Encoded Object Representation 16

1.2.2 Multiple Features Fusion 17

1.3 Improving Classification Efficiency

for Large-scale Learning 19

1.4 Dissertation Organization 20

2 Related Work 22

2.1 Local Features for Object Representation 22

2.1.1 Feature Extraction 23

(A) Interest Point Detector 23

(B) Interest Point Descriptor 28

2.1.2 Object Representation 30

(A) Bag of Words Representation 32

(B) Bag of Words in Spatial Context 36

2.2 Multiple-Feature Fusion 38

2.2.1 Direct Concatenation 39

2.2.2 Single-Kernel Learning 42

2.2.3 Multiple-Kernel Learning (MKL) 48

� ��

2.3 Large-scale Learning 51

2.3.1 Discriminative Learning 52

2.3.2 Nearest Neighbor based Classifier 61

3 Spatially Encoded EigenMap Representation 70

3.1 Summary . 70

3.2 Method . 72

3.2.1 Overview . 70

3.2.2 Feature Extraction 72

(A) Region Features:

Texture, Shape, and Color 72

(B) Interest Point Features:

Uniform Grids and Harris Corners 73

3.2.3 Codebook Formation and Feature Quantization . . 74

3.2.4 EigenMap Generation 75

3.2.5 Classifier . 77

3.3 Experiments . 77

3.3.1 Databases . 78

3.3.2 Experimental Setups 80

3.3.3 Experimental Results 80

(A) Compare to the Bag of Words Model

and the LDA model 80

(B) Compare to the State-of-the-art

Performance 83

(C) Select Number of Principal Components

for EigenMap 84

3.4 Discussion . 84

���

4 Margin-Constrained Multiple Kernel Learning 86

4.1 Summary . 86

4.2 Method . 87

4.2.1 Multiple-Kernel Learning (MKL) 87

4.2.2 Margin Constraints 88

4.2.3 Dimensionally Normalized Kernel 90

4.3 Multi-Modal Fusion for Affect Recognition 91

4.3.1 Overview of MCMKL-based Affect Recognition . . 92

4.3.2 Facial Features 93

4.3.3 Body Gesture Features 94

4.3.4 Temporal Segmentation 95

4.3.5 Temporal Normalization 95

4.3.6 MCMKL Based Multi-Modal Feature Fusion . . . 96

4.4 Experiments . 97

4.4.1 Experimental Setups 97

4.4.2 Comparison to Existing Work and MKL 98

4.4.3 Evaluate Feature Weight Distribution 101

4.4.4 Contamination from

Less Discriminative Features 104

4.5 Discussion . . 105

5 Discriminative Hierarchical K-Means Tree 106

5.1 Summary . . 106

5.2 Construction of Discriminative

Hierarchical K-means Tree 107

5.2.1 Algorithm Overview 108

� ��

5.2.2 Labeled Hierarchical K-means Tree 109

(A) Towards L-HKTree 109

(B) Building L-HKTree 113

(C) Pre-Classification with L-HKTree 114

5.2.3 Discriminatively Learned Histogram 115

5.2.4 Classification with D-HKTree 116

5.3 Experiments . . 117

5.3.1 Experimental Setup 118

5.3.2 Comparisons to NN-based Classifiers 118

5.3.3 Comparisons to Learning-based Classifiers 121

5.3.4 Comparisons to Hybrid Classifiers 124

5.4 Discussion . . 125

6 Conclusion and Future Work 127

6.1 Discussions and Conclusion 127

6.2 Limitations and Future Work 128

Bibliography 130

My Publication List 143

�

���

Chapter 1

Introduction

 Visual classification is a process of recognizing an object or

understanding a concept by analyzing visual appearance. It categorizes an

object or a concept into a group, within which all objects or concepts share

similar properties. For the convenience of discussion, we use object

recognition as a general term for both physical object recognition and

concept understanding in this dissertation.

1.1 Applications and Challenges of Visual Classification

 Robust visual classification has been an active research area [22, 28,

40, 44] in computer vision field. It remains a driving force for many

practical applications, e.g., human computer interaction (HIC), surveillance,

augmented reality, personal robotics and medical applications. Nevertheless,

two main challenges, i.e., accuracy and efficiency, have to be overcome, in

order for visual classification to have a wide range of applications.

� ��

An object appears different under varying conditions, e.g., occlusion,

scale change and viewing angle change. These variations adversely affect

the accuracy of visual classification. Figure 1 shows some example images

from several object classes, i.e., butterfly and killer whale, and from scene

classes, i.e., golden gate bridge and beach. Each class exhibits large intra-

class variations due to changes of viewing direction, scale, and occlusion

etc. It is still an open question how to represent an object to maintain high

�
Figure 1: Some sample images for objects and scenes show large intra-class

variations, which includes occlusion, viewing direction changes, and scale changes.

���������	
��

����������������	����

��������

���������	�� ����

���

discriminative power, while achieving intra-class invariance. It is generally

believed that multiple features are necessary to accurately recognize an

object. However, it is not clear what is the best way to combine these

features to achieve a high accuracy.

On the other hand, efficiency in terms of both computation and

memory has become ever more important when designing a visual

classification system, as the size of available data increases exponentially.

Table 1 shows YouTube statistics per month in the year of 2012, released by

Google [110]. Each month, there are more than 3 million hours of video

uploaded, and 4 billion hours of video watched by viewers. In this

dissertation, we present an effort to address both challenges, i.e., accuracy

and efficiency for visual classification.

1.2 Improving Classification Accuracy

 To improve accuracy, the most straightforward approach is to

construct a more discriminative object representation from features [26, 49].

The other approach is to combine multiple feature types by utilizing their

complementarity [22, 40, 88].

1.2.1 Spatially Encoded Visual Representation

Table 1�� YouTube statistics of video watched and uploaded per month in the year of

2012 [110].�

�
�

������������ 	
����
�����
�� ���	� 	
����
�����
����
��

�������
� �������
� ��� ����
�

� ��

 The bag of words (BOW) object representation has been adapted in

many state-of-the-art visual classification systems [26, 53] due to its

simplicity and excellent performance. However, it has ignored all spatial

relationships among different object parts. Spatial Pyramid Matching (SPM)

[49] incorporates such spatial relationship by manually partitioning an image

into multiple sub-regions, and constructs a BOW histogram for each sub-

region. Then all BOW histograms are concatenated together as the final

object representation. Even though SPM models absolute spatial information

of object parts based on image space, it has outperformed BOW in many

challenging datasets [49].

 However, SPM requires partition of an image into sub-regions. And

the dimension of final object representation can be very large if a large

codebook size is used. We propose a new spatially encoded object

representation, i.e., EigenMap, which does not require manual partition of

image and has much lower dimension as compared to SPM. The density

distribution of object parts over the image space is captured by their

EigenMaps. The collection of these EigenMaps incorporates both

appearance and spatial relationship of object parts.

1.2.2 Multiple Features Fusion

 Popular approaches to combine multiple feature types are simple

concatenation [22, 40, 78, 108] and multiple kernels learning (MKL) method

[2, 73, 88, 89]. Due to the complexity of visual classification, no single

feature is able to provide the best tradeoff between discriminative power and

invariance in all datasets. Some features might be scale invariant, while

others might be rotation invariant. Depending on dataset, one feature might

��	

perform better than another, or vice versa. Higher classification accuracy is

generally obtained, by combining multiple feature types together.

 A straightforward way to combine multiple feature types is simple

concatenation, which results in a feature vector representation with large

dimension [22, 40, 78, 108]. The simple concatenation is very easy to

implement, and achieves higher accuracy if right features are combined.

Nevertheless, the right features have to be manually selected, and they are

different for different datasets. Hence, simple concatenation requires expert

knowledge on both features and datasets, in order to obtain optimum

performance. Furthermore, the simple concatenation fusion method is

vulnerable to the contamination of less discriminative feature types,

especially those with large feature dimensions.

 The multiple-kernel learning (MKL) [2, 73, 88, 89] is able to partially

eliminate some drawbacks of the simple concatenation fusion method. It can

automatically select most discriminative feature types for a dataset. The

MKL also provides shielding from the contamination of less discriminative

base features by assigning very large weights to the most discriminative base

features. It has recently shown the effectiveness to fuse multiple base

features in object detection and recognition [88, 89]. However, MKL tends

to select only the most discriminative base features and ignore other less

discriminative base features. Therefore, MKL method cannot fully take the

advantages of all types of base features from heterogeneous modalities,

which usually provide complementary information.

 In order to address these issues, we propose a margin-constrained

multiple-kernel learning (MCMKL) by applying additional margin

constraints and dimensionally normalized kernel. Unlike conventional MKL

method, our proposed MCMKL is able to learn the most discriminative base

� �

features while still considering other base features, which are less

discriminative, but can potentially provide complementary information. We

apply MCMKL method on affect recognition from multiple modalities (e.g.

face and body gesture). The extensive experimental results on the FABO

(Face and Body Gesture) facial expression database [41] demonstrate the

effectiveness of the proposed method for multi-modal feature fusion.

1.3 Improving Classification Efficiency for Large-scale

Learning

 Efficiency of visual classification, in terms of computational cost and

memory usage, has become ever more important as the available data size

increases exponentially. Most learning-based algorithms, e.g., one-versus-all

linear SVM [19, 25], have computation cost increasing at least linearly with

the number of object classes [14, 49, 56, 100]. At the testing phase for these

methods, the computation cost becomes infeasible when scaling up to large

numbers of classes. To improve efficiency of linear SVM for large-scale

object classification, Hierarchical SVM-based methods [34, 38, 59] utilize

hierarchical decision structure so that the computational complexity only

increases sub-linearly with the total number of classes. However, these

approaches improve efficiency through compromising classification

accuracy to some extent.

 On the other hand, non-parametric nearest neighbor (NN) based

classifiers require no training phase and can naturally handle large numbers

of classes. However they have to retain all the training examples in testing

phase, which becomes infeasible on large-scale datasets due to the expensive

computation cost and memory usage. For example, the total memory

���

required to store dense SIFT features [58] for the training data of SUN

dataset [99] is around 100 GB, which far exceeds the memory of a desktop

(typically 4G – 48G).

 In order to facilitate large-scale object classification by taking

advantages of both learning-based and NN-based methods, we incorporate

discriminative learning algorithms into NN-based methods as a novel

classification framework, i.e., Discriminative Hierarchical K-means Tree (D-

HKTree). The complexity of the proposed D-HKTree only grows sub-

linearly with the number of categories, which is much better than the recent

hierarchical SVM based methods. The memory usage in the D-HKTree also

benefits from precluding all training features, which is order of magnitude

less than the NN-based methods. In the evaluations on several object

recognition and scene understanding dataset, i.e., Caltech 101 [31], Caltech

256 [39] and SUN [99] dataset, D-HKTree obtains state-of-the-art

accuracies, while with significantly lower computation cost and memory

requirement.

1.4 Dissertation Organization

 The dissertation is organized as the following. Chapter 2 introduces

the related work on features, object representations, multi-feature fusion

algorithms and large-scale learning. Chapter 3 presents a new object

representation, EigenMap, for object or scene classification. We evaluate the

EigenMap on several scene datasets. Chapter 4 describes Margin Constraint

Multiple Kernel Learning (MCMKL) in details. The MCMKL is evaluated

on the FABO dataset for affect recognition. Large-scale learning with D-

HKTree is presented in Chapter 5, and is evaluated on several large-scale

� ��

object recognition and scene understanding datasets. Finally, Chapter 6

concludes the dissertation and points out the future directions for visual

classification.

���

Chapter 2

Related Work

Significant efforts on visual classification have been made in recent

years [15, 48, 102], to improve classification accuracy and efficiency. In this

chapter, we discuss related work from object representation to classifier

designs, which enhance the performance of visual classification, in terms of

accuracy and efficiency.

2.1 Local Features for Object Representation

 Features for object representation can be roughly divided into two

categories, i.e., global and local features. Global feature captures the overall

appearance of an image or an object [68, 71, 82, 84], e.g., color histogram

[82], principal component analysis [68, 84]. This approach has worked

surprisingly well on some applications, e.g., image retrieval [82], face

recognition [84]. Nevertheless, the global feature is usually not robust with

partial occlusion, lighting change and view angle change etc.

 On the other hand, the local feature [6, 33, 45, 46, 50, 58, 76] can

naturally handle the aforementioned issues, as it captures information from a

local patch. By utilizing the Bag of Words (BOW) representation [26, 60,

70, 81, 86, 96, 97], the local features have shown striking performance on

� ��

object and scene recognition [64, 99]. By incorporating spatial information

in the BOW [18, 49, 63, 75, 101], the classification accuracy is further

improved.

 In this section, we will discuss various methods extracting local

features. After features extracted, some popular algorithms, which organize

local features to represent an object, are also presented.

2.1.1 Feature Extraction

Two main components are usually involved in feature extraction, i.e.,

interest point detector [4, 42, 58, 61, 65] and descriptor [4, 27, 58, 66].

Interest point detector extracts repeatable and distinctive local salient regions

in an image. Interest point descriptor summarizes the characteristics of the

neighbor pixels of each interest point based on either intensity or gradient

information.

(A) Interest Point Detector

 One of the most popular interest point detector is Harris corner based

detector [42, 79], which is based on second moment matrix

�
�
�

�

�
�
�

�
= 2

2

),(
yyx

yxx

III

III
yxA , (2-1)

where xI and yI denote first derivatives of image intensity I at position (x, y)

in x and y directions. If the second moment matrix has two large

eigenvalues, the pixel (x, y) is considered as a corner. To avoid the

expensive computation of eigenvalues decomposition, Harris and Stephens

���

[42] propose a cornerness measure M c ,� which only depends on the

determine and trace of matrix A.

Mc = Det(A)− k ×Tr2 (A) , (2-2)

where k is an empirical constant to be determined. However, Harris corner

based detector is not scale invariant.

The other common interest point detector is based on Laplacian of

Gaussian (LoG) [55, 58]. Blurred image L(x, y,σ) is obtained by the

convolution of the original image I(x, y) with Gaussian kernel G(x, y,σ), as

shown in Equation (2-3).

L(x, y,σ) = G(x, y,σ) ⊗ I(x, y) , (2-3)

where σ is standard deviation of Gaussian kernel. To detect scale invariant

interest points, scale normalized Laplacian ∇norm
2 L(x, y,σ) is computed as

∇norm
2 L(x, y,σ) = σ 2 (Lxx + Lyy) , (2-4)

where Lxx and Lyy are second derivatives of L at pixel (x, y) in x and y

directions. The interest point at the detected scale can be defined from scale-

space maximum or minimum response of the scale normalized Laplacian, as

shown in Equation (2-5).

(x̂, ŷ,σ̂) = argmaxmin local
(x,y,σ)

∇norm
2 L(x, y,σ) . (2-5)

Scale Invariant Feature Transform (SIFT) [58] approximates scale

normalized Laplacian ∇norm
2 L(x, y,σ)

�
by Difference of Gaussian (DOG),

� ��

following the study [54]. Since Gaussian kernel satisfies diffusion equation

over scale, the DOG approximation can be derived from Equations (2-6) and

(2-7) below.

 σ ∇2L(x, y,σ) = ∂L(x, y,σ)
∂σ

= L(x, y, kσ)− L(x, y,σ)
kσ −σ

 , (2-6)

∇norm
2 L(x, y,σ) = σ 2∇2L(x, y,σ)∝ L(x, y, kσ)− L(x, y,σ) , (2-7)

�
������� ��� Box filter approximation of Gaussian function and their derivatives. (a)

One dimensional (1-D) Gaussian function g(x) with standard deviation of 1; (b) First

derivative of 1-D Gaussian function ��

��
; (c) Second derivative of 1-D Gaussian

function �
��

���
; (d) Approximated 2-D Gaussian function G(x,y) with standard deviation

of 1.2; dark grey color indicate 0, and lighter color indicate larger positive value; (e)

Box filter approximation of ��� �
��	

����
; (f) Box filter approximation of ��� �

��	

���
;

���

������

�����

�
�

���

where k is a constant. Hence, the interest point can also be defined from

scale-space maximum or minimum response of DOG in the right hand side

of Equation (2-7). SIFT (Scale Invariant Feature Transform) detector has

shown very robust performance, as it is invariant to scale, rotation and

change in illumination etc.

 To speed up the detection, Hessian matrix based Speeded Up Robust

Feature (SURF) [4] detector simplify Gaussian filter using box filters as

shown in Figure 2(e) and 2(f). Figure 2 shows box filter approximation of 2-

dimensional (2-D) Gaussian function and its derivatives. Figure 2(a), (b) and

(c) show 1-D Gaussian function, its first derivative and second derivative

respectively.

Figure 2(d) shows the approximated 2-D Gaussian function G(x,y)

with standard deviation of 1.2. Figure 2(e) and 2(f) show the box filter

approximation of ��� and ���respectively. The Hessian matrix is defined as

H (x, y,σ) =
Lxx Lxy

Lxy Lyy

�

�

�
�

�

�

�
�
 . (2-8)

Therefore, the scale-normalized determinant of Hessian matrix will be

Detnorm (H) = σ 4(LxxLyy − Lxy
2) . (2-9)

By using box filters to approximate Gaussian kernel, the determinant

of the scale-normalized Hessian matrix [4] becomes

Detnorm (Happrox) = DxxDyy − (0.9Dxy)2 , (2-10)

� ��

where yyD is the convolution of box filter in Figure 2(f), which is normalized

by the filter size, with the original image),(yxI . Similarly, xxD and xyD are the

convolution of corresponding box filters with the original image. The

convolution of box filter can be efficiently computed by integral image

techniques [90]. Finally, interest point and its scale can be found by

(x̂, ŷ,σ̂) = argmax local(x,y,σ)(Detnorm (Happrox)) . (2-11)

�
�
Figure 3: Interest points detected by SURF; The green line indicate the dominant

orientation of an interest point. The size of a circle shows scale of interest point. The

red circle indicates the intensity of an interest point is larger than its neighbor pixels,

and the blue circle indicates the intensity of an interest point is smaller than its

neighbor pixels.

��	

Figure 3 shows interest points detected by a popular implementation of

SURF detector [29]. As shown in Figure 3, most detected interest points are

on the two bears, instead of the snow background. This demonstrates that the

extracted features can potentially form an excellent representation of bears.

For some applications, e.g., object recognition, scene understanding,

uniform sampled pixels or dense sampling are also used as interest points

[12, 13] in literatures. Better performance has been reported for those

applications if dense sampling is used [12, 30, 51].

(B) Interest Point Descriptor

 After an interest point detected, descriptor summarizes the

characteristics of its neighborhood pixels by either intensity or gradient

information. One of the most successful descriptors is SIFT descriptor,

which is based on gradient [58].

 Dominant orientation is first computed by accumulating a local

orientation histogram of gradient directions over neighborhood patch

centered at interest point. Then peaks are detected in the orientation

histogram to find the dominant orientations.

 Figure 4 illustrates the computation of a SIFT descriptor after the

dominant orientation calculated. Along the dominant orientation, rectangular

4 x 4 grids are laid out on the image. In each grid, a local orientation

histogram with 8 bins is accumulated by each pixel in the grid, weighted

with their gradient magnitudes. By concatenating together orientation

histograms from all grids, we have the final SIFT descriptor, which has 128

dimensions.

� �

 Motivated by the success of SIFT feature, extensions to the original

SIFT feature are also proposed. Among them, SURF descriptor [4] is well

known for speeding up the original SIFT descriptor by employing integral

image technique. The dominant orientation is computed by detecting

maximum response of Haar wavelet in a sliding orientation window.

�
�
Figure 4: Construct SIFT descriptor. (a) Along the dominant orientation, 4 x 4

rectangular grids are laid out on the image, and the gradients are calculated for each

pixel (small red arrow). (b) The corresponding local orientation histograms (8 bins)

are calculated for each grid. Finally, SIFT descriptor is the concatenation of all

oriental histograms.

��� ���

�

�
Figure 5: Haar wavelet filters used to compute horizontal and vertical response
�

and
�, where light region is +1, and dark region is -1.

��� ���

���

 Similar to SIFT descriptor, 4 x 4 rectangular grids are also laid out on

the image along the dominant orientation. In each grid, the Haar wavelet

responses
� and
� in the x and y directions are computed for each pixel

within the grid. The Haar wavelet filters
� and
� are illustrated in Figure

5(a) and Figure 5(b) respectively. Then sum of wavelet responses (�
��

�) and their absolute responses (
��
�) are computed for each grid.

These four sums are used to represent a grid. The concatenation of all

response sums in the 4 x 4 grids is the SURF descriptor.

 PCA-SIFT [45] computes local maps of gradient magnitude over local

patches surrounding interest points. Then principal component analysis

(PCA) projects the gradient magnitude maps to low dimensional subspace.

The resulted descriptor is much compact than the original SIFT descriptor,

however with the price of losing distinctiveness. Color SIFT [12, 17, 95]

extends regular SIFT with color information, and results in more distinctive

descriptor.

2.1.2 Object Representation

 Object representation describes the represented object as a feature

vector. The ideal object representation is discriminative enough to

distinguish one object from another, while robust to variations, such as

lighting and viewing direction etc.

 To illustrate the importance of object representation, we use Figure 6

as an example, which shows an image of a panda with the size of 300 by 207

pixels. We convert the image to gray scale and down sample the image to

smaller size, i.e., 30 by 21 pixels, as shown in Figure 6(b). With such small

size, we can still see the panda from the image. However, if we represent the

� ��

down-sampled image in a matrix format with same size, as shown in Figure

6(c), there is no way we can tell where the panda is in the matrix, even

though the matrix in Figure 6(c) contains identical information as that in

Figure 6(b).

�
Figure 6: Reprentation of an image; (a) original image (size of 300 x 207); (b) small-

size image (size of 30 x 21); (c) The corresponding matrix (30 x 21) for the small-

size image in (b);

��� ���

��

���

 The example above demonstrates the challenges of object recognition

in the computer vision field. On the other hand, it also shows the importance

of object representation for accurate visual recognition. In this dissertation,

we will focus on algorithms, which build object representation from local

features. Some of the most popular approaches are Bag of Words (BOW)

[26, 80] and its variants with spatial context [49, 56, 63, 100].

(A) Bag of Words Representation

 The Bag of Words (BOW) is commonly used in document

classification or text retrieval application [3]. A document is represented by

a histogram of words, where each element in the histogram is frequency of

occurrences of a corresponding word in the document.

 Inspired by the success of the BOW model in text retrieval literature,

computer vision community also adapts it to represent an image by treating

local features as visual words. Figure 7 illustrates that a bicycle is

represented by an orderless collection of local patches, i.e., components of

�

Figure 7: Illustrate Bag of Words representation for visual classification [111].

� ��

the bicycle. The BOW model ignored spatial relationship between different

components of the bicycle, which, however, is very important for human to

recognize an object.

 Despite the loss of spatial information, the BOW object representation

has been successfully applied in computer vision applications, such as image

retrieval and visual classification [26, 80, 96, 97, 106].

 Different from words in a text, there are much more variations in local

features. Hence nearby features in feature space are grouped together to

form a cluster, which is represented by a prototype feature, i.e., a visual

word. The collection of visual words from each cluster in training data forms

a visual dictionary or codebook. Figure 8 shows a pipeline of BOW model

including visual dictionary construction in Figure 8(a), and object

representation in Figure 8(b).

�
�

Figure 8: Pipeline to construct Bag of Words (BOW) model. (a) Visual dictionary

construction; (b) image or object representation using BOW model [112].

����������	���������� ���

����������	�� ��������������	� 	�����������

!�����

�

"������

���

���

���

 We first extract local features, e.g., SURF features, from a set of

training images or objects. Figure 8(a) shows local features, which are

projected onto a two-dimensional space and marked by green color. Then

similar local features are clustered together, and are represented by a

prototype feature or visual word, marked with red color in Figure 8(a).

Visual dictionary is formed by collecting all visual words from feature

clusters, i.e., 3 visual words in Figure 8(a). A popular clustering algorithm is

unsupervised K-Means clustering method [57].

To construct object representation, local features are also extracted

from an input image. Then coding and pooling operators are used to generate

the final BOW representation, as illustrated in Figure 8(b). In the coding

step, local features are encoded using visual words in a dictionary. The

simplest coding method is vector quantization, i.e., hard assignment. The

hard assignment of a local feature is to assign the weight of 1 to the nearest

neighbor visual word, while all other visual words are assigned with 0

weight. Equation (2-13) shows hard assignment code �� � �� for ith local

feature �� in an image.

dist(xi − dk) = xi − dk 2

2

 . (2-12)

∂i, j =
1 if j = argmin

k=1,...,K
dist(xi, dk)

0 otherwise

�

�
	

	 , (2-13)

where
�is kth visual word in the codebook, and K is the codebook size, i.e.,

total number of visual words in the dictionary.

 However, hard assignment of a local feature usually has large

quantization error since it assigns weights to only one visual word. By

considering soft probabilistic version of coding as shown in Equation (2-14),

� ��

soft assignment has normally achieved better performance in visual

classification [36, 37].

∂i, j = e
−β * dist(xi, d j)

e−β * dist(xi, dk)
k=1

K

�
 . (2-14)

Euclidean distance is only meaningful to approximate a geodesic

distance within a local region in feature space [92, 103]. Instead of assigning

weights to every visual word, local soft assignment [56] assigns weights to

only n nearest neighbor visual words by modifying distance function of

Equation (2-12) as shown in Equation (2-15).

dist(xi, dk) = xi − dk 2

2
if dk ∈ NNn (xi)

∞ otherwise

�
�
	

	
 , (2-15)

where ������� is n nearest neighbor visual words of the local feature �� .

The local soft assignment is a very simple coding method. Nevertheless, it

achieves comparable performance with other more sophisticated coding

scheme [56].

Sparse coding on the other hand reconstructs a local feature as a linear

combination of a few visual words, as shown in Equation (2-16).

∂i = argmin
∂m

xi − ∂m,k * dkk=1

K

�
2

2

+ λ ∂m 1 , (2-16)

where ∂m 1
��������� ����∂m ��λ ��∂m �

 Better coding techniques not only increase visual classification

accuracy by eliminating some undesired noise, but also improve

classification efficiency.

���

 Pooling is to aggregate all codes of local features of an object into a

single vector. The pooling vector, which summarizes the codes, is the BOW

vector, i.e., the object representation. Two of the most popular pooling

operators are average pooling (Equation (2-17)) and maximum pooling

(Equation (2-18)).

pk = 1
I

∂i,ki=1

I

�
 , (2-17)

pk = max
i=1,... I

∂i,k
 , (2-18)

where I is the total number of local features in an image, and pk �� �
���

�������� ��� ���� � ! � "�����. Maximum pooling has achieved higher accuracy

and is employed in most state-of-the-art systems for visual classification [15,

56].

(B) Bag of Words in Spatial Context

A major limitation, using the bag of words (BOW) model as an object

representation is that it only models an object as a collection of local features

without considering features’ spatial information in the object. As proven by

many researchers, knowing spatial relationship among different object parts

can be very important in visual classification [18, 49, 75].

 Both absolute spatial information [49, 63] and relative spatial

information [75] have been incorporated into the bag of words

representation. Absolute spatial context is the location information of local

features with reference to the image coordinates. Despite the fact that

absolute spatial information of local features is not invariant to translation or

�

rotation of cameras, it has

several benchmark dataset

 Lazebnik et al. [49

as feature representation,

sub-regions and calculating

the SPM model concatenates all

weights.

Conventionally, SPM is

Figure 9. At the first level, the

computed for the whole image. At second and third level, th

divided into 2 x 2, and 4 x 4

computed for each sub-region

the SPM achieved better accuracy in several

52, 99] with slightly increase of computational cost

Figure 9: Spatial layout of Spatial Pyramid Matching (SPM) at (a) first level; (b)

second level; (c) third level.

�
it has achieved the state of the art performance

several benchmark datasets for visual classification [49, 63].

49] proposed Spatial Pyramid Matching model

, by partitioning an image into successively

regions and calculating a BOW histogram over each sub-region. Then,

concatenates all BOW histograms together with appropriate

Conventionally, SPM is calculated at three levels, as illustrated in

At the first level, the whole image is a sub-region, and BOW is

computed for the whole image. At second and third level, th

divided into 2 x 2, and 4 x 4 sub-regions respectively. A BOW histogram is

region. As compared with the orderless BOW model,

achieved better accuracy in several challenge datasets [

increase of computational cost.

: Spatial layout of Spatial Pyramid Matching (SPM) at (a) first level; (b)

second level; (c) third level.�

��

state of the art performances on

model (SPM)

by partitioning an image into successively smaller

region. Then,

histograms together with appropriate

, as illustrated in

region, and BOW is

computed for the whole image. At second and third level, the image is

. A BOW histogram is

As compared with the orderless BOW model,

datasets [30, 31, 39,

�

: Spatial layout of Spatial Pyramid Matching (SPM) at (a) first level; (b)

��	

Recently, McCann and Lowe [63] propose Spatial Local Coding

(SLC), which is also based on absolute spatial information of local features.

SLC augments SIFT features with their absolute location (x, y) in the image

coordinate system. Then a dictionary is constructed based on these

augmented SIFT feature. Local soft assignment and maximum pooling are

employed to build the final spatially encoded BOW representation. By

augmenting SIFT with location, the location information has influenced both

codebook construction and feature coding. During codebook construction,

the local features in neighbor regions are more likely grouped together than

features that are far away from each other.

Savarese et al. [75] borrowed the idea of color correlograms [43] to

develop visual word correlograms, which incorporate relative spatial

information. Correlograms capture spatial correlation between all possible

pairs of visual words by forming a co-occurrence matrix of visual words as a

function of distance. However, the correlograms matrix requires expensive

computation cost even after utilizing the integral image techniques [75].

Link analysis models patterns of connections of different images

based on extracted local features [127]. Kim et al. apply link analysis to

learn visual model of object categories [127].

2.2 Multiple-Feature Fusion

Due to the complexity of visual classification, there is not a single

feature, which can provide the best tradeoff between the discriminative

power and invariance. Different feature types may be complementary to

each other for visual classification task. However, it is still an open question

how to combine these different feature types to achieve the best tradeoff.

� �

In this section, we introduce two popular approaches in the literatures,

i.e., direct concatenation [22, 40, 78, 108] and multiple-kernel learning

(MKL) [2, 73, 88, 89] methods.

2.2.1 Direct Concatenation

The straightforward methodology at feature level fusion is the simple

concatenation of feature vectors from different modalities to form a large

feature vector [22, 40, 78, 108]. Given a set of feature types
�
f1 ,

�
f2 , … ,

�
fN ,

the final concatenated feature
�
fc is

�
fc = [

�
f1,

�
f2,...,

�
fN] (2-19)

The kernel matrix can be constructed by Equation (2-20), assuming

Gaussian RBF kernel employed.

K(
�
fc

i,
�
fc

j) = e

−
�
fc

i −
�
fc

j

2

2

2σ 2
 , (2-20)

where
�
fc

i and
�
fc

j are concatenated feature vector for ith sample and jth sample.

In image classification, a sample is an image. By expanding both
�
fc

i and
�
fc

j ,

we have

K(
�
fc

i,
�
fc

j) = e

− [
�
f1

i,
�
f2

i,...,
�
fN

i]−[
�
f1

j,
�
f2

j,...,
�
fN

j]
2

2

2σ 2
 . (2-21)

 Note that the square of L2 norm in Equation (2-21) can also be

expressed as

���

[
�
f1

i,
�
f2

i,...,
�
fN

i]−[
�
f1

j,
�
f2

j,...,
�
fN

j]
2

2
=

�
fk

i −
�
fk

j

2

2

k=1

N

� . (2-22)

 Substituting Equation (2-22) to Equation (2-21), we have

K(
�
fc

i,
�
fc

j) = e

−
�
fk

i −
�
fk

j

2

2

k=1
N�

2σ 2

 . (2-23)

Reorganizing Equation (2-23), we have

K(
�
fc

i,
�
fc

j) = e

−
�
fk

i −
�
fk

j

2

2

2σ 2

k=1

N∏ . (2-24)

We can recognize that the product term in Equation (2-24) is the RBF

kernel for kth feature type K(
�
fk

i,
�
fk

j) . Then the kernel matrix of the

concatenated feature vector K(
�
fc

i,
�
fc

j) is the entrywise product of all kernel

matrices of single feature types, as shown in Equation (2-25). Note that we

have assumed same standard deviation σ used across all feature types in

deriving Equation (2-25).

K(
�
fc

i,
�
fc

j) = K(
�
fk

i,
�
fk

j)
k=1

N∏ (2-25)

From Equations (2-24) and (2-25), we can see that all feature types

are contributing to the final kernel matrix, i.e., the concatenated feature

vector’s kernel matrix. If some feature types are less discriminative, it will

degrade the final kernel matrix K(
�
fc

i,
�
fc

j) , which in turn lower the final

classification accuracy.

The relative weights of single feature types, contributing to the final

kernel matrix, can be approximated based on Equation (2-23). If we assume

� ��

�
fk,m

i −
�
fk,m

j()2
is statistically same for each dimension of every single feature

type, the relative weights then is proportional to dimension of single

features.

Hence, if one of feature types is noisy, and has very large feature

dimension, the noisy feature will dominate the final kernel matrix.

Therefore, direct concatenation fusion method requires a careful design for

selections of features and parameters, such as feature dimension etc. This is

essentially the manual feature selection.

One of applications for multiple features fusion is affect recognition.

Human affective state is complicated and sometimes can be very subtle. It

may not be detected just from the facial expressions. Fortunately, we

observe affective state naturally through multiple modalities, such as facial

expression, body gesture, audio signal etc. These observations through

different modalities provide complementary information on the affective

states e.g., face and body gesture modalities.

One of active research areas on affect recognition is how to combine

features from different modalities. A popular approach is to design features

based on discriminative power of each modality, and then combine them by

direct concatenation [40, 78].

Shan et al. [78] apply the Canonical Correlation Analysis (CCA) to

project facial features and body gesture features into a low dimensional

space which maximizes their correlation. Then the authors concatenate the

projected feature vectors together to train a Support Vector Machine (SVM)

classifier for affect recognition. However, it is difficult to extend this method

to more than two types of features, or base features, since it needs to find the

correlated space between a pair of base features. In practice, it is very likely

���

to have more than two base features for affect recognition due to the

problem complexity.

Gunes and Piccardi [40] select frames, which are the common apex

frames from both face and body gesture modalities for affect recognition,

and then perform a direct concatenation to combine base features from both

modalities. However, the apex frame selection is based on the knowledge of

temporal dynamics, which is usually very difficult to predict in advance.

2.2.2 Single-Kernel Learning

 In this section, we review single-kernel learning in Support Vector

Machine (SVM) [16, 25]. We first derive formula for training and testing

with linear kernel and then generalize results to non-linear kernels.

 The objective of SVM learning is to find a hyper-plane, which can

separate features of two classes with maximum margin and minimum

training error.

Figure 10 illustrates the hyper-plane, which is a solid purple line

separating features of pentagon class from that of triangle class. The hyper-

plane can be expressed as

�
w ⋅ �x + b = 0 . (2-26)

 Two hyper-planes in Equations (2-27) and (2-28) are two support

vector hyper-planes of class +1 and class -1 respectively. Two purple dash

lines in Figure 10 illustrate the hyper-planes.

�
w ⋅ �x + b = +1 . (2-27)

�
w ⋅ �x + b = −1 . (2-28)

�

The distance between these two

is 2
�
w

�� as shown in Figure

generalization of the learned model.

support vectors, which lie

 Any training features of a class, which lies beyond

vector hyper-plane, toward the other class, introduce training error.

is proportional to the distance between the feature and

hyper-plane. As an example, t

features, which have training error.

�
w ⋅ �xi + b ≥ +1−

�
w ⋅ �xi + b ≤ −1

�
Figure 10: Hyper-plane of linear SVM. Features in orange color are support vectors

with zero training error. Features in red color are support vectors with nonzero error.

The distance between these two hyper-planes are called margin, which

Figure 10. The larger margin represents

generalization of the learned model. The features with orange color are

lie on the two support vector hyper-planes.

Any training features of a class, which lies beyond the class’ s

, toward the other class, introduce training error.

is proportional to the distance between the feature and its support vector

As an example, the features with red color in Figure

training error. To quantize training error, we define

−ξi for yi = +1 , (

+ξi for yi = −1 ,

�

plane of linear SVM. Features in orange color are support vectors

with zero training error. Features in red color are support vectors with nonzero error.

��

are called margin, which

represents the better

The features with orange color are

.

the class’ support

, toward the other class, introduce training error. The error

its support vector

Figure 10 are

To quantize training error, we define

, (2-29)

, (2-30)

�

plane of linear SVM. Features in orange color are support vectors

with zero training error. Features in red color are support vectors with nonzero error.

���

ξi ≥ 0 ∀i , (2-31)

where training feature
�
xi has corresponding class label yi , which is either +1

or -1.� The slack variable ξi �is upper bound of training error for feature
�
xi .

The upper bound of total training error is then ξii=1

l

� , where l is the total

number of training features. Hence, the objective function, which maximizes

margin and minimizes training error, is to minimize f

f = 1
2

�
w

2 + C ξii=1

l

� , (2-32)

where C is a constant. Now we have formulated an optimization problem

with objective function of Equation (2-32) and constraints of Equations (2-

29)-(2-31).

 Combining Equation (2-29) and (2-30), we have

yi (
�
w ⋅ �xi + b)−1+ξi ≥ 0 ��������������������������������������. (2-33)�

 By introducing non-zero Lagrange multiplier ∂i and µi for each

training feature to enforce Equations (2-33) and (2-31) respectively, we

formulate the primal Lagragian function of Equation (2-32) as

LP = 1
2

�
w

2 +C ξii=1

l

� − ∂i yi (
�
xi ⋅ �w + b)−1+ξi[] − µiξii=1

l

�
i=1

l

� ��������, (2-

34)�

where

∂i ≥ 0
���, (2-35)�

µi ≥ 0
�� , (2-36)�

� ��

∂i yi(
�
xi ⋅ �w + b)−1+ξi[] = 0

����������������������������, (2-37)�

µiξi = 0
��� . (2-38)�

 Taking derivative of LP#��������������
�
w ����and�ξi , we have

∂Lp

∂ �w
= �

w − ∂iyi

�
xii=1

l

� = 0 ���������������������������, (2-39)�

∂Lp

∂b
= − ∂iyii=1

l

� = 0 ���������������������������, (2-40)�

∂Lp

∂ξi

= C −∂i − µi = 0 ���������������������������. (2-41)�

Reformulate Equation (2-34) as

LP = ∂ii=1

l

� + 1
2

�
w

2 − ∂i yi

�
xi ⋅ �w

i=1

l

� + ξi (C −∂i − µi)i=1

l

� − b ∂iyii=1

l

� �����. (2-42)�

By substituting Equations (2-40) and (2-41), we can remove the last two

terms in Equation (2-42).

LP = ∂ii=1

l

� + 1
2

�
w

2 − ∂iyi

�
xi ⋅ �w

i=1

l

� �����������������������. (2-43)�

Substitute Equation (2-39) to Equation (2-43), we have the dual form of

Lagrangian function as shown in Equation (2-44) below.

LD = ∂ii=1

l

� − 1
2

∂i∂ j yiy j

�
xi ⋅ �x jj=1

l

�
i=1

l

� �����������������������. (2-44)�

Now the optimization problem is to maximize Equation (2-44) subject to

0 ≤ ∂i ≤ C ��. (2-45)�

���

∂iyii=1

l

� = 0 ���. (2-46)�

Note that the constraint of Equation (2-45) can be obtained from Equations

(2-35), (2-36) and (2-41). The Equation (2-46) is same as Equation (2-40).

 We discuss ∂i value in three different scenarios. The first one is when

training feature
�
xi does not lie on or beyond its support vector hyper-plane,

i.e. yi(
�
xi ⋅ �w + b)−1> 0 �� This scenario corresponds to the green features in

Figure 10. There is no training error for the feature, i.e., ξi = 0 . From

Equation (2-37), we know ∂i = 0 ��

� The second scenario is when the training feature�
�
xi lies on its support

vector hyper-plane, i.e. yi(
�
xi ⋅ �w + b)−1= 0 �� This corresponds to the orange

feature in Figure 10. There is no training error in this scenario, i.e., ξi = 0.

Therefore, yi (
�
xi ⋅ �w + b)−1+ξi = 0 and ∂i is undefined, which means some

training features on the support vector hyper-plane are non-zeros and some

can be 0.

 The last scenario is when the training feature�
�
xi lies beyond its support

vector hyper-plane, i.e. yi(
�
xi ⋅ �w + b)−1< 0 �� $������ ������ �� �����%� ������� �����

ξi > 0 . From Equations (2-38) and (2-41), we know that ∂i = C �

 After removing training features with ∂i = 0 , Equation (2-39) becomes

�
w = ∂iyi

�
xii=1

Ns� . (2-47)

where Ns is the number of support vector used in training.

By selecting training features with 0 < ∂i < C , we know ξi = 0 , and

Equation (2-37) becomes yi(
�
xi ⋅ �w + b)−1= 0 . In other words, training features

� ��

with 0 < ∂i < C is on their support vector hyper-planes. Therefore, b can be

computed by simply selecting one of such training features. Of course, it is

numerically wiser to take the average of b over all such training features as

shown in Equation (2-48).

b = 1
{i | 0 < ∂i < C}

yi − �
xi ⋅ �w

{i |0<∂i<C}

� �� (2-48)

Substituting Equation (2-47) to Equation (2-48), we have

b = 1
{i | 0 < ∂i < C}

yi − ∂ j y j

�
xi ⋅ �x jj=1

Ns

��
��

�
��

{i |0<∂i<C}

� . (2-49)

During testing phase, the predicted class label score yt �of the testing feature
�
xt is

yt = �
w ⋅ �xt + b = ∂iyi

�
xi ⋅

i=1

Ns�
�
xt + b . (2-50)

Then the predicted class label is sign(yt&��

 To generalize SVM training and testing to other kernels, including

non-linear kernels, we replace the linear kernel term �xi ⋅ �x j with K(
�
xi,

�
x j) .

Therefore kernel training of Equations (2-44)-(2-46) becomes to maximize

LD = ∂ii=1

l

� − 1
2

∂i∂ j yiy jK(
�
xi,

�
x j)j=1

l

�
i=1

l

� � . (2-51)

subject to

0 ≤ ∂i ≤ C , (2-52)

∂iyii=1

l

� = 0 ���. (2-53)

��	

The testing phase of Equation (2-50) becomes

yt = ∂iyiK(
�
xi,

�
xt)i=1

Ns� + b , (2-54)

where

b = 1
{i | 0 < ∂i < C}

yi − ∂ j y jK(
�
xi,

�
x j)j=1

Ns

��
��

�
��

{i |0<∂i<C}

� . (2-55)

In literature, kernel function K(
�
xi,

�
x j) is usually considered as linear kernel of

transformed features of
�
xi and �x j , i.e., Φ(

�
xi) ⋅Φ(

�
x j). The transformed feature

Φ(
�
xi)can be in infinite dimension space.

2.2.3 Multiple-Kernel Learning (MKL)

Given a set of base features and their associated base kernels Kk , we

want to find the optimal kernel combination Kopt = dkKkk
� , where dk is the

weight for the kth base feature. The kernel combination Kopt approximates the

best trade-off between the discriminative power and the invariance for a

specific application.

Equations (2-56) to (2-58) show the objective cost function f and the

constraints for the multiple-kernel learning (MKL) proposed in [88].

w, ξi ,dk

Min f = 1
2

�
w

2 + C ξi
i

� + σ kdk
k

� , (2-56)

subject to

yi (
�
w ⋅Φ(

�
xi)+ b)−1+ξi ≥ 0 , (2-57)

 0≥iξ i∀ ; 0≥kd k∀ ; A
�
d ≥ �

p . (2-58)

� �

where Φ(
�
xi) is the combined features corresponding to Kopt in a high

dimensional space for sample xi , which is shown in Equation (2-59).

Equivalently, Kopt can be expressed in Equation (2-60), where Φk (
�
xi) ⋅Φk (

�
x j)

forms kth base kernel Kk .

 Kopt (
�
xi,

�
x j) = Φ(

�
xi) ⋅Φ(

�
x j) (2-59)

 Kopt (
�
xi,

�
x j) = dkΦk (

�
xi) ⋅Φk (

�
x j)

k

� (2-60)

 The optimization can be carried out in a SVM framework subject to

additional regularization term of weight dk in the objective function.

In order to handle large-scale problems involving many base kernels,

the minimax optimization strategy [20, 73, 88] is used with two iteration

steps. In the first step, feature weight dk is fixed, i.e., Kopt = dkKkk
� is fixed.

Then the optimization problem of Equation (2-56) can be solved by any

standard SVM solver using its dual form of Equation (2-61), since the term

σ kdkk
� is simply a constant.

∂i

Max LD = ∂i
i

� − 1
2

∂i∂ j yiy jKopt (
�
xi,

�
x j)

i, j

� + σ kdk
k

� , (2-61)

subject to

0 ≤ ∂i ≤ C ; ∂iyi = 0
i

� . (2-62)

In the second iteration step with the fixed ∂i , projected gradient

descent is employed to find updated feature weights dk as shown in

Equations (2-63) and (2-64).

���

 ∂LD

∂dk

= σ k − 1
2

∂i∂ j yiy jKk (
�
xi,

�
x j)

i, j

� (2-63)

 dk
new = dk

old − ∂LD

∂dk

 (2-64)

These two iteration steps are repeated until converge or the maximum

number of iterations is reached. The final weights of base features can be

determined.

Then we train SVM classifiers using the optimal combined kernel

according the final weights of base features. A new sample xt is assigned the

class labels with the sign of Equation (2-65).

yt = ∂iyi dk
k

� Kk (xi, xt)i=1

Ns

� + b . (2-65)

The multi-class problem can be solved by one-vs.-one or one-vs.-all

strategy similar to SVM.

MKL method provides an elegant framework to fuse many base

features by assigning larger feature weight to the most discriminative base

feature. Compared to the direct concatenation method, MKL can avoid the

contamination from less discriminative base features, especially when those

features have large dimensions.

However, MKL method tends to select very few base features from

the feature pool. It often only selects one or two base features, which are

discriminative at a particular high dimensional space H. Moreover, the

kernel parameter, e.g., σ in Gaussian RBF kernel, associated with the

optimal high dimensional space H may be significantly different for the base

features from different modalities. Therefore, traditional MKL cannot utilize

� ��

the maximum discriminative power of complementary base features at the

same time.

2.3 Large-scale Learning

As the continuously increasing scale in both examples and classes of

available datasets [28, 31, 39, 99], research work on visual classification has

to take into account of many practical constraints, e.g., computation and

memory costs, for both training and testing.

ImageNet [28] is currently one of the largest public available datasets

for image classification task. It has 14 million images with more than 21,000

image categories. With a such large dataset, both computation and memory

cost become crucial in algorithm design. To train 10,000 classifiers with

linear SVM using one-vs-all framework, it takes one CPU year [28]. For

nearest neighbor classifier, a brute force approach can also take one year to

go through 4.5 million testing images [28]. With 1000 codebook size, it

requires 18 GB memory capacities to simply store the Bag of Words

histograms for 4.5 million training images.

Most learning-based algorithms, e.g., one-vs.-all linear SVM [19, 25],

at best linearly increase with the number of image classes [14, 49, 56, 100].

During testing, it becomes computationally infeasible when scaling up to

large numbers of classes.

On the other hand, non-parametric nearest neighbor (NN) based

classifiers require no training phase and can naturally handle large numbers

of classes. However, they have to retain all the training examples in testing

phase, which becomes infeasible on large-scale datasets due to the expensive

computation cost and memory usage. For example, the total memory

���

required to store dense SIFT features [58] for the SUN dataset [99] is around

100 GB, which far exceeds the memory of a desktop (typically 4G – 48G).

Compared to learning-based classifiers, accuracies of NN-based classifiers

are normally much lower, which also limits their applications for visual

classification.

In this section, we will discuss some research effort to improve

efficiency of discriminative learning algorithms for large-scale visual

classification problem. We will also present related work on nearest

neighbor (NN) based methods, and discuss limitations, which prevent NN-

based methods from large-scale visual classification application. Some

research work on combining both learning based and NN-based classifiers

are also presented.

2.3.1 Discriminative Learning

To adapt linear SVM for large-scale visual classification, most

research work are built on hierarchical decision tree structure [34, 38, 59].

Figure 11 shows the comparison between the conventional one-vs.-all

classification scheme and hierarchical tree structure classification scheme.

As shown in Figure 11(a), one-vs.-all classification framework learns

a model for each category. During testing phase, a test image is predicted by

the models of all classes, with each of them assign a prediction score. Then

the final predicted label is simply the class label, which has the maximum

prediction score. Hence, one-vs.-all framework has the complexity of O(N),

where N is the total number of classes.

On the other hand, hierarchical structure classifiers partition class

labels space hierarchically based on affinity between class labels. As

�

illustrated in Figure 11(b), tiger is more similar to dolphin than watermelon

or orange. Hence at the first level of the hierarchy

to one group, i.e., animal group,

another group, i.e., fruit group

labels is further divided into subgroups

class label in each subgroup.

A model is learned for

During testing phase, a new imag

right branch or left branch

level. The final prediction result c

�
Figure 11: Illustrate the difference between one

classification schemes; (a) One

Hierarchical SVM classification scheme [

11(b), tiger is more similar to dolphin than watermelon

at the first level of the hierarchy, tiger and dolphin belong

i.e., animal group, while watermelon and orange belong

, i.e., fruit group. At the following levels, each group of class

divided into subgroups recursively, until there is only

in each subgroup.

A model is learned for each partition in the hierarchical tree structure

new image is classified at each level to either go to

right branch or left branch of the hierarchical tree, starting from the top

The final prediction result can be obtained at the leaf node of the

: Illustrate the difference between one-vs.-all SVM and hierarchical SVM

classification schemes; (a) One-vs.-all linear SVM classification scheme; (b)

Hierarchical SVM classification scheme [113, 114, 115, 116, 117].

��

11(b), tiger is more similar to dolphin than watermelon

, tiger and dolphin belong

e watermelon and orange belong to

each group of class

, until there is only one

in the hierarchical tree structure.

to either go to

of the hierarchical tree, starting from the top

an be obtained at the leaf node of the

�

all SVM and hierarchical SVM

all linear SVM classification scheme; (b)

���

hierarchical structure. As illustrated in

predicted as either animal or fruit at the first level.

animal, then the image is predicted as either tiger or dolp

level. The final predicted cla

structure, the computation cost of the hierarchy

increase logarithmically with the total number of classes.

Much research effort

how to partition class label space [

handle confused classes [

Griffin et al. [38

hierarchical partitions of class label space, as illustrated in

first level is super-group, which

the class labels are partitioned as two

third level, plant group is further divided into

group is also divided into land animal and marine animal groups.

�
Figure 12: Illustrate class taxonomy with four levels [
121, 122].
�

As illustrated in Figure 11(b), a new image is first

either animal or fruit at the first level. After it is predicted

is predicted as either tiger or dolphin at the second

The final predicted class label is obtained at this level. Due to the tree

utation cost of the hierarchy based classifiers only

increase logarithmically with the total number of classes.

effort on hierarchical SVM based framework is on

how to partition class label space [7, 21, 91, 98, 104, 109], and

[34, 38, 59].

38] propose class taxonomies to represent the

of class label space, as illustrated in Figure

group, which contains all class labels. At the second level,

the class labels are partitioned as two groups, i.e., plant and animal.

third level, plant group is further divided into fruit and flower group. Animal

ed into land animal and marine animal groups.

: Illustrate class taxonomy with four levels [114, 115, 117, 118

11(b), a new image is first

predicted as

hin at the second

Due to the tree

based classifiers only

on hierarchical SVM based framework is on

, and how to

to represent the

Figure 12. The

At the second level,

groups, i.e., plant and animal. At the

and flower group. Animal

ed into land animal and marine animal groups. Finally the

�

118, 119, 120,

� ��

fourth level contains leaves of taxonomies, at which one group only has one

class label.

The taxonomies are learned based on affinity between a pair of classes

or a pair of class groups. The affinity is measured based on confusion

matrix, which can be constructed using cross validation scheme during

training phase.

Two different methods are employed to generate class taxonomies

automatically. The first method splits the confusion matrix into two groups

recursively using Self-Tuning Spectral Clustering [105] until only one

category in all sub-groups. This is essentially a top-down approach.

The second method is a bottom-up approach. Initially, every class is

an individual group. Two groups with maximum mutual confusion are

joined into one group, while the confusion matrix is updated by averaging

their rows and columns. The process is repeated until one group contains all

class labels.

Similar to other hierarchical classifier framework, Griffin et al. [38]

train a classifier for every class label partition in the taxonomies. In testing

phase, they propose a termination node, at which the test image will stop

going down the hierarchical taxonomies, and perform one-vs.-all

classification for the group of class labels at the termination node.

Taking Figure 12 as an example, the classification framework is

identical to one-vs.-all classification if we place the termination node at the

first level. If the termination node is at the second level, and the test image is

classified as plant group at the first level, then all four classes in the animal

group are eliminated for further consideration. The test image will stop at the

second level, and one-vs.-all classifier is employed to determine, to which

class in the four plant classes the test image belong. The termination node at

���

the last level results in a classifier, which

hierarchical based classifier

In order to achieve a better tradeoff between accuracy and e

several papers [34, 59]

decision for some confusing classes in the hierarchical decision structure.

�
Figure 13: Illustrate relaxed hierarchy for four class data. (a)

red colored class labels as “+1” class, and green colored class labels as “

The black colored class labels in bracket are in ignored group. (b), (c) and (d)

illustrate the coloring of class labels and the associated decisio

level (top level) and second level respectively. Note that red color indicates “+1”

class, green color indicates “

Unfilled features in (c) and (d) are not considered during col

the last level results in a classifier, which is same as the conventional

hierarchical based classifier presented before.

In order to achieve a better tradeoff between accuracy and e

] utilize the relaxed hierarchy, which postpones the

decision for some confusing classes in the hierarchical decision structure.

: Illustrate relaxed hierarchy for four class data. (a) Relaxed hierarchy with

red colored class labels as “+1” class, and green colored class labels as “

The black colored class labels in bracket are in ignored group. (b), (c) and (d)

illustrate the coloring of class labels and the associated decision boundary for first

level (top level) and second level respectively. Note that red color indicates “+1”

class, green color indicates “-1” class, and black color indicates ignored class labels.

Unfilled features in (c) and (d) are not considered during coloring process.�

conventional

In order to achieve a better tradeoff between accuracy and efficiency,

, which postpones the

decision for some confusing classes in the hierarchical decision structure.

�

�

Relaxed hierarchy with

red colored class labels as “+1” class, and green colored class labels as “-1” class.

The black colored class labels in bracket are in ignored group. (b), (c) and (d)

n boundary for first

level (top level) and second level respectively. Note that red color indicates “+1”

1” class, and black color indicates ignored class labels.

�

� ��

Figure 13(a) illustrates the concept of relaxed hierarchy. At each level,

class labels are divided into three groups. The first group of class labels is

colored as red, which is “+1” class. The second group is colored as green,

which is “-1” class. The third group includes all confused class labels, which

are colored as black. The ignored class labels are not participating in

computing decision boundary at the node.

Figure 13(b) illustrates the class label coloring with decision boundary

obtained by data from “+1” and “-1” groups at the first level of the hierarchy

in Figure 13(a). In Figure 13(b), class label 1, which features are marked as

red, belong to “+1” group, and class label 2, which features are marked as

green, belong to “-1” group. The class labels 3 and 4 belong to the ignored

group, and their features are marked as black. Similarly Figure 13(c) and

Figure 13(d) shows coloring and associated decision boundary at the left

node and right node of the second level in the hierarchy. Note that the class

labels, which features are not marked with any color, participate in neither

coloring process nor decision boundary calculation.

From intuition, the less ignored class labels is at a node of the

hierarchy, the better efficiency of the hierarchical decision structure is. In

other words, if there are more classes participating in computing decision

boundary at a node, the more class labels can be eliminated at next level of

the hierarchy.

The authors [34] formulate this tuition into a principle optimization

problem. At each node, given l training samples (
�
xi , yi), where

yi ∈ ϒ = {1,2,..., N}, class labels ϒ ����� partitioned into a positive subset Sy
+ , a

negative subset Sy
− and an ignored subset Sy

0 . A particular partition or

coloring gives a different binary classification problem, where positive

��	

samples are Sx
+ = {

�
xi | yi ∈ Sy

+} , and negative samples are Sx
− = {

�
xi | yi ∈ Sy

−} . Note

that the samples from ignored subset Sy
0 are not participating in the binary

classification problem. An additional coloring variable for each class label is

also introduced, i.e., µn ∈ {−1, 0,+1} , where n is from 1 to N, indicating which

subset the nth class label should belong to. Then, the optimization problem at

each node becomes to minimize

f = 1
2

�
w

2

2 + C µyi ξi − A µyii=1

l

�
i=1

l

� . (2-66)

subject to

µyi ∈ {−1, 0,+1} . (2-67)

µyi (
�
w ⋅ �xi + b) ≥1−ξi . (2-68)

ξi ≥ 0 . (2-69)

−B ≤ µnn=1

N

� ≤ B . (2-70)

{n | µn > 0} ≥1 and {n | µn < 0} ≥1 . (2-71)

The first two terms in objective function (Equation (2-66)) is to

minimize training error and maximize SVM classifier margin. They are

same as standard SVM objective function if only training samples from

positive subset, i.e., “+1” group, and negative subset, i.e., “-1” group, are

considered. The last term in objective function is to encourage all training

samples participating to calculate binary decision boundary at a given node.

That is to encourage small size in ignored subset Sy
0 . The constraints of

� �

Equations (2-70) and (2-71) ensure data balance of positive and negative

group for the binary classification problem at the node.

To solve the optimization problem of Equations (2-66)-(2-71), the

authors [34] propose a two-step alternating method, i.e., (1) fixing µn , and

optimizing
�
w, b; (2) fixing

�
w, b, therefore ξi , optimize µn .

With fixing µn , the optimization problem reduces to standard SVM

problem with positive samples from Sx
+ , and negative samples from Sx

− . We

can then find
�
w, bwith standard SVM solver [19].

With fixing
�
w, b, therefore ξi , the objective function of Equation (2-

66) becomes

f = 1
2

�
w

2

2 + C [δ(µyi −1)ξi
+ +δ(µyi +1)ξi

−]
i=1

l

� − A µyii=1

l

� , (2-72)

where δ(t − m) is delta function, which is 1 only when t = m . Otherwise, the

delta function has value of 0. Since �
w

2

2 is fixed at this step, hence we drop

the first term of Equation (2-72). By recognizing µyi is same for samples of

a given class label n, we reformulate Equation (2-72) over class labels.

f = C [δ(µn −1)ξi
+ +δ(µn +1)ξi

−]
i={i | yi=n}

�
n=1

N

� − A µni={i | yi=n}
�

n=1

N

� (2-73)

Reorganizing Equation (2-73), we have

f = C [δ(µn −1)ξi
+ +δ(µn +1)ξi

− − A
C

µn]
i={i | yi=n}

�
n=1

N

� . (2-74)

Since C is a constant, it can be dropped out from the objective function, and

let fn represent cost function of a class label n, i.e.,

���

fn = [δ(µn −1)ξi
+ +δ(µn +1)ξi

− − A
C

µn]
i={i | yi=n}

� ��������������������������'�(��&

Equation (2-74) becomes

f = fnn=1

N

� . (2-76)

 Therefore, with fixing
�
w, b, the optimization is to minimize Equation

(2-76), subject to

µn ∈ {−1, 0,+1} . (2-77)

−B ≤ µnn=1

N

� ≤ B . (2-78)

{n | µn > 0} ≥1 and {n | µn < 0} ≥1 . (2-79)

Note that

ξi
+ = max{0,1− �

w ⋅ �xi − b} , (2-80)

ξi
− = max{0,1+ �

w ⋅ �xi + b} . (2-81)

Since µn can only take three discrete values as shown in Equation (2-77), a

single class label’s cost function fn , which depends on µn , can only take

three values too. To minimize Equation (2-76) is equivalent to select

minimum fn over three possible µn values for each class label. Let’s say µ̂n

gives minimum fn , then µ̂nn=1

N

� need to satisfy the constraint of Equation (2-

78).

If µ̂nn=1

N

� satisfy Equation (2-78), then µ̂n is the solution. If

µ̂nn=1

N

� > B , then we know there are more class labels in the positive subset,

� ��

i.e., Sy
+ . Therefore, some class labels’ µ̂n should be decreased. This can be

done by calculating the delta increase of fn , i.e., ∆fn , per unit decrease in µn

for each class label. Then sort the ∆fn , and select minimum ∆fn , and decrease

its corresponding µn . The process is repeated until µ̂nn=1

N

� satisfy Equation

(2-78). If µ̂nn=1

N

� < −B , same approach is adapted except to increase µn .

 Hierarchical based SVM classifiers improve classification efficiency

because of the hierarchical tree structure. However, the price is

compromising classification accuracy to some extent.

Deep learning recently has successfully applied on large-scale image

classification. Krizhevsky et. al. [48] has trained a deep convolutional neural

network (CNN) to classify a million of images on a subset of ImageNet. It

outperforms the state of the art performance by a significant percentage.

The CNN they applied has 8 layers, i.e. 5 convolutional layers and 3

fully connected layers with 60 million parameters and 650,000 neurons.

Given such large network, the over fitting becomes a major issue. To avoid

the over fitting problem, the authors propose several techniques including

data augmentation and dropout etc. [48].

Dean et. al. [128] propose to replace the dot-product kernel operator

with locality-sensitive hashing in order to accelerate the convolution with

millions of filters. The technique achieves 20,000 times faster, and is used to

classify 100,000 object classes.

2.3.2 Nearest Neighbor based Classifier

Nearest neighbor based classifiers can naturally handle large number

of categories. However, their classification accuracy is usually much lower

���

than learning based classifier [62, 99]. Even though NN-based classifier is

well known for its efficiency on training, i.e., no training required, its testing

speed is extremely slow [62]. NN-based classifier usually needs to store all

training data in test phase. Hence, memory usage can become prohibitively

large when applying on large-scale datasets.

A popular approach to apply nearest neighbor on image classification

is to form an image representation by Bag of Words (BOW) model for both

training and testing images. The distances between a test image and each of

training images, i.e., image-to-image distances, are computed based on the

Euclidean distance of their BOW vectors. The predicted class label of the

test image is assigned with the class label of the training image, which has

the smallest image-to-image distance.

Boiman et al. [10] argue that two practices have severely degraded the

performance of nearest neighbor classifier, i.e., (1) vector quantization step

used in forming the BOW image representation, and (2) classification based

on image-to-image distance.

BOW enjoys a compact representation of an image based a codebook,

which size is usually small, e.g., a few hundred to a thousand visual words.

Nevertheless, the compactness comes with the price of discriminative power

loss for individual descriptors during vector quantization process. Without

training phase, nearest neighbor based classifier cannot compensate for such

loss as in learning-based classifiers. Hence, NN-based classifiers yield

inferior performance.

The use of image-to-image distance cannot generalize well to dataset

with large intra-class variation, especially when the training sample size in

each class is small. On the other hand, image-to-class distance describes the

�

overall similarity between a query

is expected to generalize better during testing.

Figure 14(b) shows a query i

training images of class “office”.

from any one of the three training images

are highlighted in different colors,

training images of class “office”

between the query image and

these patch similarity. Since the search of similar patches is not limited to a

single training image, the

phase, especially with limited training samples in each class

To avoid vector quantization and utilize

Boiman et al. [10] propose

Figure 14: Illustrate the concept of image

patches of a query image over all training images in class “office”; (a) Training images

of class “office”; (b) query image [123,124,125,126

� en a query image and all training images in

is expected to generalize better during testing.

shows a query image, and Figure 14(a) shows three

class “office”. The query image is significantly different

of the three training images. Nevertheless, its patches, which

are highlighted in different colors, can still find similar ones in

of class “office”. To compute image-to-class distance

query image and the class “office”, we can simply accumulate

Since the search of similar patches is not limited to a

the image-to-class distance generalize better

, especially with limited training samples in each class.

ector quantization and utilize image-to-class distance,

] propose Naïve-Bayes Nearest-Neighbor (NBNN)

: Illustrate the concept of image-to-class distance by searching similar

patches of a query image over all training images in class “office”; (a) Training images

of class “office”; (b) query image [123,124,125,126].�

��

images in a class. It

14(a) shows three

query image is significantly different

its patches, which

in different

class distance

class “office”, we can simply accumulate

Since the search of similar patches is not limited to a

better in testing

class distance,

Neighbor (NBNN)

�
class distance by searching similar

patches of a query image over all training images in class “office”; (a) Training images

���

classifier. The NBNN achieves comparable performance with the learning

based classifiers. In the following, we will provide the overview of NBNN

derivation.

Given a query image Q, the predicted class label Ĉ is

Ĉ = argmax
C

p(C |Q) . (2-82)

By Bayes’s theorem,

p(C | Q) = p(Q | C)p(C)
p(Q)

 . (2-83)

Equation (2-82) becomes

Ĉ = argmax
C

p(Q | C)p(C)
p(Q)

 . (2-84)

Since p(Q) is constant over all class label C, and we assume uniform

prior, i.e., p(C) is a constant, Equation (2-84) becomes

Ĉ = argmax
C

p(Q | C) . (2-85)

We further assume independence of descriptors
�
di , i.e.,

p(Q | C) = p(
�
di | C)

i=1

N∏ ���������������������������������, (2-86)

where N is the total number of descriptors in the query image Q. Substituting

Equation (2-86) into Equation (2-85), and take the logarithmic probability,

we have

Ĉ = argmax
C

log p(
�
di | C)

i=1

N∏() . (2-87)

Therefore,

Ĉ = argmax
C

log p(
�
di | C)()i=1

N

� . (2-88)

� ��

Next, approximating p(
�
di | C) with Parzen window estimator [72, 74], gives

����� p(
�
di | C) = 1

L
K(

�
dij=1

L

� −
�
d j

C)�������������������������, (2-89)�

where
�
d j

C is a training descriptor from class C. NBNN further assumes that

the summation term in Equation (2-89) can be approximated by kernel value

of K(
�
di − NNC (

�
di)), where NNC (

�
di) is the nearest neighbor training descriptor

in class C. Therefore,

���� p(
�
di | C) = 1

L
K(

�
di − NNC (

�
di)) �������������������������, (2-90)

By choosing Gaussian RBF kernel, we substitute Equation (2-90) to

Equation (2-88).

� =

�
�
�
�
�
�

�

�
�
�
�
�
�

�

� −
−

= N
i

iCi

C

dNNd

e
L

C 1

2

2

2

2

)(

1
logargmaxˆ σ

��

 . (2-91)

Reorganizing Equation (2-91) gives

Ĉ = argmax
C

− log(L)−

�
di − NNC (

�
di) 2

2

2σ 2i=1

N

� , (2-92)

where σ is a kernel bandwidth, which is positive number.

Assuming L and σ are equal over classes, i.e., balance training data with

equal kernel bandwidth for all class labels, we can have

Ĉ = argmax
C

−
�
di − NNC (

�
di) 2

2

i=1

N

� , (2-93)

Equivalently,

Ĉ = argmin
C

�
di − NNC (

�
di) 2

2

i=1

N

� , (2-94)

Equation (2-94) is the classification rule of NBNN classifier. For each

descriptor in a query image, we find a nearest neighbor descriptor over all

���

training images in each class. Then we compute the Euclidean distance

between the query descriptor and nearest neighbor descriptor

We call the distance as feature

distances are accumulated over class

query image. Finally, the

has the minimum accumulated

image-to-class distance.

 However, similar to other NN

expensive classification cost in both computation and memory. Even after

Figure 15: Illustrate the difference

calculate query feature (red square) to class distance for each of the four classes; (b)

Bar representation of query feature to class distance over all four classes for NBNN

method; (c) local NBNN calculates query feat

within the circle; (d) Bar representation of query feature to class distance over all four

classes. The black bars indicate background distance.

training images in each class. Then we compute the Euclidean distance

between the query descriptor and nearest neighbor descriptor of

We call the distance as feature-to-class distance. These feature

are accumulated over class labels for all query descriptor

query image. Finally, the query image is assigned with the class label

minimum accumulated feature-to-class distance, i.e., minimum

However, similar to other NN-based classifiers, NBNN requires

e classification cost in both computation and memory. Even after

: Illustrate the difference between NBNN and local NBNN. (a) NBNN

calculate query feature (red square) to class distance for each of the four classes; (b)

Bar representation of query feature to class distance over all four classes for NBNN

method; (c) local NBNN calculates query feature to class distance only for classes

within the circle; (d) Bar representation of query feature to class distance over all four

classes. The black bars indicate background distance.�

training images in each class. Then we compute the Euclidean distance

of each class.

feature-to-class

query descriptors in the

label, which

distance, i.e., minimum

based classifiers, NBNN requires

e classification cost in both computation and memory. Even after

�

between NBNN and local NBNN. (a) NBNN

calculate query feature (red square) to class distance for each of the four classes; (b)

Bar representation of query feature to class distance over all four classes for NBNN

ure to class distance only for classes

within the circle; (d) Bar representation of query feature to class distance over all four

� ��

using some approximate nearest neighbor techniques [1, 67]. The

computation cost of NBNN is still linearly proportional to the number of

classes, since each query descriptor needs to compute the feature-to-class

distance for all classes.

 To reduce computational cost, McCann and Lowe [62] propose local

NBNN, in which feature-to-class distance are accumulated only over the

classes, which are presented in a local neighborhood of a query descriptor.

They argue that the feature-to-class distance cannot approximate the

likelihood of query descriptor p(
�
di | C) well, if it gets too large.

 Figure 15 illustrates the difference between NBNN and local NBNN

method. Figure 15(a) illustrates the calculation of query feature to class

distance for all the four classes, i.e., triangle, star, pentagon and circle. Note

that query feature in Figure 15 is shown as a red square. Figure 15(b) is the

bar representation of query feature to class distance over all four classes.

 Figure 15(c) illustrates the local NBNN algorithm. Local NBNN finds

k+1 nearest neighbors features, which are illustrated using the circle, i.e., the

star feature on the circle is (k+1)th nearest neighbor. We then calculate query

feature to class distance only for classes within the circle, i.e., the classes, in

which some features are k nearest neighbor of the query feature; Note that

radius of the circle is used as background distance, i.e., the distance between

query feature and (k+1)th nearest neighbor (the star feature on the circle).

Figure 15(d) shows the bar representation of query feature to class distance

for local NBNN. For classes, in which no feature is the k nearest neighbor of

query feature, i.e., not within the circle, background distance is assumed.

They are indicated by black bars.

��	

Local NBNN improves the computation cost of NBNN by only

updating the classes found in a local neighborhood. Hence, the complexity

only grows logarithmically with the number of categories. Nevertheless, the

computation cost can still be expensive when the training data is large. For

instance, we observe that it takes more than 100 seconds for local NBNN to

classify one image on the Caltech 256 dataset using dense SIFT features.

Some research efforts have been made to combine learning-based and

NN-based methods. Tuytellaars et al. [85] observe the complementarity

between NBNN and Bag-of-Words (BOW). They propose to kernelize

NBNN and combine with BOW kernel, using a discriminative learning

framework, e.g. Multiple Kernel Learning (MKL) [35, 88]. In order to

reduce the computation cost, they simply down-sample query features in a

testing image, which adversely affects classification results. SVM-KNN

[107] hybrids � nearest neighbors (K-NN) method with learning based

classifier, i.e., SVM, to improve accuracy of the K-NN method. Despite

these efforts [5, 10, 85, 88, 107] made to improve the performance of NN-

based classifiers, very few work, if any, has tried to extend the NN-based

classifiers to large-scale visual classification, to improve accuracy as well as

reduce computation and memory costs simultaneously.

Another related work is vocabulary tree [69], which constructs

hierarchical k-mean tree by recursively dividing training data into k groups.

k is the branch factor of the vocabulary tree. The leaf nodes in the tree then

form a large dictionary as the codebook. The vector quantization has the

computation cost of O(log(n)) instead of O(n) as in the conventional vector

quantization method, where n is the codebook size. A very efficient

hierarchical TF-IDF (Term Frequency and Inverse Document Frequency)

� �

scoring scheme is proposed based on large codebook, which the hierarchical

k-mean tree provides.

���

Chapter 3

Spatially Encoded EigenMap Representation

3.1 Summary

We propose a novel approach to describe and recognize visual

categories. Inspired by the success of Bag of Words approach, we represent

an object using a collection of EigenMaps, which incorporate both

appearance and spatial information.

Each EigenMap captures the location likelihood of a visual word

through the kernel density estimation method. By collecting EigenMaps of

all visual words, our approach can effectively integrate both local features

and their global correspondences.

Experimental results on scene datasets demonstrate significant

performance improvement as compared with the standard Bag of Words

approach and the Latent Dirichelet Allocation model, which also utilizes a

codebook of visual words, over several feature types including both region

features and interest point features.

3.2 Method

3.2.1 Overview

� ��

The flowchart in Figure 16 illustrates our overall approach in visual

scene classification using EigenMap representation.

We first extract features from images. A codebook is generated from

the training image features by using an unsupervised clustering algorithm

such as the K-Means method. The center feature vectors in the codebook are

called visual words. Then each feature in both training and testing images is

vector-quantized to one of the visual words in the codebook.

We then construct location map for each visual word in a scene image

using the kernel density estimation method [8]. The EigenMap of a visual

word is then generated by projecting the location map to the principal

component space. The concatenation of every visual word’s EigenMap in

the scene image forms an input feature vector of a SVM (Support Vector

Machine) classifier [19, 25]. Finally we can classify an unknown scene

image to different scene categories. The proposed EigenMap representation

of a scene image not only incorporates spatial information in the appearance

features, but also effectively integrates both local features and their global

interactions.

Figure 16: Flowchart of the proposed approach using EigenMap representation in

visual scene classification.

�

���

3.2.2 Feature Extraction

In order to verify the effectiveness of the proposed model, we extract

five types of different features, which include both region features and

interest point features. In other words, for each type of features, we evaluate

the performance improvement of the EigenMap model. In our experiments,

we extract three types of region features and two types of interest point

features.

(A) Region Features: Texture, Shape, and Color

Three types of region features are extracted in our experiments:

texture, shape, and color. Before generating any region features, we first

perform segmentation on images using the algorithm proposed by

Felzenszwalb and Huttenlocher [32]. As shown in Figure 17, connected

pixels with same color are used to represent one segmented region. At each

segmented region, the above three types of region features are extracted.

Texture features are generated by passing the original image with S

filter bank [87]. S filter bank is rotationally invariant with 13 isotropic.

There are 13 responses for each image. The means and standard deviations

of each response are calculated for individual segmented region in the

image. In other words, each segmented region has 13 means and standard

deviations of the filter responses. These means and standard deviations are

combined together as texture features of one segmented region.

� ��

A simple type of shape features is extracted in this experiment

following the approach in [52]. The size of each segmented region is found

by calculating the maximum length of a segmented region in x and y

directions. Then, the shape feature of each segmented region is formed by

combining the size and the number of pixels in each segmented region.

Color features are formed by calculating color histograms of each

segmented region over the RGB color space. Each color space is divided

into 10 bins. Therefore, the color feature vector of each segmented region

has 1000 dimensions.

(B) Interest Point Features: Uniform Grids and Harris Corners

In addition to the region features above, two types of interest point

features are evaluated in our experiments: the uniform grids and the Harris

corners. In our evaluations, the uniform grid method is used to sample

interest points every 10 pixels in x and y directions. The number of interest

points generated for a typical image (resolution of 300 by 500) is around

1500.

Figure 17: Segmentation example of a Polo scene. Connected pixels with same color

belong to the same segment.

���

Unlike the uniform grid method, the Harris corners utilize gradient

information to detect more stable interest points in an image [42]. The

average number of the Harris corners in one image is approximately 100 in

our experiments, which is significantly less than the number of the uniform

grid interest points.

The Scale Invariant Feature Transform (SIFT) descriptor [58] is used

to describe all interest points regardless of their detection methods. A square

patch window with each interest point at its center is extracted. The patch

window size is 24 by 24 pixels. 4 by 4 center points are uniformly sampled

from the patch window. For each center point, an 8-Bin orientation

histograms of gradients within the patch window is constructed. The

gradient magnitudes are further weighted by a Gaussian function with the

mean corresponding to the center point. Then all histograms of the 16 center

points are concatenated together to form an interest point descriptor, which

has 128 dimensions.

3.2.3 Codebook Formation and Feature Quantization

After extracting feature vectors from the training images, the K-

Means clustering algorithm is used to group the feature vectors together

based on the Euclidean distance. As a result, the center feature vectors in all

clusters are called visual words. The resulting visual words form the

codebook vocabulary [26]. The codebook sizes of the texture, shape and

color features are 120, 100 and 30 respectively. Both the uniform grid and

the Harris corner features have the codebook size of 150.

The features in each image are then vector-quantized to one of visual

words in the codebook. The vector quantization process of a feature is to

� ��

find a visual word in the codebook with the smallest Euclidean distance.

Then the feature is represented by the closest visual word in the codebook.

3.2.4 EigenMap Generation

In order to effectively incorporate spatial information into these visual

words and describe their global correspondence within a scene image, we

generate an EigenMap for each visual word in the scene image. The

flowchart of EigenMap generation for each visual word is shown in Figure

18.

Given an input image and a codebook of visual words generated from

the K-Means clustering algorithm as described in the last section, we first

locate a visual word Vi in the input image and mark the corresponding

positions at the visual word Vi’s location map. The location map has fixed

size of 50 by 50 pixels. Then we use kernel density estimation [8] to model

the location likelihood of the visual word Vi in its location map, as illustrated

in the examples shown in Figure 19. The kernel we used is the normal

distribution with the standard deviation of 2.

The next step is to project the constructed location map to a lower

dimensional space using the principal component analysis, as shown in

Equation (3-1).

Figure 18: The flowchart of EigenMap Generation for each visual word from the

codebook.

���

�
s = ΦT ∗(

�
m − m) , (3-1)

where �s is the location map projected in the eigen-space, �m is the location

map, and m is the average map of all training location map �
m . Φ is a

matrix, in which each column vector is an eigenvector of the location maps’

covariance matrix, obtained from the training images, in the order of

descending eigenvalues of the covariance matrix. Finally, the EigenMap
�η

is constructed as the concatenation of �s and µ , as shown in Equation (3-2).

�η = [
�
s,µ] , (3-2)

where µ is the mean value of a visual word’s location map �m . Typical

dimension of EigenMap
�η is below 8, which results a very compact

representation of a scene image, as compared with previous work [49, 75].

 (a) coast (b) inside city

 (c) living room

Figure 19: A visual word Vi’s locations in an input image and its location likelihood

on the corresponding location map using the kernel density estimation analysis.

�

After each visual word’s EigenMap

then concatenate the EigenMaps of

scene image. This concatenated feature vector is also an input to the SVM

classifier.

3.2.5 Classifier

We employ the SVM with the RBF kernel as our multi

with one vs. one framework

which separate each pair classes of data

to assign a scene category to an

visual words’ EigenMaps.

3.3 Experiments

Figure 20: Sample images of the 8 scene categories from t

Database.

s EigenMap
�η �of a scene image is constructed, we

EigenMaps of all visual words together to represent the

scene image. This concatenated feature vector is also an input to the SVM

We employ the SVM with the RBF kernel as our multi-class classifier

one framework. The SVM is to find a set of hyper

each pair classes of data with the maximum margin. That is

to assign a scene category to an unknown image based on the collections of

EigenMaps.

: Sample images of the 8 scene categories from the UIUC Sport Scene

��

of a scene image is constructed, we

visual words together to represent the

scene image. This concatenated feature vector is also an input to the SVM

class classifier

s to find a set of hyper-planes,

the maximum margin. That is

collections of

he UIUC Sport Scene

��	

3.3.1 Databases

Experiments are performed over two databases: the UIUC

Scene database [52] and the Natural Scene database [

The UIUC Sport Scene database is a very challenging visual scene

database with significant intra

lighting etc. As shown in Figure 20

badminton court or at the backyard of a house. The lighting and scale can

Figure 21: sample images of the Natural Scene datab

Experiments are performed over two databases: the UIUC

] and the Natural Scene database [30].

The UIUC Sport Scene database is a very challenging visual scene

database with significant intra-class variations in the background, scale and

ghting etc. As shown in Figure 20, the badminton scene can happen on the

badminton court or at the backyard of a house. The lighting and scale can

: sample images of the Natural Scene database, which has 13 categories

Experiments are performed over two databases: the UIUC Sport

The UIUC Sport Scene database is a very challenging visual scene

variations in the background, scale and

, the badminton scene can happen on the

badminton court or at the backyard of a house. The lighting and scale can

ase, which has 13 categories.

� �

also be very different. The database consists of 8 categories of sport scenes

with 500 images in each category.

Natural Scene database consists of 13 categories, with 210 scene

images in each category, as shown in Figure 21. Most of them are gray

images. Therefore, we cannot evaluate the color feature on this dataset.

(a)

(b)

Figure 22: Comparing to the Bag of Words (BOW) model and the Latent Dirichlet

Allocation (LDA) model on (a) the UIUC Sport Scene database; and (b) the Natural

Scene database.

�	�

3.3.2 Experimental Setups

We divide the dataset of each category into five subsets. Then the

images of one subset are used as testing set, while the images from the

remaining four subsets are used as training set. The process is repeated five

times with each of the five subsets used as the testing data once. All

experimental results reported in the dissertation are the average accuracy of

the five repeated testing.

3.3.3 Experimental Results

(A) Compare to the Bag of Words Model and the LDA model

For each feature type, i.e., texture, shape, color, the Harris corner with

the SIFT descriptor and the uniform grid interest point with the SIFT

descriptor, we compare the proposed EigenMap approach with the Bag of

Words model (BOW) [26] and the Topic Discovery model [52]. More

specifically, we employ the Latent Dirichlet Allocation (LDA) [9] similar to

the approach proposed by Li et al. [52]. They are all running under the same

experimental setup.

The detailed comparisons over different feature types are shown in

Figure 22(a) and Figure 22(b) for the UIUC Sport Scene database and the

Natural Scene database respectively. On the UIUC Sport Scene database, the

EigenMap model outperforms the standard Bag of Words model by the

average of 4.8% over all different feature types. It also outperforms the LDA

model by the average of 15.3%.

We observe larger performance improvement over the other two

models on the Natural Scene database. The proposed approach improves

� 	�

classification accuracy by the average of 6% and 19% as compared with the

BOW and the LDA models respectively.

The consistent performance improvement over every feature type

verifies the effectiveness of the proposed model in the visual scene

classification. The spatial correspondences among local features, which the

�
(a)

�
(b)

Figure 23: Comparing the BOW and the LDA models using the five-fold cross

validation results of the uniform grid interest point features on (a) the UIUC Sport

Scene database; and (b) the Natural Scene database.

�

�	�

EigenMap model captures, contribute to the performance improvements.

Figure 23 shows the detailed cross validation results as compared with the

BOW and the LDA model.

The sample confusion matrices of the uniform grid interest point

feature are also shown in Figure 24 for both the UIUC Sport Scene database

� �
 (a) EigenMap on Sport Scene (b) BOW on Sport Scene

�
(c) EigenMap on Natural Scene

�
(d) BOW on Natural Scene

Figure 24: Sample confusion matrices of the EigenMap and the BOW models over

both the UIUC Sport Scene and the Nature Scene database;

� 	�

and the Natural Scene database. The true positive rate for each category is

shown in the last column next to the corresponding confusion matrix.

All the four confusion matrices are generated using the uniform grid

interest point with the SIFT descriptor, where the rows are the ground truth

while the columns are the classified categories. As we can see from the

confusion matrices of the EigenMap and the BOW, the EigenMap approach

achieves higher performance on most of the scene categories.

In the UIUC Sport Scene dataset, the most confusion occurs between

the “Rowing” and the “Sailing” categories since both sport scenes are very

similar in the background, which contains water in the scene images. In the

Natural Scene dataset, the most confusion occurs between the bedroom and

the living room scene images.

(B) Compare to the State-of-the-art Performance

Figure 25(a) and 25(b) show the detailed comparison with the state-

of-the-art performance on the UIUC Sport scene dataset [52, 93] and the

� ��������������������
 (a) (b)

Figure 25: Compare with the state of the art reported by Fei-Fei and Perona [30],

Lazebnik et al. [49], Li et al. [52], and Wang et al. [93] on both (a) UIUC Sport Scene

database and (b) Natural Scene database.

�

�	�

Natural Scene dataset [30, 49] respectively. The results are directly cited

from their papers. From Figure 25, the proposed EigenMap model achieves a

state-of-the-art performance on both the UIUC Sport Scene database and the

Natural Scene database.�

 (C) Select Number of Principal Components for EigenMap

We also evaluate the effect of number of eigenvectors used in the

construction of the EigenMap on the classification performance. As we can

see from Figure 26, the number of eigenvectors used in the PCA projection

achieves the best performance when it is around 5. As the number of

eigenvectors continues increasing, the performance degrades slightly. That

suggests that we only need a very small dimensional space to represent each

visual word’s EigenMap.

3.4 Discussion

���� �
 (a) (b)

Figure 26: The effect of number of eigenvectors used in the PCA projection on the

classification performance over (a) the UIUC Sport Scene database; (b) the Natural

Scene database; Note that we used the uniform grid interest point with the SIFT

descriptor for both databases.

�

� 	�

We have proposed a novel EigenMap representation of a scene image,

which can not only incorporates the spatial information with the appearance

features, but also integrates both local features and their global

correspondences effectively. The EigenMap model has been evaluated on

two public databases for scene image classification and outperforms both the

standard Bag of Words model and the LDA model. The proposed model also

achieves a state-of-the-art performance on both datasets with small feature

dimension.

�	�

Chapter 4

Margin-Constrained Multiple Kernel Learning

4.1 Summary

Recent advances in multiple-kernel learning (MKL) show the

effectiveness to fuse multiple base features in object detection and

recognition. However, MKL tends to select only the most discriminative

base features but ignore other less discriminative base features which may

provide complementary information. Moreover, MKL usually employ

Gaussian RBF kernels to transform each base feature to its high dimensional

space. Generally, base features from different modalities require different

kernel parameters for obtaining the optimal performance. Therefore, MKL

may fail to utilize the maximum discriminative power of all base features

from multiple modalities at the same time. In order to address these issues,

we propose margin-constrained multiple-kernel learning (MCMKL) method

by extending MKL with margin constraints and applying dimensionally

normalized RBF (DNRBF) kernels for application of multi-modal feature

fusion. The proposed MCMKL method learns weights of different base

features according to their discriminative power. Unlike the conventional

MKL, MCMKL incorporates less discriminative base features by assigning

smaller weights when constructing the optimal combined kernel, so that we

� 	�

can fully take the advantages of the complementary features from different

modalities. We validate the proposed MCMKL method for affect

recognition from face and body gesture modalities on the FABO dataset.

Our extensive experiments demonstrate favorable results as compared to the

existing work, and MKL-based approach.

4.2 Method

4.2.1 Multiple-Kernel Learning (MKL)

Multiple-kernel learning (MKL) is to find the optimal combination of

multiple base kernels Kk , i.e., Kopt = dkKkk
� , where dk is the weight for the

kth base kernel. Its objective function is shown in Equations (2-56) to (2-58)

in section 2.2.3. We copy the equations here for the convenience.

w, ξi ,dk

Min f = 1
2

�
w

2 + C ξi
i

� + σ kdk
k

� , (4-1)

subject to

yi (
�
w ⋅Φ(

�
xi)+ b)−1+ξi ≥ 0 , (4-2)

 0≥iξ i∀ ; 0≥kd k∀ ; A
�
d ≥ �

p , (4-3)

where Φ(
�
xi) satisfies

 Kopt (
�
xi,

�
x j) = Φ(

�
xi) ⋅Φ(

�
x j) . (4-4)

The dual form of Equation (4-1) is

�		

∂i

Max LD = ∂i
i

� − 1
2

∂i∂ j yiy jKopt (
�
xi,

�
x j)

i, j

� + σ kdk
k

� , (4-5)

subject to

0 ≤ ∂i ≤ C ; ∂iyi = 0
i

� . (4-6)

The optimization is carried out by two iteration steps: (1) fixing feature

weight dk , then solving Equation (4-5) with standard SVM solver; (2) fixing

∂i , then updating feature weights dk with projected gradient descent as

shown in Equations (4-7) and (4-8).

∂LD

∂dk

= σ k − 1
2

∂i∂ j yiy jKk (
�
xi,

�
x j)

i, j

� (4-7)

 dk
new = dk

old − ∂LD

∂dk

 (4-8)

4.2.2 Margin Constraints

To address these issues, we propose a Margin-Constrained Multiple Kernel

Learning (MCMKL) method. This is motivated by the observations that base

feature which is more discriminative usually finds a hyper-plane with larger

margin to separate support vectors of opposite classes during training of

SVM machines. A hyper-plane of base feature “a” in Figure 27(a) has a

larger margin than that of base feature “b” in Figure 27(b) to separate the

class of solid dot from the class of triangle. This suggests that the base

feature “a” is more discriminative than the base feature “b” for the

classification of the solid dot and the triangle class.

� 	

Therefore, the separation margin for each base feature in its high

dimensional space provides a rough measurement on the base feature’s

discriminative power. Nevertheless, these rough measurements can

effectively guide MKL when searching for the optimal feature combination.

The separation margin for each base feature can be calculated using

Equation (9) as the inversed square root of its own objective cost function.

mk = 2
�
wk

≈ 2
fk

= 2
1
2

�
wk

2 +C ξi
i

� +σ kdk

 . (4-9)

After obtaining the separation margin mk for each base feature, we select one

of base features as the reference base feature, which has the feature weight

of ds �and the margin ms . The weight dk of kth base feature is constrained in

the range, which has the lower bound of LBk and the upper bound of UBk

according to the margin ratio between ms and mk during training. LBk and UBk

 (a) (b)

Figure 27: (a) The hyper-plane of base feature “a” has a large separation margin to

separate solid dot class and triangle class; (b) The hyper-plane of base feature “b” has

a small margin to separate solid dot class and triangle class.

�
�

can be calculated as in Equation (4-11). The additional weight constraints in

Equation (4-10) are enforced during the multiple-kernel learning.

 LBk ≤ dk ≤UBk ∀k . (4-10)

LBk = mk

ms

�

�
�

�

�

n

* ds ; UBk = mk

ms

�

�
�

�

�

n

* ds *(1+δ) . (4-11)

where n is a parameter that controls the margin sensitivity on the feature

weight ratio between dk and ds . As n increases, the values of LBk and UBk

become more sensitive to the ratio of mk and ms . δ �is a constant to control

the range width of the feature weight dk . In our experiments, we set n to 1.5

and δ �to 1.

4.2.3 Dimensionally Normalized Kernel

Gaussian RBF kernel is one of the most popular non-linear kernels

due to its excellent performance in numerous applications. It is defined in

Equation (4-12).

K(
�
xi,

�
x j) = exp(−γ (xi,q − x j,q)2)

q=1

D

� . (4-12)

where �xi �and �x j �are the ith sample and the jth sample along with xi,q and x j,q as

the qth element in a feature vector. D is the sample’s feature dimension.

� is the RBF kernel parameter, which determines the mapping from a low

dimensional feature space L to a high dimensional space H.

Assuming that (xi,q − x j,q)2 is statistically same, the kernel value decreases

when the feature dimension increases at a fixed � as shown in Equation (4-

12). Hence, Equation (4-12) suggests the inverse relationship between the

�
�

optimal � and the feature dimension. This intuition is confirmed in our

experiments.

In MKL fusion, base features from different modalities may have

significantly different feature dimensions, which will result very different

optimal � values for each base feature. Therefore, MKL cannot utilize the

maximum discriminative power of all base features from different modalities

at the same time.

We can treat � as a feature selection parameter in MKL, which select

only few base features at a time. This intuition also explains the observations

reported in [88] that MKL tends to select only very few most discriminative

base features. Therefore, MKL cannot take the full advantages of all types of

features from multiple modalities.

Based on these observations, we propose a dimensionally normalized RBF

kernel (DNRBF), which is defined in Equation (4-13).

 K(xi, x j) = exp(− γ
D

(xi,q − x j,q)2)
q=1

D

� (4-13)

This normalization step is essential to eliminate the effect of feature

dimension on � selection, so that all base features have a similar optimal �.

Therefore, MCMKL can utilize the maximum discriminative power of all

base features from multiple modalities.

4.3 Multi-Modal Fusion for Affect Recognition

Affect recognition from multiple modalities is a challenging problem. Our

study focuses on fusion of features from visual modalities, i.e., face and

body gesture modality.

�
�

Different from conventional approaches to fuse features from multiple

modalities, which simply concatenate all feature vectors from different

sources together and feed the concatenated feature vector into a classifier,

such as SVM, we apply a margin-constrained multiple-kernel learning

(MCMKL) method to fuse features from both face and body gesture

modalities. MCMKL can effectively combine all types of features for affect

recognition by assigning an appropriate feature weight to each type of

features and calculate the optimal kernel for affect recognition.

4.3.1 Overview of MCMKL-based Affect Recognition

Figure 28 shows an overview of our affect recognition system, which

consists of five major parts, i.e., facial feature extraction, body gesture

feature extraction, expression temporal segmentation, temporal

normalization, and MCMKL-based classification.

Two types of facial features, i.e., Image-HOG and MHI-HOG [23] are

extracted in our experiments. Here, HOG stands for Histogram of Gradients

[27], and MHI stands for Motion History Image [9, 83]. Image-HOG

features capture facial appearance changes, while MHI-HOG features

represent facial motion information.

Four types of gesture features are extracted, which include location

features, motion area features, Image-HOG features, and MHI-HOG features

around both hands.

Each expression in video sequences can be first temporally segmented

into onset, apex, offset and neutral phases [23]. Then, we perform a temporal

normalization procedure to handle different temporal resolutions of

�
�

expressions. Finally MCMKL method is employed to find the optimal

feature combination and recognize affects.

4.3.2 Facial Features

Active Shape Model [24, 94] is first applied to track 53 facial landmark

points including brows, eyes, nose, mouth, and face contour, as shown in

Figure 29(a). Then we locate the corresponding positions of the facial points

in the Motion History Image (MHI), as shown in Figure 29(b).

The next step is to extract Image-HOG and MHI-HOG features on original

video frames and the corresponding MHI images respectively.

 We use 48 by 48 pixels patches with the number of orientation bin

equals to 6 and 8 for the Image-HOG and the MHI-HOG features

�

Figure 28: The overview of our proposed MCMKL-based multi-modal fusion for

affect recognition through both face and body gestures.

�
�

respectively. The MHI image captures motion information of each selected

facial point, while the original video frame conveys the appearance

information. Finally, we concatenate the Image-HOG descriptor of all the 53

facial points and apply Principal Component Analysis (PCA) to reduce the

feature dimension of the concatenated Image-HOG feature from 2862 to 40.

Similarly, we can obtain the MHI-HOG descriptor for the corresponding

frame and reduce the feature dimension of the concatenated MHI-HOG from

3816 down to 40 for each frame.

4.3.3 Body Gesture Features

To extract body gesture features, we first track both hands and head in

an expression video. The head position is simply the center point of the

�� ����� �
 (a) (b)

Figure 29: (a) Facial landmark points tracking; (b) Motion History Image.

 (a) (b) (c)

Figure 30: (a) skin color detection; (b) head and hand position in the original video

frame; (c) head and hand positions in the MHI image.

�
�

facial points from the ASM model (see Figure 30(b)). To track hands, we

apply a skin color detection [47] followed by the removal of the face

regions, which has already been tracked by the ASM model as shown in

Figure 30(a) and 30(b).

In addition to the positions of head and hands, we also calculate the

motion areas (e.g. the numbers of motion pixels in MHI image) within the

detected regions of head and hands. Figure 30(c) shows the head and hand

regions in a MHI image.

We further extract Image-HOG and MHI-HOG features in hand

regions by uniformly sampling interest points. Then a bag of words

representation with the codebook size of 80 is used to describe the

distribution of Image-HOG and MHI-HOG features of hand regions. Finally,

we perform PCA to reduce their feature dimensions.

4.3.4 Temporal Segmentation

An expression is a sequence of facial movements, which can be

roughly described by neutral, onset, apex and offset temporal segments.

Figure 31 shows a sample of the ground truth temporal segmentation

of an expression video. The temporal segmentation procedure is necessary to

accurately model the expression dynamics, which has been proven crucial

for facial behavior interpretation [77]. In our experiments, we simply use the

ground truth temporal segmentation and the affect recognition is performed

on the complete expression cycle, i.e., onset, apex and offset.

4.3.5 Temporal Normalization

�
�

In general, the temporal resolution of an expression is generally

different when performed by different people. Even same expression

performed by same person at a different time, the temporal resolution may

not be the same. In order to resolve this time resolution issue in expression

videos, we adopt the temporal normalization approach by normalizing all

types of features over a complete expression cycle.

The temporal normalization over an expression cycle can be easily

implemented by linear interpolation over frame’s feature vector along the

temporal direction.

4.3.6 MCMKL Based Multi-Modal Feature Fusion

Features from multiple modalities may have different forms.

Therefore dimensions of different types of features may vary significantly.

Our proposed margin-constrained multiple kernel learning (MCMKL)

method can effectively fuse all base features from different modalities, i.e.,

face and body gesture modality, by assigning a feature weight to each base

feature.

�

Figure 31: temporal segmentation of an expression video.

�
�

We concatenate the Image-HOG and the MHI-HOG of facial points as

one base feature, i.e., the face feature. The other four base features are from

the gesture channel, i.e., location, motion area, and both hands’ Image-HOG

and MHI-HOG features. Using the margin of each individual base feature as

a guide, along with the DNRBF to synchronize the optimal kernel parameter,

the MCMKL learns the optimal combined kernel by selecting a proper

weight for each base feature during the fusion.

For our multi-classes application, we choose one vs. one

classification, and then using the maximum voting scheme to label testing

samples.

4.4 Experiments

4.4.1 Experimental Setups

We use a bi-modal face and body gesture database, i.e., FABO

database in our experiments [9]. The database is collected using two

cameras, i.e., one for face and one for body gesture in a laboratory

environment. A sample video is shown in Figure 32. However, we only

employ the videos captured by the body camera to extract features for both

modalities, since the videos from the body camera already contain both face

and body gesture information.

After removing the categories in the database with very small number

of samples, there are 8 expression categories, i.e., “Anger”, “Anxiety”,

“Boredom”, “Disgust”, “Fear”, “Happiness”, “Puzzlement”, and

“Uncertainty”. The total number of videos used in our experiment is 255 and

each video has 2 to 4 complete expression cycles.

�
	

We randomly divide the videos into three subsets. Two subsets are

used in training and the remaining subset is used in testing. No same video

appears in both training and testing. But same subject may appear in both

training and testing due to the random selection process.

4.4.2 Comparison to Existing Work and MKL

Figure 32: sample video in FABO database recorded by body (top) and face (bottom)

camera;

�

Figure 33: The average performance of the top 12 ranks by sweeping kernel

parameter log2(�) from -15 to 8 for each of the three methods, i.e., concatenation

(cvpr4HB’11), MKL, and MCMKL.

�

In order to evaluate the effectiveness of the proposed MCMKL fusion

method, we compare it to the most recent work on the FABO database [41]

by using same features, and same training and testing dataset. We further

compare MCMKL with MKL method. The performance of the comparison

is displayed in Figure 33.

The five base features are used in our experiments, which include face

feature, location feature, motion area feature, Image-HOG and MHI-HOG

feature of both hands. The face feature is the concatenation of the Image-

HOG and the MHI-HOG from the face modality. The Table 2 shows the

corresponding feature dimension for each base feature. These base features

are fused through the concatenation, MKL, and MCMKL methods.

To make a fair comparison, we sweep kernel parameter log2(�) from

-15 to 8, and select the top 12 performances for each fusion method. Then

we rank these 12 performances by a descending order of their accuracy. We

repeat same experiment for three different subsets and the average

performances are reported in Figure 33. Figure 34 shows more details of the

rank 1 comparison, i.e., the comparison of the best performances for the

three fusion methods: MCMKL, MKL, and direct feature concatenation

(cvpr4HB’11 [23]).

Table 2: The feature dimension for each base feature, i.e., Face, Loc (location), MA

(motion area), Img-HOG (Image-HOG from gesture), and MHI-HOG (from gesture).

�����

)���*���

)���� ���� +,� -�%($.� +$-($.�

/������� ����� �	��
�� ���� ���

�

����

MCMKL outperforms the other two methods over all the top 12 ranks,

as shown in Figure 33. If we look at the rank 1 comparison in Figure 34, we

can see that the proposed MCMKL achieves better performance than the

concatenation method. Note that the five base features have been carefully

selected, and the parameters, e.g., PCA projection dimensions etc. are also

carefully chosen for the concatenation fusion method in [23]. On the other

hand, MCMKL effectively select those feature vectors, and it can still

outperform the concatenation fusion method by the average of 1.3%.

Our proposed MCMKL outperforms traditional MKL method by an

average recognition rate of 5.7% on these base features, as shown in Figure

34(a). Figure 34(b) shows the performance comparison over three different

testing subsets.

��� ��
 (a) (b)

Figure 34: (a) The best average performance by sweeping kernel parameter log2(�)

from -15 to 8 for each fusion method, i.e., cvpr4HB’11, MKL, and MCMKL; (b)

The best performance of the three fusion method in three different testing subsets.

� ���

4.4.3 Evaluate Feature Weight Distribution

In this section we verify that our proposed MCMKL is more effective

than MKL to incorporate less discriminative features, which provide

complementary information to the base features with the maximum

discriminative power. We select the kernel parameter � of 2-15 for MKL and

2-1 for MCMKL method, which yield the best performance for MKL and

MCMKL method respectively.

Since we choose one vs. one strategy for our multi-class expression

classification, the total number of models we need to train is
nC2 , where n is

the total number of expression classes in the dataset. Therefore, we have

trained 28 models for 8 categories of expressions, in which each model

contains one set of feature weights for the base features, i.e., face, location

(loc), motion area (MA), and both hands’ Image-HOG (imgHOG) and MHI-

�

Figure 35: Comparing the average feature weight distribution of the 5 base features,

i.e., face, location (loc), motion area (MA), and both hands’ Image-HOG (imgHOG)

and MHI-HOG (mhiHOG) features, for MKL and MCMKL methods.

����

HOG (mhiHOG) features. Then we take the mean feature weight of the 28

models over each base feature, followed by the proper normalization.

 Figure 35 shows the distribution of average feature weights over the 5

base feature types for MKL and MCMKL method. As expected, MKL

selects only the most discriminative base feature, i.e., face feature. More

specifically, it assigns more than 98% of the total feature weights to the face

feature. The MKL method ignores all the gesture features, i.e., location, and

motion area etc., even though these gesture features have been proven to

provide complementary information to the face feature [23].

As shown in Figure 35, the proposed MCMKL obtains a more

reasonable feature weight distribution. Similar to MKL methods, it

recognizes the face feature as the most discriminative base feature by

assigning the largest feature weight of 48%. At the same time, it also

incorporates other less discriminative gesture features according to their

discriminative power.

�

Figure 36: The effect of feature dimension of three base features over the selection of

the optimal RBF kernel parameter �.

� ���

Figure 35 has verified the effectiveness of the proposed margin

constraints and the dimensionally normalized RBF kernel (DNRBF). It is

obvious that the additional constraints on the feature weights according to

the separation margin of each base feature can enforce the model to assign

small weights to the less discriminative base features. However, it may not

be intuitive how the DNRBF contribute to a more reasonable feature weight

assignment.

Before we provide such intuition, we examine the relationship

between the optimal � value and feature dimension experimentally. We

select three base features, i.e., facial point’s MHI-HOG, the facial point’s

Image-HOG and the location feature. Then we manually vary the PCA

dimension of the Image-HOG and the MHI-HOG, or the number of

normalization frames of the location feature, so that their feature dimensions

can be gradually increased. Then we use SVM’s 5-fold cross validation to

find out the optimal kernel parameter � for each of the three base features at

the selected feature dimension. Figure 36 has suggested the inverse

relationship between the optimal � value and the feature dimension, which

has verified our analysis in section 4.2.3.

In the experiments of the last section, the most discriminative feature,

i.e., the face feature, has the optimal � of 2-15. Since other less discriminative

gesture feature has much smaller feature dimension as we can see from

Table 2. Their optimal � value is much larger. Therefore, at the � of 2-15, the

other gesture features has almost no discriminative power since their optimal

� values are very far away from 2-15. Therefore, MKL method assigns almost

zero feature weights to other gesture features.

After we perform the dimensionally normalization as in Equation (4-

13). The optimal � values become very close for different base features

����

regardless the differences of their feature dimensions. Therefore, MCMKL

can utilize the maximum discriminative power of all base features at the

same time. That is another reason why MCMKL method can incorporate

other less discriminative base features, which provide complementary

information.

4.4.4 Contamination from Less Discriminative Features

In this section, we examine the contamination from the less

discriminative base features, particularly those with large feature

dimensions. From the feature weight distribution in Figure 35, we know that

the Image-HOG and MHI-HOG of hands are the least discriminative

features. So we intentionally increase their feature dimension to 1200 by

including more PCA dimensions. At the same time, we also decrease the

dimension of the most discriminative feature, i.e., the face feature, down to

90. Now, we also sweep kernel parameter log2(�) and select the top 10

�

Figure 37: Explore contamination from noisy feature. The average performance of

the top 10 ranks by sweeping kernel parameter � for each of the three methods, i.e.,

concatenation (cvpr4HB’11), MKL, and MCMKL.

� ���

performances for each fusion method, i.e., concatenation, MKL, and

MCMKL. Then we rank these 10 performances by the descending order of

their accuracy. The experimental results are shown in Figure 37.

We observe that the rank 1 result of the MCMKL method outperforms

the concatenation fusion method by almost 10%, which indicate that

MCMKL method is more effective to shield the contamination from the less

discriminative base features, as compared with the concatenation fusion

method.

4.5 Discussion

In this chapter, we have proposed a margin-constrained multiple-

kernel learning (MCMKL) method, which extends the multiple-kernel

learning (MKL) method by constraining feature weight range according to

the separation margin of each base feature. The dimensionally normalized

RBF kernel (DNRBF) is also proposed and employed in MCMKL in order

to fuse the features from multiple modalities, which is possible to have very

different feature dimensions. Our experimental results demonstrate favorable

results as compared to the state-of-the-art results on the FABO database. We

also demonstrate the significant improvement as compared to the

conventional MKL method.

The training time of MCMKL can increase slightly since it needs to

find separation margin for each feature type. Nevertheless, by constraining

the fusing weight range of each feature type, the MKL training might

converge faster, which we need to verify in our future work.

�

�

����

Chapter 5

Discriminative Hierarchical K-Means Tree

5.1 Summary

A key challenge in large-scale image classification is how to achieve

efficiency in terms of both computation and memory, but without

compromising classification accuracy. The learning-based classifiers achieve

state-of-the-art accuracies, but have been criticized for the complexity that

grows linearly with the number of classes. The non-parametric nearest

neighbor (NN) based classifiers naturally handle large numbers of

categories, but incur prohibitively expensive computation and memory costs.

In this chapter, we present a novel classification scheme, i.e., Discriminative

Hierarchical K-means Tree (D-HKTree), which combines the advantages of

both learning-based and NN-based classifiers. The complexity of D-HKTree

only grows sub-linearly with the number of categories, which is much better

than the recent hierarchical SVM based methods. The memory usage in D-

HKTree also benefits from precluding all training features, which is order of

magnitude less than the recent NBNN based methods. In the evaluations on

several challenging benchmarks, D-HKTree obtains state-of-the-art

accuracies, while with significantly lower computation cost and memory

requirement.�

� ���

5.2 Construction of Discriminative Hierarchical K-means

Tree

One attractive property of NN-based classifiers is able to naturally

handle large numbers of categories in object and scene classification.

However, the aforementioned issues of expensive classification cost and

inferior performance have hindered their applications on large-scale image

classification, due to high variances in a large-scale dataset but limited

training samples. The proposed D-HKTree addresses these issues and

�
�
Figure 38: Labeled Hierarchical K-means Tree (L-HKTree). (a) L-HKTree structure.

(b) The corresponding feature space partitions projected onto two-dimensional space.

(c) Example images from the classes of bear and dog respectively. (d) The label

histogram associated with one leaf node, i.e., the frequency of training features falling

in the leaf node over all class labels.

�

���	

extended NN-based classification scheme to large-scale object and scene

classification. In this section, we describe the detailed theoretical derivations

and computational procedures to build D-HKTree and L-HKTree.

5.2.1 Algorithm Overview

�
�

Figure 39: The framework of D-HKTree. In the forward L-HKTree process, query

features come down the L-HKTree, and the label histograms of associated leaf node

are summed up into the accumulated label histogram at the bottom. Top �

performance class labels are selected. Then query features propagate back to their

parent non-leaf nodes, and the DL histogram at the non-leaf nodes of the selected

class labels are summed up into the accumulated DL histogram. The class label is

finally predicted according to the maximum value in the accumulated DL histogram.

� ��

Figure 39 demonstrates the framework of D-HKTree. Query features

in a testing image come down L-HKTree and arrive at their nearest neighbor

leaf nodes. The label histograms at the associated leaf nodes are summed up

into the accumulated label histogram at the bottom, where top p

performance class labels are selected. After the forward L-HKTree process,

query features propagate back to their parent non-leaf nodes at a certain

level, where their discriminatively learned (DL) histograms over the selected

pclass labels are summed up into the accumulated DL histogram at the top.

The predicted class label is finally inferred from the accumulated DL

histogram. The DL histograms associated with non-leaf nodes of a particular

level can be generated by training a suitable discriminatively learning

classifier. In order to maintain a high speed, the accumulations of label

histograms associated with leaf nodes and DL histograms associated with

non-leaf nodes are implemented by simple operations.

5.2.2 Labeled Hierarchical K-means Tree

The main structure of D-HKTree builds upon L-HKTree. In this

subsection, we provide detailed procedures in deriving and building L-

HKTree.

 (A) Towards L-HKTree

As the classification rules in NBNN, we make the two assumptions,

i.e. uniform prior over all class labels and the independence of query

features di in a testing image Q [10]. The predicted label can be obtained by

Equation (5-1).

����

Ĉ = argmax
C

log p(di | C)
i=1

N

� . (5-1)

We explicitly model unbalanced data over class labels in the Parzen

window estimator. The total number of training features in class C is LC .

log p(di | C) = 1
LC

K(di − d j
C)

j=1

Lc

� . (5-2)

Instead of using the Gaussian kernel for K as in the local NBNN, we

use a uniform kernel with the bandwidth of ri .

K(di − d j
C) = B fU(1−

di − d j
C

ri

) , (5-3)

where the bandwidth ri > 0 , B f is a positive constant and U is a unit

step function, which is 1 if the Euclidean distance between the training

feature d j
C and the query feature di is less than the bandwidth ri ; and

otherwise is 0. If substituting Equation (5-3) to Equation (5-2), we have

log p(di | C) =
B f

LC

U(1−
di − d j

C

ri

)
j=1

Lc

� . (5-4)

The summation term in Equation (5-4) denotes the total number of

training features in class C, which have Euclidean distance smaller than ��

away from the query feature ��. This can be illustrated using Figure 40(a).

The center of the purple circle is at the query feature �� with the radius equal

to the bandwidth of �� . The summation term in Equation (5-4) for the

triangle class is the total number of triangle training features falling within

the purple circle, i.e. 2 in Figure 40(a). Similarly, the summation terms for

the pentagon class and the star class are 3 and 1, respectively. As illustrated

� ���

in Figure 40(b), we further approximate the unit step function � with the

feature space boundary defined by the leaf node � , in which the query

feature �� falls within.�

U(1−
di − d j

C

ri

) ≅ δ(fi, LEAF(d j
C)) (5-5)

where !"#$��%
&� is the nearest neighbor leaf node of the training

feature �%
&; ' equals to 1 when feature �� and �%

& falls within the same feature

space partition defined by the leaf node �. If we substitute Equation (5-5) to

Equation (5-4), it becomes

log p(di | C) =
B f

LC

δ(fi, LEAF(d j
C))

j=1

LC� . (5-6)

Note the right hand side of the Equation (5-6) does not depend on the

query feature �� except that � is the leaf node of ��. Therefore, we can pre-

�

Figure 40: Illustration of unit step function. (a) The purple circle illustrates the unit

step function in equation (5-4). The center is at the query feature di with the radius

equal to the bandwidth of ri. (b) Approximate the unit step function of the purple

circle with the feature space partition by one of the leaf nodes in the HKTree.

����

compute the right hand side of Equation (5-6) for each class label (, and

store the results as the label histogram associated with the leaf node � ,

denoted as !)� �� (�.

 The summation term in Equation (5-6) is the number of training

features from category (, which falls within the feature space partition of the

leaf node � . !& corresponds to the total number of training features in

category (. *+ is a L1-Norm constant. Substituting Equation (5-6) to

Equation (5-1), we have the L-HKTree classification rule.

Ĉ = argmax
C

B f

LC

δ(fi, LEAF(d j
C))

j=1

LC�
�

�
�

�

�
�

i=1

N

�

= argmax
C

LH (LEAF(di),C)[]
i=1

N

�
 . (5-7)

As demonstrated in the derivation of the L-HKTree, we do not need to

compute the pair-wise distance of the query feature �� with each training

feature �%
& online. Instead, we only employ the label histogram associated

with the leaf node where �� falls within. Hence, L-HKTree does not retain

any training feature. This results in a significant saving in the memory,

which allows us to extend this NN-based classifier to a large-scale

classification task.

 As suggested in Equation (5-7), in the testing phase, we only need

accumulate label histograms of the leaf nodes, at which query features

arrive. The computation cost is therefore significantly reduced as compared

to the conventional NN-based classifiers [10] and the recently proposed

local NBNN [62]. Note the complexity of L-HKTree is independent of the

number of classes, which is a very attractive characteristic for image

classification on large-scale dataset with huge number of categories.

� ���

(B) Building L-HKTree

L-HKTree is first constructed by the hierarchical K-means tree [69]

from training samples with ! levels and , branches. Figure 38(a) illustrates a

two-level tree with three branches. The corresponding feature space partition

of each leaf node projected on the two-dimensional space is shown in Figure

38(b). We modify the original hierarchical K-means tree to automatically

adjust the number of branches of a non-leaf node if the average training

features arriving at its children nodes is below a threshold -.

Algorithm 1 provides the pseudo code to build L-HKTree. A label

histogram associated with each leaf node, as shown in Figure 38(d),

accumulates the number of training features arriving at this leaf node over

————————————————————————
Algorithm 1: Building L-HKTree
————————————————————————
Require:
(1) Hierarchical Kmean Tree ./0
(2) Initialize label histograms and 12 to 0
————————————————————————
for all categories 3 do
 for all training feature
� in category 3 do

 4 � 1567�
��
 1.�4� 3� � 1.�4� 3� 8 9
 12 � 12 8 9
 end for

end for

for all leaf nodes 4 do
 for all categories 3 in 4 do

 1.�4� 3� � 1.�4� 3�:12
 end for
 L1 normalize leaf node the label histogram of 4

end for

return ./0
————————————————————————

����

all class labels. For example, Figure 38(c) shows two images from the

classes of bear and dog. One training feature from the bear class and two

training features from the dog class arrive at the feature space partition of

one green leaf nodes in Figure 38(b). The label histogram of this green leaf

node in Figure 38(d) describes the frequency of training features arriving at

this leaf node over the class labels of dog and the bear.

 In order to handle unbalanced training data in different categories, we

normalize label histograms using the total number of training features of

corresponding class labels, i.e., !& in Algorithm 1.

All leaf nodes in L-HKTree have defined their corresponding feature

space boundaries as illustrated in Figure 38(b). Any feature arriving at a leaf

node can be considered as a nearest neighbor of this leaf node. The label

histogram associated with each leaf node counts numbers of training features

over class labels, which correspond to nearest neighbors to the leaf node

within the predefined feature space boundary. Intuitively, the more nearest

neighbor features are from a class label (in the label histogram of the leaf

node , the smaller distance is between the leaf node and the class label (.

Therefore, we can have another interpretation of the label histogram as the

inverse distance from leaf node to different classes.

(C) Pre-Classification with L-HKTree

�The classification rule of L-HKTree is shown in Equation (5-7).

Query features from a testing image arrive at corresponding leaf nodes. The

summation of the label histograms associated with leaf nodes forms the

Accumulated Label Histogram(#!)�. The ; class candidates can be selected

by the top ; values in #!). The predicted class label (top 1 class candidate)

corresponds to the maximum value in #!).

� ���

In our implementation, instead of using every query feature in a

testing image to accumulate label histograms, we employ the non-leaf nodes

at a particular level as a filter to remove some noisy query features. This is

motivated by the max pooling scheme [56] widely used in computing BOW.

If we deem the non-leaf nodes at a particular level as a visual vocabulary, a

coding scheme (e.g., local soft assignment) and a pooling scheme (e.g., max

pooling) can be used to compute a BOW histogram) over the selected non-

leaf nodes. Similarly in L-HKTree, only the query features, which provide

the max response at the non-leaf nodes at a certain level, are allowed to

continue down. In this way, we can also weight label histograms by the

responses of corresponding query features at the selected non-leaf nodes. In

the end, the weighted label histograms are accumulated into #!).

5.2.3 Discriminatively Learned Histogram

We choose the one-versus-all linear SVM as the discriminative

learning algorithm to incorporate into NN-based L-HKTree. In this

subsection, we show how to transform the learned SVM weights to the

discriminatively learned (DL) histograms of non-leaf nodes at a selected

level.

As stated above, in building L-HKTree, we can also compute BOW)

for training images using the selected non-leaf nodes as a visual vocabulary,

e.g., the red non-leaf nodes of L-HKTree in Figure39. We then employ one-

versus-all linear SVM to obtain the weights <&for class (. The score vector

over = classes can be computed by Equation (5-8). For convenience, we

ignore the bias term.

Y = [y1, y2,..., yC,..., yT] , (5-8)

����

where yC = W C ⋅ H = Wk
CHKk=1

M

� and > is the number of non-leaf nodes at the

selected level. Substituting ?& into @, we have

Y = [Wk
1

k=1

M

� Hk,Wk
2Hk,....,Wk

CHK ,...,Wk
T HK] . (5-9)

If we further factor out)A from the vector @, we have

Y = HkWkk=1

M

� , (5-10)

where Wk = [Wk
1,Wk

2,...,Wk
C,...,Wk

T].

<A is the discriminatively learned histogram over = classes at the �th

non-leaf node at the selected level. As label histograms are associated with

leaf nodes, discriminatively learned histograms are attached to selected non-

leaf nodes as well.

5.2.4 Classification with D-HKTree

As shown in Figure 39, a testing image is first pre-classified by L-

HKTree according to Equation (5-7). We obtain the accumulated label

histogram and select the top ; performance class labels from this histogram.

Query features in the leaf nodes are then propagated back to their parent

non-leaf nodes at the selected level. Their discriminatively learned

histograms of the selected ; class labels are multiplied by the maximum

responses at corresponding non-leaf nodes, which are summed up as the

accumulated discriminatively learned histogram. The bias terms of trained

SVM models are then subtracted from the accumulated discriminatively

learned histogram for the selected class label. Finally, we select the class

� ���

label with the highest score from the accumulated discriminatively learned

histogram.

The number of top class candidates ; is adaptively selected for

different testing images. We utilize the distribution of the accumulated label

histogram to build a cumulative confidence level, which is the cumulative

probability of the class labels in the accumulated label histogram. In our

experiments, we set a threshold of 0.2 to the cumulative confidence level to

determine the top ; class candidates. By adaptively select the top ; classes

in the forward L-HKTree process, D-HKTree is able to achieve a complexity

that grows only sub-linearly with the number of classes. On the other hand,

the best performing learning-based classifiers has the computation cost at

least increases linearly with the number of categories. Therefore, D-HKTree

can handle large-scale image classification with huge numbers of categories

more efficiently than learning-based classifiers while maintain state-of-the-

art accuracy.

5.3 Experiments

We evaluate our proposed models on object and scene recognition

datasets including Caltech 101 [31], Caltech 256 [39], and SUN dataset [99].

D-HKTree significantly outperforms all previous NN-based classifiers in

terms of classification accuracy, computation cost, and memory requirement.

The relative computational complexity of D-HKTree is also significantly

improved compared to the state-of-the-art learning-based classifiers.

Experimental results demonstrate that D-HKTree can scale very well to

large-scale datasets with large numbers of categories.

���	

5.3.1 Experimental Setup

We employ the dense SIFT features augmented by B and ? coordinates

throughout our experiments. The two spatial dimensions in the augmented

feature vector are weighted by 1.6 in Caltech 101 and 0.75 in Caltech 256

and SUN, as recommended in [62, 63]. L-HKTree has 2 levels with

maximum branch factor of 65K in Caltech 101 and 130K in Caltech 256 and

SUN. We employ the approximate nearest neighbor library FLANN [67] to

find the nearest neighbor branch for a query feature at each level.

In order to facilitate a fair comparison, we follow the evaluation

conventions, i.e. we use 30 images per category as training data and 15

images per category as testing data in Caltech 101 and Caltech 256 datasets.

We repeat the experiments 10 times with random selection of non-

overlapping training and testing data. The average accuracy with the

standard deviation is reported in the paper. As for SUN, we use exactly the

same training and attesting splitting as in [99], i.e. 50 images for both

training and testing sets.

5.3.2 Comparisons to NN-based Classifiers

Table 3: Comparison to NN-based classifiers on accuracy and speed (sec/image).

�

�������

� ��	
 �������� ���� �������� ���� �������� ����

��� � � � � !"# �$�%�#& � ��$�%''& �

� (�� �%'& �# �$ '� ') ��$ �*# * � �

� (�� �%'#& !* *"� #$ � � � � �

+
����� (�� ��)�"# !$ ' ,) �# �"# �$ ��' � � �

��- ./��� ##$%&'$%% ($)* *+$+&'$+,)$#)+$#&'$(, ($,-

0�����	��#� 0�����	�'*! 12 �

� ��

In this paper, we use the “*” sign after a number to indicate that the

number is directly quoted from original papers. The “-“ in the table indicate

that the data is not available.

Table 3 shows the comparisons of D-HKTree with other NN-based

classifiers on both classification accuracy and computation cost. D-HKTree

has achieved the highest accuracies, i.e. 77.6% and 45.5%, on Caltech 101

and Caltech 256, respectively. We achieve 35.7% accuracy on the SUN

dataset. To the best of our knowledge, this is the highest accuracy on this

dataset using a single feature type. Since the D-HKTree takes advantages of

both NN-based and learning-based classifiers, the performance is much

better than the conventional NN based classifiers. The second step of D-

HKTree tree, i.e. the learning based classifier, has boosted up the

classification accuracy. We also quote the classical 1-NN classifier results

on Caltech 256 and SUN datasets for the comparison in the Table 3. The 1-

NN classifier is a correlation classifier in the feature space with pixel

intensities of a resized image [39]. The 1-NN results reported in [99] use

multiple feature types. If using a single feature type, the result is probably

even worse.

The testing speed of D-HKTree is significantly faster than the

conventional NN-based classifiers, especially on larger datasets. To evaluate

the testing speed, we use the code provided by [62] with the recommended

parameters for NBNN and local NBNN. The L-HKTree defines partition

boundary in feature space, which pre-stores nearest neighbor feature

statistics within each boundary. The testing of a query image does not need

to go through all features in training data. Instead, it only requires the query

features to find the corresponding boundary and update the nearest neighbor

statistics.

����

 If we use 30 training images per category on Caltech 256, the testing

speed of D-HKTree is 30 times faster than local NBNN, and 120 times faster

than NBNN. As shown in Table 3, local NBNN is 10 times faster than

NBNN on Caltech 101, but only 4 times faster on Caltech 256, which is

different from the results reported in [62].

We think the discrepancy may be due to the number of training

images in each category used and the number of descriptors extracted in

each training image. If the total number of training features is too large, the

testing time might increase exponentially instead of logarithmically

depending on the implementation. On the other hand, the time increment is

significantly lower for D-HKTree as the dataset changes from Caltech 101 to

Caltech 256. It is interesting to observe the computation cost of SUN is even

lower than that of Caltech 256, i.e. 1.9 second per image versus 3.7 second

per image. This is due to the structure difference of the L-HKTrees built for

the two datasets, since the major computation costs of D-HKTree is from the

pre-classification of L-HKTree.

�

Figure 41: Comparing memory usage over different NN-based classifiers as the scale

of the dataset increases.

�

.('

('

)'

+'

#'

-'

(('

/�// �����/�/ / �.0� 	��

!������('(

!������1+%

23 /

� ���

Figure 41 compares the memory requirements of different NN-based

classifiers as the scale of dataset increases. Since the memory usage of

conventional NN-based classifiers is directly related to the size of training

data size, we can estimate their memory usages according to the training

data size. As for D-HKTree, the memory usage is estimated from the size of

L-HKTree. As shown in this figure, the memory usage of D-HKTree only

increases slightly from Caltech 101 to Caltech 256, then SUN. However, the

memory consumptions of NBNN and local NBNN grow significantly as

dataset scale increases. For example, the memory requirement is around

100GB for both NBNN and local NBNN under our experimental settings in

SUN dataset, while the memory usage of D-HKTree is only 6GB.

5.3.3 Comparisons to Learning-based Classifiers

Table 4: Comparison of classification accuracy to learning based classifiers on (a)

Caltech 101 and Caltech 256 datasets; (b) SUN dataset.

�

(a)

�� �

 (b)

� ��	
 0�����	��#� 0�����	�'*!

3 ��4�15� !� !"# ,$�%�'& �� �"# '$�%�#&

10�15� �%'�& �� '"# *�$ ��"# �*$

1+0 #,$)-&'$+- *+$#(&'$+-

.0�%)& !� �"� *$ '� '"# �$

��- ./��� ##$%&'$%% *+$+&'$+,

�� ��	
 12 �

3 ��4�15� �%''& '� *$

1�������- 3 6 %''& '� '$

1�������- 3 6 %�& '�$

� �- ./���)+$#&'$(,

����

Table 4 demonstrates the comparisons of classification accuracy

between D-HKTree and the state-of-the-art learning-based methods. D-

HKTree outperforms most learning-based methods and achieves comparable

performance to the recently proposed Spatially Local Coding (SLC) [63] on

Caltech 101 and Caltech 256. As for the SUN dataset in Table 4(b), D-

�

(a)�

�

(b)

Figure 42: Comparison of the tradeoff between accuracy and relative computational

complexity to other hierarchical SVM based methods for large-scale data, i.e. Gao

[34], Griffin [38], Marszalek [59], on (a) SUN dataset; (b) Caltech 256 dataset; Note

that the results from the other three methods are directly estimated from the plots in

the paper [34].

�

(+

1'

1+

)'

)+

*'

' '$('$1 '$) '$* '$+ '$%

4�����5��!�� �����������!�� ���6���

���

� 	�

��

7 �	�8���9

�.0� 	��

1'

1+

)'

)+

*'

*+

+'

' '$1 '$* '$% '$, (

4�����5��!�� �����������!�� ���6���

���

�	�

��

7 �	�8���9

�.0� 	��

� ���

HKTree significantly outperforms the current state-of-the-art with a single

feature type by more than 8% in classification accuracy.

To further evaluate the scalability to large-scale image classification,

we compare D-HKTree with several hierarchical SVM based classifiers [34,

38, 59] in Figure 42. All of these hierarchical SVM based classifiers attempt

to improve the efficiency of one-versus-all linear SVM classifier, so that

their complexity can grow sub-linearly with the number of categories.

However, these classifiers have to sacrifice classification accuracy for

the improvement on speed. We adopt the relative computational complexity

metric introduced in [34] for our evaluation. In the case of a linear kernel,

the relative complexity is the ratio between the number of categories

evaluated and the total number of categories in the dataset.

The relative computational complexity of D-HKTree can be tuned by

varying the number of top selected class labels from the accumulated label

histogram. Although the computation cost of L-HKTree is not reflected in

this metric, this cost is independent of the number of categories. As

demonstrated in Figure 42, D-HKTree dominates the classification

accuracies on Caltech 256 and SUN datasets, especially when the relative

computational complexity is low. For instance, at the relative computational

complexity of 0.06 in Figure 42(a), D-HKTree achieves 35% on the SUN

dataset, which is more than 10% higher than that of the best method reported

in [34]. Similar results are shown on the Caltech 256 dataset in Figure 42(b).

It is also interesting to observe that the classification accuracy of D-HKTree

tend to saturate around the relative computational complexity of 0.1, which

means D-HKTree is more effective to reduce the relative computational

complexity and maintain a desirable accuracy.

����

The top p categories, the L-HKTree selected, are the most confident

class labels specifically for the testing image. It has pruned away a large

number of unrelated class labels. Hence, the learning based classifier in the

second step can focus only on those class labels which are confused by the

L-HKTree, and make the final prediction with better accuracy.

On the other hand, leaf node in the hierarchical SVM based classifier

also has several class candidates to make the final prediction. The difference

is that the class candidates are not the most confident class labels

specifically to the testing image. Therefore, D-HKTree yields better

performance.

5.3.4 Comparisons to Hybrid Classifiers

There are very few work [85, 107] on combining learning-based and

NN-based classifiers to take advantages of both classifier types. Table 5

compares D-HKTree with two other methods that hybrid both classifier

types, i.e. SVM-KNN [107] and NBNN Kernel [85]. As shown in this table,

D-HKTree significantly outperforms SVM-KNN and NBNN Kernel by 11%

and 8% in accuracy respectively. Note that NBNN Multi-Kernel is actually

combining NBNN Kernel with other kernels of different feature types

instead of a single feature type. Nevertheless, D-HKTree still obtains the

highest accuracy as shown in Table 5.

� ���

SVM-KNN [107] selects k-nn neighbor images for a query image and

training a local multi-class SVM classifier to predict query image. As the

training data closely coupled with the nearest neighbor results, the nn-based

and svm based classifier cannot complement each other very well. That may

cause the significant performance decrease as compared with the D-HKTree.

5.4 Discussion

In this chapter, we have proposed a novel classification scheme, i.e.

D-HKTree, for larg-scale image classification. D-HKTree takes advantages

of both learning-based and NN-based methods. It extends the ability of NN-

based classifiers to scale to large numbers of image classes due to much

lower computation cost and memory requirement, while achieving state-of-

the-art classification accuracies. Compared to NN-based methods, D-

HKTree significantly outperforms NBNN and local NBNN in classification

accuracy, computation cost, and memory usage. Compared with learning-

based methods, D-HKTree largely improves the accuracy of hierarchical

SVM based methods at much lower relative computational complexity.

Compared to previous hybrid methods, D-HKTree also obtains much better

performance than SVM-KNN and NBNN Kernel.

Hierarchical K-Mean tree is employed to partition feature space for

training data in the D-HTree. However, any approximate nearest neighbor

Table 5: Comparison to the hybrid classifiers, i.e. SVM-KNN [24], and NBNN

Kernel [20], on the Caltech 101 dataset.

�

� ��	
 17� �.�� �(���.����� �(���� �����8����� ��-./���

9������� !! '"# *$!) !"#)$ �* '"� '$ ##$%&'$%%

����

method, such as hashing algorithms, can be used to generate the partition

regions.

� ���

Chapter 6

Conclusion and Future Work

6.1 Discussions and Conclusion

Visual classification contains three major components, i.e., feature

extraction, feature representation and classification. Each component can

have significant impact on both classification accuracy and efficiency. The

recent progress on each component of visual classification is impressive and

encouraging toward a more robust visual classification system. In this

dissertation, we have made contributions for feature representation and

classifier design. Especially, we focus on multi-feature fusion to improve

classification accuracy, and large-scale learning algorithm, which takes

advantages of both learning-based and nearest neighbor based classifiers.

We have proposed a new feature representation, i.e., EigenMap,

which extends the BOW model with spatial information. An EigenMap

describes the distribution of a visual word in the image’s spatial space. By

collecting EigenMaps of all visual words as an object representation, we not

only understand what object parts are in the image, but also know where

these object parts occur relative to the image space. Unlike spatial pyramid

matching method, EigenMap does not require manual partition of image

space, and has lower dimension.

���	

To effectively combine multiple types features, we have proposed a

margin constrained multiple-kernel learning framework (MCMKL), which

finds optimal combination of base features’ kernels. The MCMKL utilizes

the discriminative power of each individual type of features, i.e., the

separation margin of features, to guide the learning of optimal weights for

kernel fusion.

The dimensionally normalized RBF kernel (DNRBF) is also proposed

and employed in MCMKL in order to fuse features with very different

feature dimensions. Our experiments demonstrate that MCMKL achieves

better performance as compared to the state-of-the-art results on affection

recognition by combining facial features and body gestures.

For large-scale visual classification problem, we have proposed a new

classifier, Discriminative Hierarchical K-Means Tree (D-HKTree), which

combined the advantages of both learning-based and nearest neighbor (NN)

based classifiers. D-HKTree significantly outperforms conventional NN-

based classifiers in classification accuracy, while with much lower

computation cost and memory usage. Compared to learning-based methods,

D-HKTree achieves comparable performance with lower relative

computational complexity.

6.2 Limitations and Future Work

Similar to other feature representations, which are based on absolute

spatial information, EigenMap is not invariant to translation or rotations.

Future work on feature representation will capture the relative spatial

relationship among different object parts while maintaining high efficiency.

� ��

Margin Constrained Multiple-kernel learning (MCMKL) requires

iteratively solving SVM problem and projected gradient descent problem

many times. The total training time can become prohibitively high, as one

iteration already has expensive computational cost. To scale the algorithm to

the large-scale data, our future work will focus on improving the efficiency

on multi-feature fusion.

Even though the Discriminative Hierarchical K-Means Tree (D-

HKTree) achieves the state of the art performances on several large-scale

datasets, its complexity, however, greatly depends on the accuracy of the

underlying nearest neighbor algorithm, i.e., L-HKTree. We will evaluate its

performance impact as the dataset becomes larger.

Another limitation of D-HKTree is the construction time of L-

HKTree. As the data size increases, the computational cost to construct the

L-HKTree also increases. If we can build a universal L-HKTree, which only

need be modified slightly according to a specific dataset, then we can

significantly reduce the training complexity. We would like to continue

develop a universal L-HKTree in future.

����

Bibliography

1. S. Arya, D. Mount, N. Netanyahu, R. Silverman, and Y. Wu, “An

optimal algorithm for approximate nearest neighbor searching in fixed

dimensions”, Journal of the ACM, 45:891–923, 1998.

2. F. Bach, G. Lanckriet, M. Jordan, “Multiple kernel learning, conic

duality and the SMO algorithm”, NIPS, 2004.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.

ACM Press, ISBN: 020139829, 1999.

4. H. Bay, A. Ess, T. Tuytelaars, L. Gool, “Speeded-Up Robust Features

(SURF)”, Computer Vision and Image Understanding Vol. 110,

Issues 3, PP. 346-359, June 2008.

5. R. Behmo, P. Marcombes, A. Dalalyan, V. Prinet, “Towards Optimal

Naïve Bayes Nearest Neighbor”, European Conference of Computer

Vision (ECCV), 2010.

6. S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object

Recognition Using Shape Contexts,” IEEE Trans. Pattern Analysis

and Machine Intelligence, vol. 2, no. 4, pp. 509-522, Apr. 2002.

7. S. Bengio, J. Weston, and D. Grangier. Label embedding trees for

large multiclass task. In NIPS, 2010.

8. S. Bernard, “Density Estimation for Statistics and Data Analysis”, 1st

Edition, Chapman and Hall, 1986.

9. D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation”, Journal of

Machine Learning Research, 3:993-1022, 2003.

� ���

��� A. Bobick and J. Davis, “The recognition of human movement using

temporal templates”. PAMI, 2001.�

11. O. Boiman, E. Shechtman, M. Irani, “In Defense of Nearest Neighbor

Based Image Classification”, Computer Vision and Pattern

Rrecognition (CVPR), 2008.

12. A. Bosch, A. Zisserman, X. Munoz, “Scene classification via pLSA”,

Proc. 9th European Conference on Computer Vision (ECCV'06)

Springer Lecture Notes in Computer Science 3954: 517~530.

13. A. Bosch, A. Zisserman, X. Munoz, “Image classification using

random forests and ferns”, Proc. 11th International Conference on

Computer Vision (ICCV'07) (Rio de Janeiro, Brazil): 1-8.

14. Y. Boureau, F. Bach, Y. LeCun, J. Ponce, “Learning Mid-Level

Features For Recognition”, Computer Vision and Pattern Recognition

(CVPR), 2010.

15. Y. Boureau, N. Roux, F. Bach, J. Ponce, Y. LeCun, “Ask the locals:

multi-way local pooling for image recognition”, ICCV 2011.

16. C. Burges, “A tutorial on support vector machines for pattern

recognition”, Data Mining and Knowledge Discovery, 2(2), 121–167,

1998.

17. G. Burghouts, J. Geusebroek, “Performance evaluation of local

colour invariants”, Computer Vision and Image Understanding 113:

48-62, 2009.

18. Y. Cao, C. Wang, Z. Li, L. Zhang, L. Zhang, “Spatial Bag of

Features”, CVPR, 2010.

19. C. Chang and C. Lin, “LIBSVM : a library for support vector

machines”, ACM Transactions on Intelligent Systems and

Technology, 2:27:1--27:27, 2011.

����

20. O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, “Choosing

Multiple Parameters for Support Vector Machines”, Machine

Learning, 2002.

21. Y. Chen, M. Crawford, and J. Ghosh. Integrating support vector

machines in a hierarchical output space decomposition framework. In

IGARSS, 2004

22. S. Chen, Y. Tian, Q. Liu, and D. Metaxas, Recognizing Expressions

from Face and Body Gesture by Temporal Normalized Motion and

Appearance Features, Image and Vision Computing, Volume 31 Issue

2, February, Pages 175-185, 2013, DOI:

10.1016/j.imavis.2012.06.014

23. S. Chen, Y. Tian, Q. Liu, D. Metaxas, “Recognizing Expressions

from Face and Body Gesture by Temporal Normalized Motion and

Appearance Features”, IEEE Int'l Conf. Computer Vision and Pattern

Recognition workshop for Human Communicative Behavior Analysis

(CVPR4HB). 2011.

24. T. Cootes, C. Taylor, D. Cooper and J. Graham, “Active Shape

Models – Their Training and Application”, Computer Vision and

Image Understanding, 1995.

25. C. Cortes, V. Vapnik, "Support-Vector Networks", Machine

Learning, 20, 1995

26. G. Csurka, C. Dance, L. Fan, J. Willamowski, C. Bray, “Visual

Categorization with Bag of Keypoints”, ECCV, 2004.

27. N. Dalal, B. Triggs, “Histograms of Oriented Gradients for Human

Detection”, CVPR 2005.

28. J. Deng, A. Berg, K. Li, and L. Fei-Fei, “What does classifying more

than 10,000 image categories tell us”, ECCV, 2010.

� ���

29. C. Evans, “Notes on the OpenSURF Library”, University of Bristol,

2009.

30. L. Fei-Fei and P. Perona, “A Bayesian hierarchy model for learning

natural scene categories”, CVPR 2005.

31. L. Fei-Fei, R. Fergus and P. Perona, “One-Shot learning of object

categories”, IEEE Trans. on Pattern Analysis and Machine

Intelligence (PAMI), 2006.

32. P. Felzenszwalb and D. Huttenlocher, “Efficient Graph-Based Image

Segmentation”, IJCV, 2004.

33. W. Freeman and E. Adelson, “The Design and Use of Steerable

Filters,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.

13, no. 9, pp. 891-906, Sept. 1991.

34. T. Gao, D. Koller, “Discriminative Learning of Relaxed Hierarchy

for Large Scale Visual Recognition”, International Conference on

Computer Vision (ICCV),2011.

35. P. Gehler and S. Nowozin, “On feature combination for multiclass

object detection”, International Conference on Computer Vision

(ICCV), 2009.

36. J. Gemert, J. Geusebroek, C. Veenman, A. Smeulders, “Kernel

codebooks for scene categorization”, In ECCV 2008, pages 696–709,

2008.

37. J. Gemert, C. Veenman, A. Smeulders, J. Geusebroek, “Visual Word

Ambiguity”, IEEE TPAMI, 99, 2009

38. G. Griffin and P. Perona, “Learning and using taxonomies for fast

visual categorization”, Computer Vision and Pattern Rrecognition

(CVPR), 2008.

����

39. G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category

dataset”, Technical Report 7694, California Institute of Technology,

2007.

40. H. Gunes, M. Piccardi, “Automatic temporal segment detection and

affect recognition from face and body display”, IEEE Trans. Syst.

Man Cybern. B Cybern. 39 (1) (2009).

41. H. Gunes and M. Piccardi, “A bimodal face and body gesture

database for automatic analysis of human nonverbal affective

behavior”, International Conferenece Pattern Recognition, 2006.

42. C. Harris and M. Stephens, “A combined corner and edge detector”,

In Proc. of Alvey Vision Conf., pages 147-151, 1988.

43. J. Huang, S. Kumar, M. Mitra, W. Zhu, R. Zabih, “Image Indexing

Using Color Correlograms”, CVPR, 1997.

44. A. Joshi, F. Porikli, N. Papanikolopoulos, “Scalable active learning

for multi-class image classification”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2012.

45. Y. Ke and R. Sukthankar, “PCA-SIFT: A More Distinctive

Representation for Local Image Descriptors,” Proc. Conf. Computer

Vision and Pattern Recognition, pp. 511-517, 2004.

46. J. Koenderink and A. van Doorn, “Representation of Local Geometry

in the Visual System,” Biological Cybernetics, vol. 55, pp. 367-375,

1987.

47. J. Kovac, P. Peer, F. Solina, “Human Skin Colour Clustering for Face

Detection”, EUROCON – Computer as a Tool, 2003.

48. A. Krizhevsky, I. Sutskever, G. Hinton, “ImageNet Classification

with Deep Convolutional Neural Networks”, NIPS 2012.

� ���

49. S. Lazebnik, C. Schmid, J. Ponce, “Beyond Bags of Features: Spatial

Pyramid Matching for Recognizing Natural Scene Categories”,

Computer Vision and Pattern Rrecognition (CVPR), 2006.

50. S. Lazebnik, C. Schmid, and J. Ponce, “Sparse Texture

Representation Using Affine-Invariant Neighborhoods,” Proc. Conf.

Computer Vision and Pattern Recognition, pp. 319-324, 2003.

51. L. Li, L. Fei-Fei, “What, where and who? Classifying events by scene

and object recognition”, ICCV 2007.

52. L. Li, R. Socher, and L. Fei-Fei, “Towards Total Scene

Understanding: Classification, Annotation and Segmentation in an

Automatic Framework”, CVPR, 2009.

53. Z. Li, J. Imai, M. Kaneko, “Robust Face Recognition Using Block-

based Bag of Words”, International Conference on Pattern

Recognition, 2010.

54. T. Lindeberg, “Scale-space theory: A basic tool for analyzing

structures at different scales”, Journal of Applied Statistics, 21(2):224-

270, 1994.

55. T. Lindeberg, “Feature detection with automatic scale selection”,

International Journal of Computer Vision, 1998.

56. L. Liu, L. Wang, X. Liu, “In Defense of Soft-assignment Coding”,

International Conference on Computer Vision (ICCV), 2011.

57. S. Lloyd, "Least squares quantization in PCM". IEEE Transactions on

Information Theory 28 (2): 129–137, 1982.

58. D. Lowe, “Distinctive Image Features from Scale-Invariant

Keypoints”, IJCV, 2004.

����

59. M. Marszalek and C. Schmid, “Constructing category hierarchies for

visual recognition”, European Conference of Computer Vision

(ECCV), 2008.

60. M. Marszalek, C. Schmid, “Spatial Weighting for Bag-of-Features”,

CVPR 2006.

61. J. Matas, O. Chum, U. Martin, T. Pajdla, “Robust wide baseline

stereo from maximally stable extremal regions”, In Proc. British

Machine Vision Conf., volume I, pages 384{393, 2002.

62. S. McCann, D. Lowe, “Local Naïve Bayes Nearest Neighbor for

Image Classification”, Computer Vision and Pattern Rrecognition

(CVPR), 2012.

63. S. McCann, D. Lowe, “Spatially Local Coding for Object

Recognition”, Asian Conference on Computer Vision (ACCV), 2012.

64. K. Mikolajczyk, C. Schmid, A performance evaluation of local

descriptors, IEEE Trans. Pattern Anal. Mach. Intell. 27 (10) (2005)

1615–1630.

65. K. Mikolajczyk and C. Schmid, “An affine invariant interest point

detector”, In Proc. European Conf. on Computer Vision, volume I,

pages 128-142, 2002.

66. K. Mikolajczyk and C. Schmid. A performance evaluation of local

descriptors. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 27(10):1615{1630, 2005.

67. M. Muja, D. Lowe, “Fast Approximate Nearest Neighbors with

Automatic Algorithm Configuration”, International Conference on

Computer vision Theory and Applications (VISAPP), 2009.

� ���

68. H. Murase and S. Nayar, “Visual learning and recognition of 3D

objects from appearance”, International Journal on Computer Vision,

vol. 14, no. 1, pp. 5–24, 1995.

69. D. Nister, H. Stewenius, “Scalable Recognition with a Vocabulary

Tree”, Computer Vision and Pattern Rrecognition (CVPR), 2006.

70. E. Nowak, F. Jurie, B. Triggs, “Sampling Strategies for Bag-of-

Features Image Classification”, ECCV, 2006.

71. A. Oliva and A. Torralba, “Modeling the shape of the scene: A

Holistic Representation of the Spatial Envelope”, IJCV, 2001.

72. E. Parzen, "On Estimation of a Probability Density Function and

Mode". The Annals of Mathematical Statistics 33 (3): 1065, 1962.

73. A. Rakotomamonjy, F. Bach, S. Canu, Y. Grandvalet, “More

Efficiency in Multiple Kernel Learning”, ICML, 2007

74. M. Rosenblatt, "Remarks on Some Nonparametric Estimates of a

Density Function". The Annals of Mathematical Statistics 27 (3): 832.

1956.

75. S. Savarese, J. Winn, A. Criminisi, “Discriminative Object Class

Models of Appearance and Shape by Correlatons”, CVPR, 2006.

76. F. Schaffalitzky and A. Zisserman, “Multi-View Matching for

Unordered Image Sets,” Proc. Seventh European Conf. Computer

Vision, pp. 414-431, 2002.

77. K. Schmidt and J. Cohn, “Human Facial Expressions as Adaptations:

Evolutionary Questions in Facial Expression Research”, Yearbook of

Physical Anthropology, 2001.

78. C. Shan, S. Gong and P. McOwan, “Beyond facial expressions:

learning human emotion from body gestures”, British Machine Vision

Conference, 2007.

���	

79. J. Shi and C. Tomasi, "Good Features to Track", CVPR 1994.

80. J. Sivic and A. Zisserman, “Video google: a text retrieval approach to

object matching in videos”, ICCV, 2003.

81. J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman,

“Discovering objects and their location in images”, In ICCV, volume

1, pages 370–377, 2005.

82. M. Swain and D. Ballard, “Color indexing” International Journal in

Computer Vision, vol. 7, no. 1, pp. 11–32, 1991.

83. Y. Tian, L. Cao, Z. Liu, and Z. Zhang, “Hierarchical Filtered Motion

for Action Recognition in Crowded Videos”, IEEE Transactions on

Systems, Man, and Cybernetics--Part C: Applications and Reviews,

2011.

84. M. A. Turk and A. P. Pentland, “Eigenfaces for face recognition,” in

Proceedings of the Conference on Computer Vision and Pattern

Recognition, pp. 586–591, 1991.

85. T. Tuytelaars, M. Fritz, K. Saenko, T. Darrell, “The NBNN Kernel”,

International Conference on Computer Vision (ICCV), 2011.

86. J. Uijlings, A. Smeulders, R. Scha, “Real-time Bag of Words,

Approximately”, CIVR, 2009.

87. M. Varma and A. Zisserman, “Classifying Images of Materials:

Achieving Viewpoint and Illumination Independence”, ECCV, 2002.

88. M. Varma, D. Ray, “Learning The Discriminative Power-Invariance

Trade-Off”, ICCV, 2007.

89. A. Vedaldi, V. Gulshan, M. Varma, A. Zisserman, “Multiple Kernels

for Object Detection”, ICCV, 2009.

90. P. Viola, M. Jones, “Rapid Object detection using a boosted cascade

of simple features”, CVPR 2001.

� ��

91. V. Vural and J. G. Dy. A hierarchical method for multi-class support

vector machines. In ICML, 2004

92. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-

constrained linear coding for image classification, CVPR 2010.

93. C. Wang, D. Blei and L. Fei-Fei, “Simultaneous Image Classification

and Annotation”, CVPR, 2009.

94. Y. Wei, “Research on Facial Expression Recognition and Synthesis”,

Master Thesis, 2009, software available at:

�����00��1��%��%������0�0����2����

95. J. Weijer, C. Schmid, “Coloring local feature extraction”, Proc. 9th

European Conference on Computer Vision (ECCV'06) Springer

Lecture Notes in Computer Science 3952: 334-348.

96. J. Willamowski, D. Arregui, G. Csurka, C. R. Dance, and L. Fan,

“Categorizing nine visual classes using local appearance descriptors”,

In IWLAVS, 2004.

97. J. Winn, A. Criminisi, T. Minka, “Object Categorization by Learned

Universal Visual Dictionary”, ICCV 2005.

98. S. Xia, J. Li, L. Xia, and C. Ju. Tree-structured support vector

machines for multi-class classification. In ISNN, 2007.

99. J. Xiao, J. Hays, K. Ehinger, A. Oliva, A. Torralba, “SUN Database:

Large-Scale Scene Recognition from Abbey to Zoo”, Computer

Vision and Pattern Rrecognition (CVPR), 2010.

100. J. Yang, K. Yu, Y. Gong, T. Huang, “Linear Spatial Pyramid

Matching Using Sparse Coding for Image Classification”, Computer

Vision and Pattern Rrecognition (CVPR), 2009.

101. Y. Yang and S. Newsam, "Bag-Of-Visual-Words and Spatial

Extensions for Land-Use Classification," ACM SIGSPATIAL

����

International Conference on Advances in Geographic Information

Systems (ACM GIS), 2010.

102. J. Yang, Y. Li, Y. Tian, L. Duan, W. Gao, “Group-Sensitive

Multiple Kernel Learning for Object Categorization”, ICCV 2009.

103. K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local

coordinate coding. In NIPS, 2009.

104. X. Yuan, W. Lai, T. Mei, X. Hua, X. Wu, and S. Li. Automatic

video genre categorization using hierarchical svm. In ICIP, 2006.

105. L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering.

Eighteenth Annual Conference on Neural Information Processing

Systems, (NIPS), 2004.

106. Y. Zhang, Z. Jia, T. Chen, “Image Retrieval with Geometry-

Preserving Visual Phrases”, CVPR, 2011.

107. H. Zhang, A. Berg, M. Maire, J. Malik, “SVM-KNN:

Discriminative Nearest Neighbor Classification for Visual Category

Recognition”, Computer Vision and Pattern Rrecognition (CVPR),

2006.

108. X. Zhou, B. Bhanu, “Feature fusion of side face and gait for video-

based human identification”, Pattern Recognition 41, 2008.

109. A. Zweig and D. Weinshall. Exploiting object hierarchy: Combining

models from different category levels. In ICCV, 2007.

110. YouTube, 23 Apr, 2013

<http://www.youtube.com/yt/press/statistics.html>.

111. Money Bag. Digital Image. Rambling of an English Teacher. Web.

1 May 2013. <�����00��1��#��%%����#��1���������0����0��0��0���(

#��1(2�%(������%�0>

� ���

112. Van. Digital Image. 2013 Toyota Sienna LE for Sale. Web. 1 May

2013. <http://www.usedcarsgroup.com/wappingersfalls-ny/2013-

toyota-sienna-5tdkk3dc1ds360034.html>.

113. Dolphin. Digital Image. Animal Rights Group Rescues Dolphin Off

Cape Cod. Web. 1 May 2013.

<http://www.opposingviews.com/i/animal-rights-group-rescues-

dolphins-off-cape-cod>

114. Dolphin. Digital Image. Mysterious Dolphin Deaths Continue in

Gulf of Mexico. Web. 1 May 2013.

<http://www.banderasnews.com/1301/nb-

mysteriousdolphindeaths.htm>

115. Tiger. Digital Image. Wallpapers for resolution of 1600x1200. Web.

1 May 2013.

<http://im05.coolwallpapers.org/resolution/1600x1200/162>

116. Watermelon. Digital Image. Geometry Shapes with an example.

Web. 1 May 2013. <http://quizlet.com/18009319/geometry-shapes-

with-an-example-flash-cards/>

117. Orange. Digital Image. Strategy. Web. 1 May 2013.

<http://stratkomuncut.com/category/strategy/>.

118. Strawberry. Digital Image. Marietta College. Web. 1 May 2013.

<https://secure.www.alumniconnections.com/olc/pub/MRO/event/sho

wEventForm.jsp?form_id=144710>.

119. Pink lily flower. Digital Image. Full of Life. Web. 1 May 2013.

<http://banishloneliness.org/2012/09/27/non-attachment-v-

loneliness/>.

����

120. Rose. Digital Image. Flickr. Web. 1 May 2013.

<http://www.flickr.com/photos/niceflowers48/5021857417/in/photostr

eam/>.

121. Lion. Digital Image. African Lion King. Web. 1 May 2013.

<http://www.wallpapersshop.net/wallpaper/african-lion-king/>.

122. Blue whale. Digital Image. Reflection at Point Lookout. Web. 1

May 2013.

<http://www.reflectionsatpointlookout.com/?_escaped_fragment_=gal

lery>.

123. Office partition. Digital Image. Singapore Office Partitions. Web. 1

May 2013. <http://detail.en.china.cn/provide/1001809044.html>.

124. Office. Digital Image. Portillo Cleaning Services. Web. 1 May

2013. <http://portillocleaninglck.com/services.html>.

125. Office. Digital Image. Prestigious Cambridge Location. Web. 1 May

2013. <http://geekoffices.com/properties/>.

126. Office furniture. Digital Image. World Class Wooden Furniture.

Web. 1 May 2013. <http://wooden-furnitures.co.in/>.

127. G. Kim, C. Faloutsos, M. Hebert, “Unsupervised Modeling of

Object Categories Using Link Analysis Techniques”, CVPR, 2008.

128. T. Dean, M. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, J.

Yagnik, “Fast, Accurate Detection of 100,000 Object Classes on a

Single Machine”, CVPR, 2013.

� ���

My Publication List

Journal and Book Chapter�

1. H. Gunes, C. Shan, S. Chen, and Y. Tian, "Bodily Expression for

Automatic Affect Recognition", In Advances in Emotion Recognition,

A. Konar, A. Chakraborty (Eds.), Wiley-Blackwell, 2011.

2. Y. Tian and S. Chen, “Understanding Effects of Image Resolution for

Facial Expression Analysis”, Journal of Computer Vision and Image

Processing, Vol. 2, No. 1, March 2012.

3. S. Chen and Y. Tian, “Describing Visual Scene through EigenMaps”,

Journal of Computer Vision and Image Processing, Vol. 2, No. 1,

March 2012.

4. S. Chen, Y. Tian, Q. Liu, and D. Metaxas, Recognizing Expressions

from Face and Body Gesture by Temporal Normalized Motion and

Appearance Features, Image and Vision Computing, Volume 31 Issue

2, February, Pages 175-185, 2013, DOI:

10.1016/j.imavis.2012.06.014

Conference

5. S. Chen, Y. Tian. Evaluating Effectiveness of Latent Dirichlet

Allocation Model for Scene Classification. IEEE Wireless and Optical

Communications Conference (WOCC). 2011.

����

6. S. Chen, Y. Tian, Q. Liu and D. Metaxas. Segment and Recognize

Expression Phase by Fusion of Motion Area and Neutral Divergence

Features. IEEE Int'l Conf. on Automatic Face and Gesture

Recognition (AFGR). 2011.

7. S. Chen, Y. Tian, Q. Liu, D. Metaxas. Recognizing Expressions from

Face and Body Gesture by Temporal Normalized Motion and

Appearance Features. IEEE Int'l Conf. Computer Vision and Pattern

Recognition workshop for Human Communicative Behavior Analysis

(CVPR4HB). 2011.

8. S. Chen, Y. Tian, and W. S. Weiss, “Detecting Human Activities in the

Arctic Ocean by Constructing and Analyzing Super-Resolution

Images from MODIS Data”, Imaging and Geospatial Technologies -

Into the Future, ASPRS 2012 Annual Conference, Sacramento,

California USA, March 19-23, 2012.

9. S. Chen, D. M. Quintian and Y. Tian, “Towards a Visual Speech

Learning System for the Deaf by Matching Dynamic Lip Shapes”,

International Conference on Computers Helping People with Special

Needs (ICCHP), 2012.

10. S. Chen and Y. Tian, Margin-Constrained Multiple Kernel Learning

Based Multi-Modal Fusion for Affect Recognition, The 2nd Int'l

Workshop on Emotion Representation, Analysis and Synthesis in

Continuous Time and Space (EmoSPACE) 2013.

