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ABSTRACT 

With the popularity of the Internet and the smart mobile device, there is an 
increasing demand for the techniques and applications of image/video-based 
analytics and information retrieval. Most of these applications can benefit from text 
information extraction in natural scene. However, scene text extraction is a 
challenging problem to be solved, due to cluttered background of natural scene 
and multiple patterns of scene text itself. To solve these problems, this dissertation 
proposes a framework of scene text extraction.  

Scene text extraction in our framework is divided into two components, 
detection and recognition. Scene text detection is to find out the regions 
containing text from camera captured images/videos. Text layout analysis based 
on gradient and color analysis is performed to extract candidates of text strings 
from cluttered background in natural scene. Then text structural analysis is 
performed to design effective text structural features for distinguishing text from 
non-text outliers among the candidates of text strings. Scene text recognition is to 
transform image-based text in detected regions into readable text codes. The 
most basic and significant step in text recognition is scene text character (STC) 
prediction, which is multi-class classification among a set of text character 
categories. We design robust and discriminative feature representations for STC 
structure, by integrating multiple feature descriptors, coding/pooling schemes, 
and learning models. Experimental results in benchmark datasets demonstrate 
the effectiveness and robustness of our proposed framework, which obtains 
better performance than previously published methods. 

Our proposed scene text extraction framework is applied to 4 scenarios, 1) 
reading print labels in grocery package for hand-held object recognition; 2) 
combining with car detection to localize license plate in camera captured natural 
scene image; 3) reading indicative signage for assistant navigation in indoor 
environments; and 4) combining with object tracking to perform scene text 
extraction in video-based natural scene. The proposed prototype systems and 
associated evaluation results show that our framework is able to solve the 
challenges in real applications. 
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Chapter 1 TEXT INFORMATION IN NATURAL SCENE 

1.1. MOTIVATIONS AND CHALLENGES 

Text has been an effective tool for broadcasting information and exchanging 

ideas for thousands of years. When it comes to text in image, we may first think of 

scan document or camera-based hand-written paper (see Fig. 1–1 (a-b)). However, 

text widely exists in natural scene, mostly in the form of informative signage like 

shop sign and traffic sign. Text information plays an important role in our everyday 

life, because it provides the most straightforward and unambiguous explanations of 

surrounding environments. Nowadays with the popularity of smart mobile device, 

there is an increasing demand for the image/video-based applications such as 

reading aid, assistive navigation, content-based image retrieval, and geocoding. 

Almost all these applications can benefit from automatic text information extraction 

from natural scene. Since the promising prospect in real applications and the 

challenging problems to be addressed, scene text extraction is chosen to be my 

dissertation topic. I will present a complete framework of text information 

extraction from camera-based natural scene. This framework involves many 

state-of-the-art techniques and models in the fields of image processing, computer 

vision, and machine learning. Also we design novel algorithms to solve the common 

challenging problems in scene text extraction. 

Many research work of scene text extraction has been published, but it is still an 

opening research topic. It is a challenging task to extract text information from 

natural scene images for four main reasons (see Fig. 1–1 (c)). Firstly, the frequency 

of occurrence of text information in natural scene image is usually very low, and text 

information is always buried under all kinds of non-text outliers in cluttered 

background of natural scene. Thus background removal plays a significant role in 

text detection. Secondly, even though image regions containing text characters are 

detected from complex background, current optical character recognition (OCR) 
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systems do not work well on the recognition of scene text, because they are mostly 

designed for scan documents. More effective feature representations and more 

robust models are required to improve the performance of scene text recognition. 

Thirdly, background textures, such as grid, window, and brick, even resemble text 

characters and strings. Although these challenging factors exist in the recognition of 

faces, human bodies and cars, many state-of-the-art algorithms [18] [88] have 

demonstrated effectiveness on those applications, because face and car, have 

relatively stable features. For example, a frontal face normally contains a mouth, a 

nose, two eyes, and two brows as prior knowledge. However, it is difficult to model 

the structure of text characters in scene images due to the lack of discriminative 

pixel-level appearance and structure features from non-text background outliers. 

Fourthly, unlike the text in scan documents, scene text usually appears in multiple 

colors, fonts, sizes and orientations. In addition, text information is probably 

destructed by motion blur or light exposure, or sometimes attached to curved 

planes. 

 

 

Fig. 1–1 Some examples of (a) scan document text; (b) handwritten text; (c) scene text. 
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1.2. BASELINE SOLUTIONS 

To overcome the above challenges, we need to solve two problems, 1) how to 

model text layout and structure so that it can be distinguished from non-text 

background outliers, which is scene text region detection; 2) how to model the 

structure of scene text characters so that the category of a given character can be 

correctly predicted, which is scene text character prediction. 

To solve the two problems as mentioned above, our framework of scene text 

extraction is divided into two functional modules in the baseline solutions [104] 

[36], which are scene text detection and scene text recognition. The two modules 

generate text detector and text recognizer respectively, and they have evolved into 

two research topics. Scene text detection is to localize the image regions containing 

text and strings and filter out most background interferences. Some detection 

methods also segment the text strings in detected text regions into independent 

characters for recognition. Scene text recognition is to transform image-based text 

strings in detected text regions into readable ASCII codes. Fig. 1–2 illustrates the 

flowchart of the proposed framework. 

 

 

Fig. 1–2. The flowchart of our proposed scene text extraction framework. 
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In the following chapters, we present the solutions of these problems. In Chapter 

2, we present the methods of extracting connected components of possible text 

characters. Then the connected components of candidate text characters are 

grouped into fragments of possible text strings by layout analysis in Chapter 3. 

Chapter 2 and Chapter 3 present layout analysis, which models specific extrovert 

appearances of scene text. Chapter 4 describes the structural feature representation 

of text string fragment for filtering out false positive text strings obtained by layout 

analysis. In Chapter 5, we start scene text recognition in the detected text regions, 

by designing feature representation of scene text character for text character 

classification. Chapter 4 and Chapter 5 present structure analysis, which models 

specific introvert structure of scene text. Chapter 6 describes word-level recognition 

on the basis of STC prediction and conditional random field (CRF) model. Chapter 7 

and Chapter 8 present the experimental results and discussions on scene text 

detection and scene text recognition respectively. From Chapter 9 to Chapter 12, we 

present 4 promising applications that involve scene text extraction. We conclude 

our studies and present our future work in Chapter 13. 
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Chapter 2 SCENE TEXT CHARACTER COMPONENTS 

2.1. PROBLEM FORMULATION 

It is difficult to confirm the existence of text information in scene images with 

complex background because the occurrence frequency of scene text is usually very 

low. Generally, the camera captured scene text characters or strings only occupy 

small image regions, which are surrounded by a large number of non-text 

background outliers. 

To extract text from natural scene with complex background, we start with the 

search of semantic objects in natural scene, and then pick out the candidate regions 

containing scene text characters which satisfy the predefined geometrical 

constraints. They are defined as candidate character components, and represented 

by connected components or bounding boxes. 

In most cases, scene text character appears in the form of connected component 

in uniform color in contrast to its surrounding attachment surface, and scene text 

character brings in high edge density and specific gradient distribution in contrast 

to the dominant plain regions in a scene image. Based on these two layout 

characteristics of scene text, we propose two methods in this chapter, extracting 

candidate character components from scene image, which are color-based partition 

in Section 2.3 and gradient-based partition in Section 2.4. The two methods can 

generally handle low-quality capture or illumination variation in camera-based 

scene image, obtaining clear and complete text characters from cluttered 

background. 

2.2. PREVIOUS WORK 

Some previous publications focused on scan document text. To extract text 

information from camera-captured document images (i.e. most part of the captured 

image contains well organized text with clean background), many algorithms and 
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commercial optical character recognition (OCR) systems have been developed [5] 

[76]. Liang et al. [45] used texture flow analysis to perform geometric rectification 

of the planar and curved documents. Burns et al. [7] performed topic-based 

partition of document image to distinguish text, white spaces and figures. Banerjee 

et al. [3] employed the consistency of text characters in different sections to restore 

document images from severe degradation based on the model of Markov Random 

Field. Lu et al. [52] proposed a word shape coding scheme through three topological 

features of characters for text recognition in document image. All the above 

algorithms share the same assumption that locations of text characters are 

approximately predictable and background interference does not resemble text 

characters. 

Some previous publications focused on the extraction of text character 

components from cluttered background of natural scene image. They can be roughly 

classified into two categories. The first category focuses on text region initialization 

and extension by using distinct features of text characters. To extract candidates of 

text regions, Kasar et al. [39] first assigned a bounding box to the boundary of each 

candidate character in the edge image and then detected text characters based on 

the boundary model (i.e. no more than 2 inner holes in each bounding box of 

alphabets and letters in English); Tran et al. [84] calculated ridge points in different 

scales to describe text skeletons at the level of higher resolution and text 

orientations at the level of low resolution; Liu et al. [47] designed a stroke filter to 

extract the stroke-like structures; Sobottka et al. [78]combined a top-bottom 

analysis based on color variations in each row and column with a bottom-top 

analysis based on region growing by color similarity; Hasan et al. [30] and Park et al. 

[67] designed robust morphological processing; Wolf et al. [95] improved Otsu’s 

method [65] to binarize text regions from background, followed by a sequence of 

morphological processing to reduce noise and correct classification errors. To group 

together text characters and filter out false positives, these algorithms employed 

similar constraints involved in character, such as the minimum and maximum size, 
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aspect ratio, contrast between character strokes and background, the number of 

inner holes. However they usually fail to remove the background noise resulted 

from foliage, pane, bar or other background objects that resemble text characters. 

To reduce background noise, the algorithms in the second category partition images 

to blocks and then groups the blocks verified by the features of text characters. 

Lefevre et al. [43] further designed a fusion strategy to combine detectors of color, 

texture, contour, and temporal invariance respectively. In Weinman et al. [92] used 

a group of filters to analyze texture features in each block and joint texture 

distributions between adjacent blocks by using conditional random field. One 

limitation of these algorithms is that they used non-content-based image partition 

to divide the image spatially into blocks of equal size before grouping is performed. 

Non-content-based image partition is very likely to break up text characters or text 

strings into fragments which fail to satisfy the texture constraints. Thus some 

algorithms use the property stroke width consistency to find out possible text 

characters. In [40], local color quantization was performed to extract text from 

background, but it required that text and background had explicit color difference. 

In [22] [21], stroke width is calculated by using horizontal scan line to record the 

intensity variations around the edge pixels, usually a pair of impulses on the strokes 

with equal magnitudes and opposite directions. To avoid the limitations of 

horizontal scan of stroke width, Epshtein et al. [22] designed a stroke width 

transform to extract text characters with stable stroke widths. In addition, the color 

uniformity of text characters in natural scene image is taken into account for 

content-based partition [13] [53] [61] [79]. However the unexpected background 

noises might share the same colors with text characters, so texture features of 

characters are still required. The algorithms in our proposed framework belong to 

this category of partition and grouping, but our content-based partition is involved 

in both gradient features and color features. 
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2.3. COLOR-BASED PARTITION 

2.3.1. ABSOLUTE COLOR REDUCTION 

A text string is mostly composed of character members in similar colors. To 

separate text strings from attachment surfaces and non-text outliers in different 

colors, we partition a scene image into several color layers by grouping pixels in 

similar colors into the same layer. We adopt a color reduction method based on 

color histogram and mean-shift clustering. 

Firstly, image pixels located within a plane region are extracted to make statistics 

of dominant colors, while the pixels close to the border of two neighboring plane 

regions are removed because they appear in transitional colors rather than 

dominant colors. To achieve this goal, we employ Canny edge detector to obtain the 

edge map of a scene image. The pixels whose 3 × 3 neighborhoods do not contain 

any edge pixels in the edge map are selected to calculate color histogram of the 

scene image. Next, we map all the non-edge pixels of a scene image from spatial 

domain into RGB color space, and generate a color histogram of the scene image, as 

shown in Fig. 2–1.  

Secondly, we need to find out high-density clusters from the color histogram and 

transform these clusters into representative color layers of the scene image. Thus 

mean-shift clustering algorithm is designed to cluster the pixels in similar colors in 

RGB space. 𝐾 color centers �𝑐𝑐𝑖
(0)�1 ≤ 𝑖 ≤ 𝐾� are randomly initialized from the 

non-edge pixels, and each of them is assigned a cube neighborhood 𝐶𝐶𝐶𝐶𝑖 with 

size 𝑙 in RGB space, as shown in Fig. 2–1. Next, the color center of each cube is 

iteratively shifted to higher-density clusters in RGB space. In a color cube 𝐶𝐶𝐶𝐶𝑖, 

each color value is weighted by its Euclidean distance from color center 𝑐𝑐𝑖 , and 

we calculate the weighted average of all color values in the 𝑖-th cube by Eq. (2–1).  
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𝑐𝑐𝑖
(𝑡+1) =

∑ 𝑐𝑐𝑝 ∙ �𝑐𝑐𝑝 − 𝑐𝑐𝑖
(𝑡)�𝑝∈𝐶𝐶𝐶𝐶𝑖

(𝑡)

∑ �𝑐𝑐𝑝 − 𝑐𝑐𝑖
(𝑡)�𝑝∈𝐶𝐶𝐶𝐶𝑖

(𝑡)
 (2–1) 

 

where 𝑐𝑐𝑖
(𝑡) represents the 𝑖-th color center at the 𝑡-th iterative round. Then 

𝐶𝐶𝐶𝐶𝑖 is shifted to higher-density color cluster by using the weighted average 

𝑐𝑐𝑖
(𝑡+1) as new center and keeping its size 𝑙. The distance between the weighted 

average 𝑐𝑐𝑖
(𝑡+1) and the original center 𝑐𝑐𝑖

(𝑡) is defined as shifting distance. The 

cube shifting is iteratively performed until the shifting distance is smaller than a 

predefined threshold. 

Thirdly, if several color centers obtained from mean-shift algorithm are close 

enough to each other, they are further merged together and we use their mean value 

as a final color center. The final color centers correspond to a color layer as shown 

in Fig. 2–1. 

The number of color layers of a scene image depends on the number of initial 

color centers 𝐾 and the setting of cube size 𝑙. In most cases, the final number of 

color layers is smaller than 𝐾 because of the merge process. The smaller the cube 

size is, the fewer pixels are covered in a cube, which results in the shorter shifting 

distance. It is more difficult for the cubes to shift close to each other to complete a 

merge. Thus the total number of color layers will increase, and many objects in 

scene image will be broken up into small parts in different color layers. However, 

the cube size cannot be too large, so that the pixels far from each other in color 

space are still grouped into the same color layer. In that case, color-based partition 

fails to extract candidate character components. In our experiments, we set 𝐾 = 12 

and 𝑙 = 64. 
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Fig. 2–1 (a) A scene image with multiple colors; (b) color distribution in RGB space; (c) four 

initial cube color clusters with radius ℎ. 

 
Some examples of the color-based image partition method are displayed in Fig. 

2–2. Each input image is partitioned to several color layers. A color layer consists of 

only one foreground color on white background. It can be regarded as a binary map 

of candidate character components. Then connected component analysis is 

performed to label foreground regions of connected pixels, which is then extracted 

as candidate character components. 

The candidate character components not satisfying the pre-defined geometrical 

constraints are removed from each color layer. In color-based partition, we follow 

the geometrical constraints of size and aspect ratio as defined in gradient-based 

partition. Section 2.6 presents the detailed description of the geometrical 

constraints. 

 



 

 

 
11 

 

Fig. 2–2 Some examples of color-based partition, where the left column contains original 

images and other columns contain the corresponding dominant color layers. 

2.3.2. BIGRAM COLOR REDUCTION 

Camera-based scene images usually have complex background filled with 

non-text objects in multiple shapes and colors. In these images, text strokes, 

characters, and strings keep conspicuous by consistent colors. Thus many 

color-based clustering methods of text localization and text segmentation are 

designed in [13] [53] [61]. However, these clustering methods ignore the color 

differences among neighboring pixels around the object boundaries. Compared with 

absolute color value that describes only a planar region, color difference value 

covers the color information of two neighboring planar regions. Color difference is 
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more suitable for the analysis of object shape and texture because it models local 

texture more accurately and handles illumination changes more robustly [46]. 

We observe that text information is generally attached to a plane carrier as 

attachment surface. The attachment surface consists of pixels with uniform color 

near the character boundaries but outside the character strokes, as shown in Fig. 2–

3. We define the color uniformity of both text and attachment surface as bigram 

color uniformity, modeled by a color-pair composed of their colors. For text and 

attachment surface, the color-pair reflects their respective color uniformity as well 

as color difference between them. Text boundaries on the border of text and its 

attachment surface are described by characteristic color-pairs, and we are able to 

extract text by distinguishing boundaries of characters and strings from those of 

background outliers based on color-pairs (see Fig. 2–3(c)). Here, we design a 

method of grouping object boundaries with similar color–pairs into respective 

maps, which are called boundary layers. The contours in each boundary layer are 

extracted to be candidate character components. The next section presents detailed 

descriptions of the clustering method. 

 

 

Fig. 2–3 (a) A scene image. (b) Attachment surface of text. (c) Two examples of color-pairs 

corresponding to the boundaries at the signage board and window grid respectively.  

To reduce mutual interferences between text strings, text boundaries in different 

positions should be assigned into different boundary layers as possible, even though 
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they have uniform color values and similar color differences. In other words, spatial 

position of object boundaries can be used as additional features in color-based 

partition. But most previous color-based clustering methods did not take into 

account the spatial positions of text. One reason is that additional spatial 

information makes the color statistics of all pixels time-consuming. In our proposed 

clustering method, bigram color uniformity and spatial-based partition schemes are 

combined to partition the edge map of a scene image into several boundary layers. 

Since only edge pixels at object boundaries are involved in the clustering process, 

the computational time consumption is largely reduced. 

In natural scene images, an initial map of object boundary is calculated from 

Canny edge detection [11]. Edge pixels at boundaries are obtained from either large 

neighboring color differences that are greater than a threshold of Canny detector or 

the 8-neighborhood connection to an existing edge pixel. We describe the edge 

pixels by characteristic color-pairs. In 𝑛 × 𝑛 neighborhood 𝑁𝑁𝑛 of an edge pixel 

𝑃𝑒 , we find out the two pixels with maximum color difference among all pairs of 

pixels. Their color values are used as observation of the color-pair across two sides 

of the boundary where the edge pixel is located. We denote the color with lower 

intensity component by 𝒄𝒄𝑳  and the other one by 𝒄𝒄𝑯 (see Fig. 2–3(c)). In RGB 

space, color values 𝒄𝒄𝑳  and 𝒄𝒄𝑯  both have three dimensions. If the boundary 

belongs to a text character or string, the 𝒄𝒄𝑳 and 𝒄𝒄𝑯 represent colors of text and 

attachment surface respectively. Moreover, the coordinates 𝑠𝑠𝑥 and 𝑠𝑠𝑦  of the 

edge pixel 𝑃𝑒 are used as observation of spatial positions. Then an observation 

vector 𝑥 of the edge pixel can be defined by cascading the color values of the two 

pixels with maximum color difference in neighborhood and the spatial coordinates 

of the central edge pixel. To normalize the dimensions of color-pair and spatial 

position observation, the coordinates 𝑠𝑠𝑥  and 𝑠𝑠𝑦 are extended into three 

dimensions as 𝒔𝒔𝒙 = {𝑠𝑠𝑥, 𝑠𝑠𝑥, 𝑠𝑠𝑥} and 𝒔𝒔𝒚 = �𝑠𝑠𝑦, 𝑠𝑠𝑦, 𝑠𝑠𝑦�. Thus the edge pixel 
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𝑃𝑒  is described by an observation vector 𝑥 = [𝒄𝒄𝑳, 𝒄𝒄𝑯, 𝒔𝒔𝒙, 𝒔𝒔𝒚] , which is a 

12-dimesnional point in observation space. 

To extract text boundaries from scene images, we cluster the observation points 

of edge pixels into several groups such that edge pixels with similar color-pairs and 

spatial positions are assigned into identical boundary layer. In this process, GMM is 

employed to analyze the distributions of observation points of edge pixels. At first, 

𝐾-means clustering is applied to calculate 𝐾 centers of observation points, which 

are used as initial means 𝜇𝑖 (1 ≤ 𝑖 ≤ 𝑘) of the Gaussian mixture distributions. Then 

the corresponding 𝐾 variances 𝜎𝑖 (1 ≤ 𝑖 ≤ 𝑘) are calculated from the means of 

observation points. Thus we can initialize a group of Gaussian distributions. By 

labeling each of them with a weight, the expectation of GMM is represented by Eq. 

(2–2). 

 

𝑃(𝒙|𝝁,𝝈) = �𝑤𝑖𝑝𝑖(𝑥|𝜇𝑖 ,𝜎𝑖)
𝐾

𝑖=1

 (2–2) 

 

where 𝒙 represents observation points, 𝑤𝑖  represents the weights of the i-th 

Gaussian distribution in the mixture set, and 𝜇𝑖  and 𝜎𝑖  represent mean and 

variance of the i-th Gaussian distribution. Next, over the observation points of edge 

pixels, EM algorithm is applied to obtain maximum likelihood estimate of the GMM 

parameters, including weights, means, and variances of the 𝐾  Gaussian 

distributions. In EM process, the GMM parameters are iteratively updated by Eq. (2–

3) from their initial values derived by 𝐾-means clustering. In this equation, N is the 

number of observation points and 𝑡  denotes the 𝑡-th iteration. This iterative 

update is performed until the log likelihood log∏ 𝑃(𝑥𝑗|𝝁,𝝈)𝑁
𝑗=1  is convergent. 
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𝑤𝑖
𝑡+1 =

1
𝑁
�𝑝𝑖�𝑥𝑗�𝜇𝑖𝑡,𝜎𝑖𝑡�
𝑁

𝑗=1

 

𝜇𝑖𝑡+1 =
∑ 𝑝𝑖�𝑥𝑗�𝜇𝑖𝑡,𝜎𝑖𝑡�𝑥𝑗𝑁
𝑗=1

∑ 𝑝𝑖�𝑥𝑗�𝜇𝑖𝑡,𝜎𝑖𝑡�𝑁
𝑗=1

 

𝜎𝑖𝑡+1 =
∑ 𝑝𝑖�𝑥𝑗�𝜇𝑖𝑡,𝜎𝑖𝑡�(𝑥𝑗 − 𝜇𝑖𝑡+1)2𝑁
𝑗=1

∑ 𝑝𝑖�𝑥𝑗�𝜇𝑖𝑡,𝜎𝑖𝑡�𝑁
𝑗=1

 

(2–3) 

 

Then, boundary layer is built from each of the 𝐾 Gaussian distributions under 

the parameters derived by EM. For an edge pixel, if it generates maximum likelihood 

in the 𝑖-th Gaussian distribution, it will be assigned into the i-th boundary layer 𝐵𝑖 

by Eq. (2–4) as follows. 

 

𝑿𝒊 = �𝑥𝑗 ∈ 𝒙�∀𝑘 ∈ [1,𝐾],𝑝𝑖�𝑥𝑗�𝜇𝑖,𝜎𝑖� ≥ 𝑝𝑘�𝑥𝑗�𝜇𝑘,𝜎𝑘�� 

𝐵𝑖(𝑝) = �1 if 𝑥𝑝 ∈ 𝑿𝒊 
0 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

 
(2–4) 

 

Furthermore, the expected value 𝜇𝑖 of the i-th Gaussian distribution provides a 

mean color-pair �𝒄𝒄𝑳𝑖 , 𝒄𝒄𝑯𝑖 � to label all edge pixels at the layer 𝐵𝑖.  

Fig. 2–4(a) illustrates three examples of boundary layers after EM-based 

clustering. Fig. 2–4(b) presents the corresponding results of regular color reduction. 

As shown in the first two examples, color reduction fails to completely extract text 

from background outliers, leaving the boundaries of tree and plane on the boundary 

layer of text. It is because color reduction does not employ the spatial position 

difference between text and background outlier. In the third example, color 

reduction fails to extract the words “TESCO” and “LIFE”, but fuses them into 

attachment surface in similar color. Color reduction quantizes the dominant colors 

through statistics of absolute color values, so neighboring objects with color 
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difference lower than some threshold are very probably regarded as a complete 

object. However, our proposed clustering method quantizes the color-pairs around 

edge pixels instead of absolute color values at all pixels. A color-pair can be 

successfully extracted as long as it covers enough edge pixels to compose its 

boundary layer, even though the difference between the pair of colors is small. 

 

 

Fig. 2–4. (a) Examples of boundary layers from scene images; edge pixels with similar 

color-pairs and spatial positions are grouped into the same layer. Boundaries at different 

veridical positions are assigned into different boundary layers because of y-coordinate 

spatial information in clustering process. (b) Results of color reduction based on clustering 

of absolute color values, where white region represents background, and color region 

consists of the pixels that are grouped to the layer. 
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Since most of the involved text strings in our experiments are approximately 

horizontal, the spatial positions of text boundaries can be estimated only in 

y-coordinates. Thus the dimension of an observation point is reduced to 9 as 

𝑥 = [𝒄𝒄𝑳, 𝒄𝒄𝑯, 𝒔𝒔𝒚]. In our experiments on scene images, the number of Gaussian 

mixtures is 𝐾 = 5, which generates the best results of boundary clustering in most 

natural scene images. If 𝐾  is too small, text boundary cannot be effectively 

extracted from complex background. If 𝐾 is too large, the boundary clustering 

process will lose the tolerance to color variation within a character or string. In that 

case, text boundary is probably broken into several fragments and assigned into 

different boundary layers. 

By using bigram color uniformity and spatial coherence, edge map of scene image 

is partitioned into several boundary layers, in which the object contours are 

extracted to be candidate character components. 

2.4. GRADIENT-BASED PARTITION 

2.4.1. CONTOUR SEARCH 

Besides color uniformity, the existence of text characters and strings always 

generates specific gradient distribution and edge density variation. We develop 

several gradient-based partition methods to extract candidate character 

components from background. 

A straightforward method is to extract the object contours from edge map of 

scene image, and then find out the possible boundaries of scene text characters from 

the object contours. Since the text characters have limited size and continuous 

contour, we could search for possible text characters by their boundaries in edge 

map by Canny detector [11]. A boundary is in the form of a set of connected edge 

pixels. Fig. 2–5 illustrates all available boundaries in a natural scene image. Each 
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boundary is a possible text character, and we can define some geometrical 

constraints as presented in Section 2.6 to find out scene text characters. 

 

 
Fig. 2–5. (a) Canny edge map of a scene images. (b) Bounding boxes of all available 

edge boundaries in the form of connected edge pixels, obtained from edge map. 

 

However, without predefined constraints like color uniformity as described in 

last section, the contours of text characters are mixed with the contours of 

background objects, and it is difficult to distinguish them. Thus we adopt 

gradient-based information to extract text from background. 

2.4.2. CONNECTING PATH 

Object contours can only be modeled by some superficial geometrical constraints 

without taking account of gradient variation around character boundary. We 

propose a more robust method using the gradient distributions of scene text 

characters to separate candidate character components from scene image. 

In our method, each pixel is mapped to connecting path of a pixel couple, defined 

by two edge pixels 𝑝 and 𝑞 on edge map with approximately equal gradient 

magnitudes and opposite directions, as shown in Fig. 2–6(a). Each pixel couple is 



 

 

 
19 

connected by a path. Then the distribution of gradient magnitudes at pixels of the 

connecting path is computed to extract candidate character component.  

Fig. 2–6(a) depicts that a character boundary consists of a number of pixel 

couples. We model the character by distribution of gradient magnitudes and stroke 

size including width, height and aspect ratio. The partitioned components are 

calculated from connecting path of pixel couple across the pixels with small gradient 

magnitudes. 

 

Fig. 2–6 (a) Examples of pixel couples; (b) connecting paths of all pixel couples are marked 

as white foreground while other pixels are marked as black background. 

On the gradient map, 𝐺𝑚𝑚𝑚(𝑝) and 𝑑𝑝  (−𝜋 < 𝑑𝑝 ≤ 𝜋) are used respectively to 

represent the gradient magnitude and direction at pixel 𝑝. We take an edge pixel 𝑝 

from edge map as starting point and probe its partner along a path in gradient 

direction. If another edge pixel 𝑞 is reached where gradient magnitudes satisfy 

�𝐺𝑚𝑚𝑚(𝑝) − 𝐺𝑚𝑚𝑚(𝑞)� < 20   and directions satisfy �𝑑𝑞 − �𝑑𝑝 − (𝑑𝑝 �𝑑𝑝�⁄ ) ∗ 𝜋�� <

𝜋 6⁄  , we obtain a pixel couple and its connecting path from 𝑝 to 𝑞. This algorithm 

is applied to calculate connecting paths of all pixel couples. Fig. 2–6(b) marks all the 

connecting paths shorter than 30 as white foreground. To perform the 

gradient-based partition, we employ gradient magnitude at each pixel on the 

connecting path and length of connecting path 𝑙 describing the size of connected 

component to be partitioned. The partition process is divided into two rounds. In 

the first round, the length range of connecting path is set as 0 < 𝑙 ≤ 30 to describe 

stroke width. For each pixel couple whose connecting path falls on this length range, 



 

 

 
20 

we establish an exponential distribution of gradient magnitudes of the pixels on its 

connecting path, denoted by Eq. (2–5) 

 

𝑔�𝐺𝑚𝑚𝑚; 𝜆� = 𝜆exp (−𝜆𝐺𝑚𝑚𝑚) (2–5) 

 

where the decay rate 𝜆 is estimated by 𝜆̂ = 𝑙 ∑ 𝐺𝑚𝑚𝑚⁄ . A larger decay rate leads to 

faster falloff of gradient magnitudes on a connecting path. It means that the 

connecting path crosses a number of pixels with small gradient magnitudes on 

gradient map. This feature is consistent with the intensity uniformity inside the 

character strokes.  

Thus we can set a threshold of the decay rate to extract candidate character 

components, and remove some background outliers. Ideally, the larger the threshold 

is, the better the results of character extraction are, as shown in Fig. 2–7. However, 

the decay rate only ensures the extraction of the text characters with large enough 

size and resolution. Thus in our experiments, we set a relatively small value 0.1 to 

extract as many candidate character components as possible, and leave the removal 

of false positives in the process of extracting scene text strings. To extract the 

complete stroke in rectangle shape, we start the second round to analyze the 

connecting paths along the stroke height (larger side). Since aspect ratio of rectangle 

stroke is no more than 6:1, we extend length range of connecting path to 0 < 𝑙 ≤

180. Then we repeat the same analysis of gradient magnitudes for the connecting 

path not only falling on this length range but also passing through the regions of 

candidate character components obtained from the first round. At last, we perform 

morphological close and open as post processing to refine the extracted connected 

components, as shown in Fig. 2–8. The refined connected components are taken as 

candidate character components. 
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Fig. 2–7. (a) Two connecting paths of pixel couples marked by blue and red circles 

respectively. (b) The corresponding exponential distribution of gradient magnitudes on the 

connecting paths. (c) Partitioned components obtained from the first round. 

 

 

Fig. 2–8. Connecting path of pixel couple along the larger side of rectangle stroke is analyzed 

in the second round partition. Top row shows pixel couples in purple across the larger side 

of rectangle strokes. Bottom row presents the partitioned components obtained from the 

first round and the second round respectively. 



 

 

 
22 

 

The gradient-based partition generates a binary map of candidate character 

components on black background. By the model of local gradient features of 

character stroke, we can filter out background outliers while preserving the 

structure of text characters. Fig. 2–9 demonstrates that the gradient-based partition 

performs better on character component extraction than morphological processing. 
 

 

Fig. 2–9. Connected components obtained from direct morphological processing on gray 

images and corresponding binary images. We compare results of four morphological 

operators with result of our gradient-based partition. 

2.5. TWO POPULAR METHODS OF EXTRACTING TEXT CHARACTER COMPONENTS 

In addition to gradient-based and color-based partition, many other methods 

were proposed to effectively extract text character components. Two popular 

methods are maximal stable extremal region (MSER) [55] [99] [101] [59] and 

stroke width transform (SWT) [22]. The two common use methods are able to 

generate clear and complete candidate character components. Thus we present 

their technical details and compare them with our proposed gradient-based and 

color-based partition methods in this section. 
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2.5.1. MAXIMAL STABLE EXTREMAL REGION 

MSER detector was proposed in 2002 [55], which has been used as a blob 

detection technique for a long time in computer vision field. MSER is defined based 

on an extension of the definitions of image and set. Let image 𝐼:𝐷 ⊂ ℤ2 → 𝑆, where 

𝐷 denotes the set of all pixels in the image, and 𝑆 is a totally ordered set with 

reflexive, anti-symmetric and transitive properties. An adjacent relation is defined 

as 𝐴. Then an MSER region 𝑄 is defined as a contiguous subset of 𝐷, such that for 

each 𝑝, 𝑞 ∈ 𝑄 , there is a sequence 𝑝,𝑎1,𝑎2, 𝑎3, … , 𝑎𝑛, 𝑞  and 

𝑝𝑝𝑎1,𝑎1𝐴𝑎2, … ,𝑎𝑖𝐴𝑎𝑖+1, … ,𝑎𝑛𝐴𝐴. From the perspective of image pixel, the point 𝑝, 

𝑞 and 𝑎𝑖 represent the coordinates of pixels, and the adjacent relation is mostly 

defined by intensity threshold, that is, for two neighboring pixel 𝑎𝑖 and 𝑎𝑖+1, we 

have 𝑎𝑖𝐴𝑎𝑖+1 if and only if |𝐼(𝑎𝑖+1) − 𝐼(𝑎𝑖)| ≤ 𝑇ℎ𝑟𝑟𝑟ℎ𝑜𝑜𝑜, where 𝐼(𝑎𝑖) denote the 

intensity at pixel 𝑎𝑖. As shown in Fig. 2–10, MSER generates connected components 

of text characters in scene image, while edge map only gives the contours of text 

characters. Further, MSER map filters out the foliage thoroughly. 

 

 

Fig. 2–10. (a) Original natural scene image. (b) Canny edge map. (c) Some MSER regions as 

white foreground. 

Since MSER cannot confirm the intensity polarity of text and attachment surface, 

that is, not able to distinguish white-text-in-black-background from 
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black-text-in-white-background, both text and attachment surface will be extracted 

as candidate character components in MSER map. However, attachment surface 

components can be easily removed by defining some geometrical properties. 

Moreover, MSER has several specific properties compatible with the requirement 

of extracting candidate character components from natural scene image. Firstly, 

MSER is invariant to affine transformation of image intensities. Secondly, MSER 

extraction is very stable since a region is selected only if its support is nearly the 

same over a range of thresholds. Thirdly, MSER is scale-invariant, that is, it is able to 

extract candidate character components in multiple scales without any 

pre-processes of original natural scene image. Fourthly, MSER extraction is very 

efficient, because its time complexity in the worst case is O(𝑛)  where 𝑛 

represents the number of pixels in the image. 

2.5.2. STROKE WIDTH TRANSFORM 

SWT was proposed in 2010 [22], in which a local operator associated with stroke 

width is designed to model the specific structure of text character and extract text 

character components from non-text background outliers.  

Stroke serves as a basic unit to compose a text character. Stroke is defined as a 

contiguous part of an image that forms a band of nearly constant width, as the 

region with red boundary shown in Fig. 2–11. Stroke width is calculated as the 

distance between two pixels with similar gradient magnitude and opposite gradient 

directions. SWT labels the pixels located inside the torso of a stroke by its width, and 

transforms a natural scene image into a stroke width map. 

The implementation of SWT is as follows. Firstly, canny edge detector was 

applied to obtain the edge map of a natural scene image. Secondly, at each edge pixel 

𝑝 in the edge map, gradient direction 𝑑𝑝 is calculated, which is approximately 

perpendicular to the stroke orientation. Thirdly, a pixel ray is generated from edge 

pixel 𝑝  along the gradient direction 𝑑𝑝  for raster probe, until the arrival of 
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another edge pixel 𝑞, whose gradient direction is 𝑑𝑞 . If the two gradients have 

approximately equal magnitudes and opposite directions (see Fig. 2–11), all the 

pixels inside the segment path ended at 𝑝 and 𝑞 are labeled by the length |𝑝 − 𝑞|. 

In [22], a constraint is defined in Eq. (2–6) to check whether gradient magnitude is 

approximately identical and gradient direction is approximately opposite.  

 

�𝑑𝑝 − 𝑑𝑞� ≤
𝜋
6

 (2–6) 

 

 

 

Fig. 2–11. Stroke width transform: A character stroke is represented by the red boundary. 

The two pixels 𝑝 and 𝑞 are on the boundary of a character stroke. Stroke width is 

calculated as the distance between two pixels which have similar gradient magnitude and 

opposite gradient direction. Each pixel is assigned a value of stroke width to be a stroke 

width map, and the pixels with similar values in this map are grouped together to compose 

the connected components on the right, which will be used as candidate character 

component in later processes. 

If a pixel is labeled more than once, the minimum length value will be assigned to 

it. Then pixels labeled by similar stroke width values are grouped as candidate 

connected components of text characters. As shown in Fig. 2–11, the pixels within 

the stroke of character “S” will have similar values in stroke width map, and we can 
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adopt breadth first search algorithm to search for similar pixels and group them into 

candidate character components. SWT can be used to extract inner structure feature 

of text configuration, which will be presented in Section 4.3. 

2.5.3. COMPARISONS WITH GRADIENT-BASED AND COLOR-BASED METHODS 

Here, we briefly summarize the gradient-based partition and color-based 

partition methods. Both of them play a significant role in the extraction of candidate 

character components from natural scene image. Based on gradient and color, a 

group of text layout and structural features can be designed to separate text 

information from background outliers. However, they also have several differences. 

First, color-based model describes the torso of a text character while gradient-based 

model mostly describes the boundary of a text character. In ideal case, character 

torso and boundary can be transformed into each other, but this transformation 

usually fails in cluttered background. The torso model can better tolerate 

low-resolution than boundary model, so color-based methods usually give better 

performance than gradient-based method. Secondly, color-based model requires the 

statistics of the whole scene image to obtain proper parameters of color clustering, 

while the gradient-based model requires only local computing of gradient 

information. From this point, gradient-based methods usually have higher efficiency 

than color-based methods. Therefore, we need to seek a proper solution to combine 

the advantages of the two methods in real applications. 

2.6. GEOMETRICAL CONSTRAINTS OF CANDIDATE CHARACTER COMPONENTS 

Text layout is modeled to remove most background outliers in natural scene 

image. It includes color uniformity, gradient distribution, and character alignment, 

which are extrovert characteristics of text. 

To remove the non-text background outliers from the set of candidate character 

components, we define a group of geometrical constraints. In these constraints, a 
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candidate character component 𝐶 is described by several geometrical properties: 

ℎ𝑒𝑒𝑒ℎ𝑡(∙),𝑤𝑤𝑤𝑤ℎ(∙), 𝑐𝑐𝑐𝑐𝑐(∙), coor𝑌(∙), 𝑎𝑎𝑎𝑎(∙), and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(∙), which represent 

height, width, centroid x-coordinates, centroid y-coordinates, area, and the number 

of inner candidate character components respectively. 

We define a group of geometrical constraints based on above measurements to 

ensure that the preserved candidate character components are truly text characters 

as possible. Since we will further use character grouping and text structure 

modeling to remove false positive candidate character components, the constraints 

defined in this step are not very strict. 

 

ℎ𝑒𝑒𝑒ℎ𝑡(𝐶) > 15 𝑝𝑝𝑝𝑝𝑝𝑝 

0.3 ≤
𝑤𝑤𝑤𝑤ℎ(𝐶)
ℎ𝑒𝑒𝑒ℎ𝑡(𝐶) ≤ 1.5 

𝑛𝑢𝑚𝑚𝑚𝑚𝑚𝑚(𝐶) ≤ 4 
1

10
∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ ≤ 𝑐𝑐𝑐𝑐𝑐(∙) ≤

9
10

∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ 

1
10

∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑡 ≤ 𝑐𝑐𝑐𝑐𝑐(∙) ≤
9

10
∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑡 

(2–7) 

 

The involved geometrical constraints are presented in Eq. (2–7). First of all, the 

candidate character component cannot be too small, or else we will regard it as 

background noise. It also means that our whole framework of scene text extraction 

requires enough resolution of camera-captured scene text information. Second, the 

aspect ratio of a true positive character should be located in a reasonable range. 

Under a threshold of aspect ratio, we might also remove some special text 

characters like “l”, but it is very possible to restore this false removal by generating 

text string fragments as described in Chapter 3. Third, we define some constraints 

related to the number of nested candidate character components as presented in 

[39]. Fourth, we observe that many background outliers obtained from the above 

partition methods are located at the margins of camera-based scene image. Thus the 
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candidate character components whose centroids are located at the 1/10 margin of 

the camera-based images will not be taken in account in further processes. 

Compared with the geometrical constraints defined in [59] [99], the geometrical 

constraints we defined are very straightforward and easy to implement, and most of 

them are just external geometrical measurements of a candidate character 

component, such as size and aspect ratio, without association with inner structure 

of text character (except the number of holes, but we set much weak threshold than 

that in [39]). Also, different from the methods in [59] [99], we do not use any 

learning model to decide the parameters. Instead, all the involved geometrical 

constraints in this step are weak conditions, with the preservation of true positive 

text characters in higher priority than the removal of false positive background 

outliers. Therefore, only the obvious background outliers are filtered by the 

geometrical constraints. The remaining false positive candidate character 

components will be handled in the extraction of text string fragments. 

 

2.7. SUMMARY OF CONTRIBUTIONS 

In this chapter, our main contributions are two methods of extracting candidate 

character components. The first method is based on the decomposition of edge map 

into multiple layers according to bigram color uniformity, and the second method is 

based on the searching of edge pixel couple according to gradient distribution. Both 

these methods can effectively extract possible text characters in the form of 

connected components from natural scene image with complex background. 
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Chapter 3 SCENE TEXT STRING FRAGMENTS 

3.1. PROBLEM FORMULATION 

The image partition presented in last chapter creates a set of candidate character 

components in the form of connected components or boundary contours ℂ =

{𝐶𝑖|1 ≤ 𝑖 ≤ |ℂ|} from an input image, where |ℂ| represent the total number of 

candidate character components from image partition. Most candidate character 

components in ℂ  are not true positive scene text characters but non-text 

background objects in uniform color or some portions of an object under uneven 

illumination. Geometrical constraints of single candidate character components 

cannot remove them, so we design more discriminative layout characteristics of 

scene text from high-level perspective. Text in natural scene mostly appears in the 

form of words and phrases, but not single characters. It is because words and 

phrases are more informative text information, while single character usually serves 

as a sign or symbol. Words and phrases are defined as text strings, and we attempt 

to find out possible text strings by combining neighboring candidate character 

components. In this chapter, a combination of neighboring candidate character 

components is defined as text string fragments. Since we have not confirmed the 

true positive characters, a text string fragment is further named as candidate string 

fragment. It can be regarded as a portion of text string itself, or a portion of text 

region containing text string. 

In this chapter, assuming that a text string consists of at least two character 

members in alignment, we propose two methods to extract candidate string 

fragments from candidate character components, which are adjacent character 

grouping in Section 3.3 and text line fitting in Section 3.4 respectively. In this 

chapter, we will continue the use of the geometrical properties of candidate 

character components and their corresponding symbols defined in Section 2.6. In 

addition, we define 𝐷(𝐶1,𝐶2)  as the distance between the centroids of two 



 

 

 
30 

candidate character components 𝐶1 and 𝐶2, and generate a group of constraints 

associated with scene text string fragments in Section 3.5. 

3.2. PREVIOUS WORK 

Many researches on the extraction of text string fragment have been previously 

published. Phan et al. [69] performed line-by-line scan in edge images to combine 

rows and columns with high density of edge pixels into text regions. Gao et al. [26] 

and Suen et al. [80] performed heuristic grouping and layout analysis to cluster 

edges of objects with similar color, position and size into text regions. However 

these algorithms are not compatible with slanted text lines. Myers et al. [26] 

rectified the text line in 3D scene images by using horizontal and vertical features of 

text strings, but their work does not focus on detecting text line on complex 

background. Akoum et al. [2] employed gradient-based analysis to localize and 

recognize car license plates. Ma et al. [56] and Zhang et al. [103] designed 

multi-scale edge features detect scene text, and edge-based features are also 

adopted in our framework to model text-specific structure. In [22] [99] [101] , a 

group of geometrical constraints was defined to link neighboring candidate 

character components that probably belonged to the same text string. However, 

most of these algorithms just set the parameters of geometrical constraints by 

subjective assignment. The optimized parameters were chosen from performance 

evaluation of text region detection in a benchmark dataset. It means that these 

parameters might not be generalized to real environments with different text 

patterns from the ones in the dataset. Yao et al. [99] combined self-designed 

geometrical properties of text patches into Random Forest learning model, which 

automatically set optimized parameters of geometrical properties and generated an 

effective text classifier to extract true position text strings. Ze et al. [100] proposed a 

method of cylinder object unwarping to extract text information from non-planar 

surfaces. 
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3.3. ADJACENT CHARACTER GROUPING 

Text strings in natural scene images usually appear in horizontal alignment, 

namely, each character in a text string has at least one sibling at adjacent positions. 

A text character and its siblings have similar sizes and proper distances. The 

candidate character components corresponding to non-text outliers can be removed 

if they do not have any siblings. 

Now the main problem is how to decide whether two candidate character 

components 𝐶1 and 𝐶2 can be regarded as siblings of each other. According to our 

observations and statistical analysis of text strings, we define 4 geometrical 

constraints as follows. 

1) Considering the approximate horizontal alignment of text strings in most 

cases, the centroid of candidate character component 𝐶1  should be located 

between the upper-bound and lower-bound of the other candidate character 

component 𝐶2 , that is, 𝑐𝑐𝑐𝑐𝑐(𝐶1) ≥ 𝑐𝑐𝑐𝑐𝑐(𝐶2) − ℎ𝑒𝑒𝑒ℎ𝑡(𝐶2) ∗ 𝑇1  and 

𝑐𝑐𝑐𝑐𝑐(𝐶1) ≤ 𝑐𝑐𝑐𝑐𝑐(𝐶2) + ℎ𝑒𝑒𝑒ℎ𝑡(𝐶2) ∗ 𝑇1 

2) Two adjacent characters should not be too far from each other despite the 

variations of width, so the distance between two connected components should not 

be greater than 𝑇2 times the width of the wider one, that is, |𝑐𝑐𝑐𝑐𝑐(𝐶1)−

𝑐𝑐𝑐𝑐𝑐(𝐶2)| ≤ 𝑇2 ∙ 𝑚𝑚𝑚�𝑤𝑤𝑤𝑤ℎ(𝐶1),𝑤𝑤𝑤𝑤ℎ(𝐶2)� 

3) For text strings aligned approximately horizontally, the difference between 

y-coordinates of the connected component centroids should not be greater than 

𝑇3 times the height of the higher one, that is, |𝑐𝑐𝑐𝑐𝑐(𝐶1) − 𝑐𝑐𝑐𝑐𝑐(𝐶2)| ≤ 𝑇3 ∙

𝑚𝑚𝑚�ℎ𝑒𝑒𝑒ℎ𝑡(𝐶1),ℎ𝑒𝑒𝑒ℎ𝑡(𝐶2)�. 

4) If the connected components are obtained from gradient-based partition as 

described in Section 2.4, the color difference between them should be lower than a 

predefined threshold 𝑇4 because the characters in the same string have similar 

colors, that is, |𝒄𝒄(𝐶1) − 𝒄𝒄(𝐶2)| ≤ 𝑇3. 
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In our system, we set 𝑇1 = 0.5,𝑇2 = 3,𝑇3 = 0.5 and 𝑇4 = 40. For each candidate 

character component 𝐶𝑖, a sibling set 𝑆(𝐶𝑖) is generated, where 1 ≤ 𝑖 ≤ |ℂ| and 

|ℂ|  is the number of candidate character components obtained from image 

partition. First, an empty sibling set is initialized as 𝑆(𝐶𝑖) = ∅. We transverse all the 

candidate character components expect 𝐶𝑖  itself. If a candidate character 

component 𝐶𝑖′ satisfies all above constraints with 𝐶𝑖, we add it into the sibling set 

as 𝑆(𝐶𝑖): = 𝑆(𝐶𝑖) ∪ {𝐶𝑖′}. Second, all the sibling sets compose a set of adjacent 

groups Λ = {𝐴𝑖|𝐴𝑖: = 𝑆(𝐶𝑖)}, where a sibling set is initialized to be adjacent group 

𝐴.  

 

 

Fig. 3–1. (a) Sibling group of the connected component ‘r’ where ‘B’ comes from the left 

sibling set and ‘o’ comes from the right sibling set; (b) Merge the sibling groups into an 

adjacent character group corresponding to the text string “Brolly?”; (c) Two detected 

adjacent character groups marked in red and green respectively. 



 

 

 
33 

Third, the set of adjacent groups is iteratively updated by merging the overlapping 

adjacent groups. An adjacent group is a group of candidate character components 

that are probably character members of a text string. As Eq. (3–1), if two adjacent 

groups 𝐴𝑖  and 𝐴𝑗  in 𝛬 have intersection, they will be merged into one adjacent 

group. This merging operation is iteratively repeated until no overlapping adjacent 

groups exist. 

 

∀ 𝐴𝑖,𝐴𝑗 ∈ 𝛬, 𝑖𝑖 𝐴𝑖 ∩ 𝐴𝑗  ≠ ∅, 𝑡ℎ𝑒𝑒 𝐴𝑖 ≔ 𝐴𝑖 ∪  𝐴𝑗  𝑎𝑎𝑎 𝐴𝑗 ≔ ∅ (3–1) 

 

We summarize our method of adjacent character grouping in Table 3–1 in detail. 

In the resulting set of adjacent groups, each adjacent group 𝐴𝑖  is a set of candidate 

character components in approximate horizontal alignment, which will be regarded 

as a candidate string fragment, as shown in Fig. 3–1. 

The above method of adjacent character grouping assumes horizontal alignment 

of scene text string. However, it can be extended to text strings in arbitrary 

orientations by just modifying the geometrical constraints and merging method as 

the following 3 steps.  

1) The above constraint 1 ensures the horizontal alignment of sibling candidate 

character components, and we can remove it to accept sibling candidate character 

components in arbitrary orientations. 

2) The above constraints 2 and 3 ensures proper distances of two sibling 

candidate character components in horizontal and vertical orientation. To extend 

them into arbitrary orientations, we combine them into Eq. (3–2) and Eq. (3–3). 

 

𝐷(𝐶1,𝐶2) ≔ ��𝑐𝑐𝑐𝑐𝑐(𝐶1) − 𝑐𝑐𝑐𝑐𝑐(𝐶2)�2 + �𝑐𝑐𝑐𝑐𝑐(𝐶1) − 𝑐𝑐𝑐𝑐𝑐(𝐶2)�2 

𝐷(𝐶1,𝐶2) ≤ 𝑇5 ∙
𝑚𝑚𝑚(𝑤𝑤𝑤𝑤ℎ(𝐶1),𝑤𝑤𝑤𝑤ℎ(𝐶2 ))

sin 𝜃
 

 

(3–2) 
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𝜃 ≔ arctan �
𝑐𝑐𝑐𝑐𝑐(𝐶1) − 𝑐𝑐𝑐𝑐𝑐(𝐶2)
𝑐𝑐𝑐𝑐𝑐(𝐶1) − 𝑐𝑐𝑐𝑐𝑐(𝐶2)�         𝑖𝑖 𝑐𝑐𝑐𝑐𝑐(𝐶1) ≠ 𝑐𝑐𝑐𝑐𝑐(𝐶2) 

𝜃 ≔ 𝜋 2⁄            𝑖𝑖 𝑐𝑐𝑐𝑐𝑐(𝐶1) == 𝑐𝑐𝑐𝑐𝑐(𝐶2) 
(3–3) 

 

3) An adjacent group is a set of collinear candidate character components, and 

they are now in arbitrary orientations, not have to be horizontal. Thus we add one 

more attribute to describe an adjacent group, which is orientation. In the process of 

merging adjacent characters A𝑖  and A𝑗 , besides A𝑖 ∩ A𝑗 ≠ ∅ we should add one 

more condition on the consistence of their orientations �ori(A𝑖) − ori(A𝑗)� ≤ 𝜋 6⁄ . 

In the merging process as A𝑖 ≔ A𝑖 ∪ A𝑗  in Table 3–1, we will also update the 

orientation of A𝑖  by fitting the line through all the candidate character components 

in A𝑖  and A𝑗 . 

By the above 3 modifications, the method of adjacent character grouping is able 

to extract candidate string fragments in arbitrary orientations. However, without 

the assumption of horizontal alignment, the number of ways of combining the 

candidate character components largely increase, therefore more false positive 

string fragments will be generated. 
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Table 3–1. The procedure of adjacent character grouping 

Input: The set of candidate character components ℂ = {𝐶𝑖|1 ≤ 𝑖 ≤ |ℂ|} 
Output: The set of adjacent groups 𝛬 
 
for each pair of candidate character components 𝐶𝑖 ,𝐶𝑖′ ∈ ℂ  

      if 𝑐𝑐𝑐𝑐𝑐(𝐶𝑖) ≥ 𝑐𝑐𝑐𝑐𝑐(𝐶𝑖′) − ℎ𝑒𝑒𝑒ℎ𝑡(𝐶𝑖′) ∗ 𝑇1 and 𝑐𝑐𝑐𝑐𝑐(𝐶𝑖) ≤ 𝑐𝑐𝑐𝑐𝑐(𝐶𝑖′) + ℎ𝑒𝑒𝑒ℎ𝑡(𝐶𝑖′) ∗ 𝑇1 

         & 𝐷� coor𝑋(𝐶𝑖), , coor𝑋(𝐶𝑖′)� ≤ 𝑇2 ∗max {𝑤𝑤𝑤𝑤ℎ(𝐶𝑖),𝑤𝑤𝑤𝑤ℎ(𝐶𝑖′)} 

         & 𝐷�coor𝑌(𝐶𝑖), coor𝑌(𝐶𝑖′)� ≤ 𝑇3 ∗ max {ℎ𝑒𝑒𝑒ℎ𝑡(𝐶𝑖),ℎ𝑒𝑒𝑒ℎ𝑡(𝐶𝑖′)} 

         & difference of mean RGB color value is less than 𝑇4 

            𝑆(𝐶𝑖): =  𝑆(𝐶𝑖) ∪ 𝐶𝑖′ 

            𝑆(𝐶𝑖′): =  𝑆(𝐶𝑖′) ∪ 𝐶𝑖 

      endif 

endfor 

 

for each candidate character component 𝐶𝑖 ∈ ℂ 

      𝐴𝑖: = 𝑆(𝐶𝑖);  

      Λ: = Λ ∪ {𝐴𝑖}; 

Endfor 

 

while there exists overlapping adjacent groups A𝑖  and A𝑗  such that A𝑖 ∩ A𝑗 ≠ ∅ 

for each pair of overlapping adjacent groups A𝑖 , A𝑗 ∈ Λ 

           A𝑖 ≔ A𝑖 ∪ A𝑗; 

           A𝑗: = ∅; 

endfor 

endwhile 

 

We obtain a set of adjacent groups Λ after the iterative merge 

Filter out false positives by the three filters decided by geometrical properties. 

Calculate image regions of candidate string fragments based on the adjacent groups. 
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3.4. TEXT LINE FITTING 

Many applications require extracting candidate string fragments in 

non-horizontal orientations. The adjacent character grouping method can deal with 

non-horizontal text strings as long as their orientations are within −15𝑜 to 15𝑜 . To 

handle text strings in arbitrary orientations, we develop another method of text line 

fitting to directly combine the candidate character components in linear alignment. 

First the centroid of each candidate character component is calculated, and then 

their collinear centroids are cascaded into text lines. The set of centroids of 

candidate character components is denoted as 𝑀 in Eq. (3–4). Now the problem is 

how to find out the subsets of collinear centroids 

 

𝑀 = {𝑚|𝑚 = 〈𝑐𝑐𝑐𝑐𝑐(𝐶), 𝑐𝑐𝑐𝑐𝑐(𝐶)〉} (3–4) 

 

𝐿 = �𝐺�
𝐺 ⊆ 𝑀, |𝐺| ≥ 3,∀𝑚𝑖,𝑚𝑗 ,𝑚𝑘 ∈ 𝐺,
𝑡ℎ𝑒𝑒 𝑎𝑎𝑎 𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,

𝑎𝑎𝑎 𝑡ℎ𝑒𝑒 𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.
� (3–5) 

 

where 𝐶 denotes a candidate character components obtained from image partition, 

𝑀 denotes the set of centroids, and 𝐿 denotes the set of text lines which are 

composed of collinear centroids. 

A naive solution is to search for satisfied centroid groups in the power set of 𝑀, 

but the complexity of this algorithm will be 𝑂(2|𝑀|) where |𝑀| represents the 

number of centroids in the set 𝑀. We design an efficient algorithm to extract 

regions containing text strings. Firstly we check the collinearity for each group of 

three centoirds 𝑚𝑖,𝑚𝑗  and 𝑚𝑘  in the set 𝑀 as Eq. (3–5). We calculate the length 

difference ∆𝑑 and incline angle difference ∆𝜃 for the two line segments 𝑚𝑖𝑚𝑗  and 

𝑚𝑗𝑚𝑘, as shown in Fig. 3–2. The three centroids are approximately collinear if 

1 𝑇6⁄ ≤ ∆𝑑 ≤ 𝑇6 and ∆𝜃 ≤ 𝑇7. In our system, we set 𝑇6 = 2 and 𝑇7 = 𝜋 12⁄ . Thus 

they compose a preliminary fitted line 𝑙𝑢 = {𝑚𝑖,𝑚𝑗 ,𝑚𝑘} where 𝑢 is the index of 
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the fitted line. Secondly, after finding out all the preliminary fitted lines, we apply 

Hough transform to describe the fitted line  𝑙𝑢  by 〈𝑟𝑢,𝜃𝑢〉  , resulting in 𝑙𝑢 =

{𝑚|ℎ(𝑟𝑢,𝜃𝑢,𝑚) = 0} where ℎ(𝑟𝑢,𝜃𝑢,𝑚) = 0 is equation of the fitted line in the 

Hough Space. Thirdly, we check each centroid to see whether it is located around 

the fitted line within a predefined error. If yes, this centroid is added into the fitted 

line, and Hough equation of the fitted line is updated by re-calculating the 

collinearity in the presence of newly-added centroids. Fig. 3–2 illustrates an 

example of text line fitting, in which both text string and non-text background noises 

are extracted in the form of text string fragments as long as they satisfy spatial 

collinearity. Table 3–2 summarizes our algorithms in detail. 

 

∆𝑑 =
𝐷(𝑚𝑖 ,𝑚𝑗)
𝐷(𝑚𝑗 ,𝑚𝑘)

 (3–6) 

 

∆𝜃 = �
�𝜃𝑖𝑖 − 𝜃𝑗𝑗�, 𝑖𝑖 �𝜃𝑖𝑖 − 𝜃𝑗𝑗� ≤

𝜋
2

�𝜃𝑖𝑖 − 𝜋 − 𝜃𝑗𝑗�, 𝑖𝑖 �𝜃𝑖𝑖 − 𝜃𝑗𝑗� >
𝜋
2

 𝑎𝑎𝑎 𝜃𝑖𝑖 > 𝜃𝑗𝑗
 (3–7) 

 

where 𝑑 is length of line segment and 𝑑 > 0,  𝜃  is the angle of incline and 

0 ≤ 𝜃 < 𝜋. 

The centroids from false positive character components can also be aligned as a 

line. To remove these false positive fitted lines, several constraints are further 

defined to distinguish the fitted lines corresponding to text strings from those 

generated by non-text background outliers. Section 3.5 gives more explanations. 
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Fig. 3–2. (a) Centroids of connected components in a color layer; (b) 𝐷(𝑚𝐴,𝑚𝐵) 

approximately equals to 𝐷(𝑚𝐵,𝑚𝐶) in text region while 𝐷(𝑚𝐴,𝑚𝑃)  is much larger than 

 𝐷(𝑚𝑃 ,𝑚𝑄)  in background, where 𝐷(. )  represents Euclidean distance; (c) Three 

neighboring connected components in red share similar areas while those in green have 

very different areas; (d) Resulting fitted lines from centroids cascading. Red line 

corresponds to text region while cyan lines are false positives to be removed. 
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Table 3–2. The procedure of text line fitting 

Input: The set of candidate character components ℂ = {𝐶𝑖|1 ≤ 𝑖 ≤ |ℂ|} 

Output: The set of adjacent groups 𝐿 

for every group of three points 𝑚𝑖,𝑚𝑗 ,𝑚𝑘 ∈ 𝑀,  

  calculate ∆𝑑 and ∆𝜃  

  if 0.5 ≤ ∆𝑑 ≤ 2 and ∆𝜃 ≤ 𝜋
12

 

     𝑙𝑢: = {𝑚𝑖 ,𝑚𝑗,𝑚𝑘}; 

  endif 

endfor 

 

for every preliminary fitted line 

  for every 𝑚𝑡 ∈ 𝑀 and 𝑚𝑡 ∉ 𝑙𝑢 

   〈𝑟𝑢 ,𝜃𝑢〉: = 𝐻𝐻𝐻𝐻ℎ(𝑙𝑢) where 𝑙𝑢 = {𝑚|ℎ(𝑟𝑢 ,𝜃𝑢 ,𝑚) = 0} 

      𝐢𝐢    ℎ(𝑟𝑢 ,𝜃𝑢 ,𝑚𝑡) < 𝜀 

        & fitted line 𝑙𝑢 ∪ {𝑚𝑡} meets the two constraints  

         𝑙𝑢: = 𝑙𝑢 ∪ {𝑚𝑡}   

         〈𝑟𝑢 ,𝜃𝑢〉: = 𝐻𝐻𝐻𝐻ℎ(𝑙𝑢) // re-calculating the Hough equation after adding in 𝑚𝑡  

      endif 

   𝐿: = 𝐿 ∪ {𝑙𝑢} 

  endfor 

endfor 

 

Filter out false positive fitted lines in 𝐿 by geometrical properties, and calculate extracted 

regions based on the positive fitted lines. 
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3.5. GEOMETRICAL CONSTRAINTS OF CANDIDATE STRING FRAGMENTS 

To remove the false positive adjacent groups and text lines that are generated by 

background noises, two constraints are further defined according to structure 

features of text strings. 

In a text string, character members should have similar sizes. In adjacent 

character grouping, we measure this size similarity by ℎ𝑒𝑒𝑒ℎ𝑡(∙). In text line fitting, 

we only measure the directional alignment of candidate character components but 

not explicitly add the constraint of size similarity. Thus we define a geometrical 

constraint by the coefficient of variation of connected component areas to ensure 

the size similarity of character members in a text string. 

In a text string, character members should have similar distances to their direct 

neighboring siblings. In the processes of both adjacent character grouping and text 

line fitting, we set the thresholds of neighboring distances as a constraint to confirm 

the valid combinations of adjacent groups and text lines. However, these constraints 

only provide a local measurement of distance similarity, without evaluating the 

geometrical structure of the whole string fragment. It is very possible that character 

members gradually increase neighboring distances, that is, the second distance is 

larger than the first neighboring distance within the predefined threshold, and the 

third neighboring distance is larger than the second neighboring distance within the 

predefined threshold, but the third one is so larger than the first one that their ratio 

exceeds predefined threshold. Thus we define a geometrical constraint by the 

coefficient of variation of neighboring distances of candidate character components 

to ensure the distance similarity in the whole text string. 

The calculation of coefficient of variation (CV) for a candidate string fragment is 

presented in Eq. (3–8) 
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𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑠𝑠𝑠(𝒂𝒂𝒂𝒂(∙))
𝑚𝑚𝑚𝑚(𝒂𝒂𝒂𝒂(∙))

 
(3–8) 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑠𝑠𝑠(𝒅𝒅𝒅𝒅(. ))
𝑚𝑚𝑚𝑚(𝒅𝒅𝒅𝒅(. ))

 

 

where 𝒂𝒂𝒂𝒂(. ) represents the vector of areas of all character members, 𝒅𝒅𝒅𝒅(. ) 

represents the vector of neighboring distances among all character members, 

𝑠𝑠𝑠(. ) represents the standard deviation, and 𝑚𝑚𝑚𝑚(. ) represents the mean value. 

The larger the 𝐶𝐶𝐶𝐶𝐶𝐶 is, the larger the area dissimilarity is. The larger the 𝐶𝐶𝐶𝐶𝐶𝐶 

is, the larger the neighboring distance dissimilarity is. In our framework, the 

thresholds of 𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶𝐶𝐶 are set as 0.5 to restrict the dissimilarity. 

 

3.6. SUMMARY OF CONTRIBUTIONS 

In this chapter, our main contributions are two methods of extracting candidate 

string fragments, which are adjacent character grouping and text line fitting. The 

first method combines sibling candidate character components in similar size and 

horizontal alignment. The second method cascades the candidate character 

components in arbitrary orientations. Both these two methods can effectively 

extract possible text strings in alignment among the candidate character 

components. 
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Chapter 4 STRUCTURE MODELING FOR PREDICTING TRUE POSITIVE TEXT 

STRING FRAGMENTS 

Text structure refers the inner configuration of text characters and strings, which 

are introvert characteristics of text. In this chapter, we model text structure to 

distinguish true positive text string from non-text background outliers among the 

candidate string fragments obtained from above steps. 

4.1. PROBLEM FORMULATION 

In Chapter 3, pixel-based text layouts are modeled to extract candidate character 

components and candidate string fragments from cluttered background. However, 

this possible scene text is generated from observations of layout characteristics, and 

statistic-based layout parameters are defined to model these layout characteristics. 

For example, according to the analysis and statistic of text regions cropped from 

scene image, we define that aspect ratio of text characters should not exceed 5 and 

stroke width should be no larger than 50. But these estimates do not effectively 

model the structural insight of characters and strings. They fail to filter out the 

background objects that are also composed of strokes in uniform color and 

consistent width, such as bricks, window grids, foliage and some objects rendered 

by specific illumination. 

In this chapter, a candidate string fragment obtained by layout analysis is defined 

as a fragment sample in the form of image patch, as shown in Fig. 4–1. We will 

propose feature representations to model structural insights of fragment samples in 

Section 4.3. Each fragment sample is projected into a point in feature space, and 

cascaded-Adaboost learning model is then employed in Section 4.4 to train a robust 

classifier to pick true positive text out of the fragment samples obtained by layout 

analysis. As shown in Fig. 4–2, we design a learning-based algorithm for automatic 

localization of text regions in image.  
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Fig. 4–1. Some examples of text fragment samples in the form of image patches. 

 

 

Fig. 4–2. Diagram of the proposed Adaboost learning based text region localization 

algorithm by using stroke orientations and edge distributions. 

4.2. PREVIOUS WORK 

Many researches on the modeling of text structure from fragment sample have 

been previously published. They adopted various structural feature designs and 

machine learning models.  

Chen et al. [15] applied block patterns to gradient based maps and histograms to 

train text classifier in Adaboost model [25]. Hanif et al. [28] extracted mean 

difference, standard deviation, and HOG features of text characters to generate text 

detector under a Complexity Adaboost model. In [42], the responses of globally 
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matched wavelet filters from text regions are used as features to train text classifier 

based on Support Vector Machines (SVM) model and Fisher model. In [34], Gabor 

filter was used to segment text from documents. Pan et al. [66] used steerable Gabor 

filters to extract rotation-invariant features of multiple scripts. Shi et al. [74] 

adopted gradient based curvatures to perform structural analysis of handwritten 

digits under a Bayes discriminant model. Jung et al. [37] proposed an algorithm of 

text line refinement by analyzing SVM score of text regions. In [102], Gabor-based 

features were designed to model inner structure of text and classify string 

fragments. 

4.3. FEATURE REPRESENTATIONS FOR TEXT STRING BASED ON FEATURE MAPS 

4.3.1. HAAR-LIKE BLOCK PATTERNS 

To extract structural information of text strings from fragment samples, Haar-like 

filters are designed in the form of block patterns, as shown in Fig. 4–3. Each block 

pattern consists of white regions and gray regions in specific ratio. It will be resized 

into the same size as a fragment sample, and used as a mask. Then specific 

calculation metrics are defined based on these block patterns for extracting 

structural features, which will be described in detail in Section 4.3.3. 

A simple idea of feature extraction is to apply these block patterns directly to the 

fragment samples, and calculate Haar-like features from intensity values of the 

image patches. However, unlike face detection [88], the sole intensity values cannot 

completely represent structure of text strings. 
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Fig. 4–3. Some examples of Haar-like block patterns to extract text structural features. 

Features are obtained by the absolute value of mean pixel values in white regions minus 

those in black regions. 

4.3.2. FEATURE MAPS 

To model text structure, we design a set of feature maps for the fragment 

samples, in which the physical meaning of each pixel is transformed from intensity 

value to some measurements related to text structure. The structure-related 

measurements are mostly based on gradient, edge density and stroke. Here stroke is 

defined as a uniform region with bounded width and significant extent, which is a 

basic unit of text character. 

In our framework, two novel feature maps are designed based on stroke 

orientation and edge density variation. Besides, gradient distribution and stroke 

width are also adopted as feature map, and they are calculated from Sobel operator 

and stroke width transform respectively. These feature maps are combined to build 

an Adaboost-based text classifier. The details of these feature maps are presented as 

follows. 
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A GRADIENT 

The most intuitive text structural features originate from gradient magnitude and 

gradient orientation. As we know, text structure appears in the form of specific 

boundary, which is generated by stroke torso and attachment surface in uniform 

colors. The pixels around the text boundary have larger gradients than the pixels in 

plain regions. Thus the map of gradient magnitude and gradient orientation can be 

used to model text structure, as shown in Fig. 4–4. 

 

 

Fig. 4–4. From top to bottom, the figures represent the original text patch, the feature maps 

of gradient magnitude and the feature maps of gradient orientation respectively. 

B TEXT STROKE WIDTH 

The stroke width transform (SWT) proposed in [22] is applied to the image 

patches to generate another feature map. The principle of SWT has been presented 

in Section 2.5.2. Some parameters of SWT algorithm are adjusted to be compatible 

with the fragment samples, since this algorithm is originally designed for the whole 
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scene image. In SWT-based feature map, each pixel represents the width of its 

located stroke. If it is not located at the torso of text characters, we set it as 0. 

C TEXT STROKE ORIENTATION 

Text characters consist of strokes with constant or variable orientation as the 

basic structure. Here, we propose a new type of feature, stroke orientation, to 

describe the local structure of text characters. From the pixel-level analysis, stroke 

orientation is perpendicular to the gradient orientations at pixels of stroke 

boundaries, as shown in Fig. 4–5. To model the text structure by stroke orientations 

in fragment sample, we propose a new operator to map a gradient feature of strokes 

to each pixel. It extends the local structure of a stroke boundary into its 

neighborhood by gradient of orientations. We use it to develop a feature map to 

analyze global structures of text characters. 

 

 

Fig. 4–5. A fragment sample of text showing relationships between stroke orientations and 

gradient orientations at pixels of stroke boundaries. Blue arrows denote the stroke 

orientations at the sections and red arrows denote the gradient orientations at pixels of 

stroke boundaries. 

Given an image patch 𝐼, Sobel operators in horizontal and vertical derivatives are 

used to calculate 2 gradient maps 𝐺𝑥and 𝐺𝑦respectively. The synthesized gradient 

map is calculated as 𝐺 = �𝐺𝑥2 + 𝐺𝑦2�
1/2

. The Canny edge detector is applied on 𝐼 
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to calculate its binary edge map 𝐸. For a pixel 𝑝0, we certify whether it is close to a 

character stroke by setting a circular range as 𝑅(𝑝0) = {𝑝|𝑑(𝑝,𝑝0) ≤ 𝑟}, where 

𝑑(. ) denotes Euclidean distance, and 𝑟 = 36 is the threshold of the circular range 

to search for edge pixels. We set this threshold because the text patches in our 

experiments are all normalized into height 48 pixels and width 96 pixels, and the 

stroke width of text characters in these normalized patches mostly does not exceed 

36. If the distance is greater than 36, pixel 𝑝0 would be located at background 

region far away from text character. In the range we select the edge pixel 𝑝𝑒 with 

the minimum Euclidean distance from 𝑝0 . Then the pixel 𝑝0  is labeled with 

gradient orientation at pixel 𝑝𝑒 from gradient maps by Eq. (4–1). 

 

𝑝𝑒 = arg min
𝑝∈𝑃

𝑑(𝑝, 𝑝0) 

𝑆(𝑝0) = 𝛶 �𝑎𝑎𝑎𝑎𝑎𝑎 � 𝐺𝑦(𝑝𝑒), 𝐺𝑥(𝑝𝑒)�� 
(4–1) 

 

where 𝑃 = {𝑝|𝑝 ∈ 𝑅(𝑝0), 𝑝 is edge pixel}. The stroke orientation calculated from 

𝑎𝑎𝑎𝑎𝑎𝑎 will be in the range (−𝜋 2⁄ ,𝜋 2⁄ ]. To distinguish the pixels labeled with 

stroke orientation 0 and the unlabeled pixels also with value 0, 𝛶 shifts the stroke 

orientations one period forward into the range (3𝜋 2⁄ , 5𝜋 2⁄ ], which removes the 

value 0 from the range of stroke orientations. A stroke orientation map 𝑆(𝑝) is 

output by assigning each pixel the gradient orientation at its nearest edge pixel, as 

shown in Fig. 4–6(a). The pixel values in stroke orientation map are then quantized 

into an N bin histogram in the range (3𝜋 2⁄ , 5𝜋 2⁄ ] (see Fig. 4–6(b)). In the feature 

extraction stage, strokes with identical or similar orientations are identified to 

describe the structure of text from one perspective. In the N bin histogram, we 

group the pixels at every b consecutive bins together to generate a multi-layer 

stroke orientation map, where strokes in different orientations are separated into 

different layers. Without considering the cyclic shifts of the bins, there are a total of 

𝑁 − 𝑏 + 1 layers.  
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The range of stroke orientations (3𝜋 2⁄ , 5𝜋 2⁄ ] is quantized into 𝑁 = 16 bins, 

so each bin corresponds to 𝜋/16 =  11.25o and 𝑏 = 3 consecutive bins will cover 

a range of 33.75o. This span value is compatible with most character strokes in 

scene images, because the stroke orientations are always vertical, horizontal or 

approximate 30o~40o such as “W”, “X”, and arc components of “P”, “D” etc. Since 𝑏 

is set to be 3 and 𝑁 is set to be 16, each sample generates 14 layers of stroke 

orientation maps, where text structure is described as gradient features of stroke 

orientations. We can extract structural features of text from such stroke orientation 

maps.  

 

 

Fig. 4–6. (a) An example of stroke orientation label. The pixels denoted by blue points are 

assigned the gradient orientations (red arrows) at their nearest edge pixels, denoted by the 

red points. (b) A 210×54 fragment sample and its 16-bin histogram of quantized stroke 

orientations. 

D DISTRIBUTION OF EDGE PIXELS 

In an edge map, text characters appear in the form of stroke boundaries. The 

distribution of edge pixels in stroke boundaries also describes the characteristic 

structure of text. The most commonly used feature is edge density of text region. But 

the edge density measure does not give any spatial information of edge pixels. It is 

generally used for distinguishing text regions from relatively clean background 
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regions. To model text structure by spatial distribution of edge pixels in fragment 

sample, we propose an operator to map each pixel of an image patch into the 

number of edge pixels in its cross neighborhood. At first, edge detection is 

performed to obtain an edge map, and the number of edge pixels in each row 𝑦 and 

each column 𝑥 is calculated as 𝑁𝑅(𝑦) and 𝑁𝐶(𝑥). Then each pixel is labeled with 

the product value of the number of edge pixels in its located row and in its located 

column. Then a 3 × 3  smooth operator 𝑤𝑛  is applied to obtain the edge 

distribution feature map, as Eq. (4–2). In this feature map, pixel value reflects edge 

density in its located region, and the smoothed map better represents the 

discriminative inner structure of text characters. 

 

𝐷(𝑥,𝑦) = �𝑤𝑛 ∙ 𝑁𝑅(𝑦𝑛) ∙ 𝑁𝐶(𝑥𝑛)
𝑛

 (4–2) 

 

where (𝑥𝑛,𝑦𝑛) is neighboring pixel of (𝑥,𝑦) and 𝑤𝑛 = 1/9 denotes the weight 

value. 

4.3.3. FEATURE VALUE GENERATION 

In feature map of a fragment sample, each pixel is transformed from intensity to 

some measurements related to text structure. Each pixel reflects text structural 

configuration from a local perspective. Several design schemes of feature maps have 

been presented in last section. By tuning the parameters of generating feature maps 

under a design scheme, we can obtain multiple feature maps. In our framework, we 

define 3 gradient maps, 2 stroke width maps, 14 stroke orientation maps, and 1 

edge distribution map, to which 6 Haar-like block patterns are applied for 

calculating feature values.  

Fig. 4–3 demonstrates the involved block patterns. In calculating a feature value 

for a given fragment sample in training set, we first generate one feature map of this 

fragment sample. Then we normalize one block pattern into the same size (height 
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48 pixels, width 96 pixels) as its feature map, and compute a feature value 𝑓 by 

calculating the absolute difference between the sum/mean of pixel values in white 

regions and the sum/mean of pixel values in black regions. For the block patterns 

with more than 2 sub-regions (see Fig. 4–3(a-d)), the other metric of feature 

response is the absolute difference between the mean of pixel values in white 

regions and the mean of pixel values in black regions. Thus we obtain 6 + (6 − 2) =

10 feature values for one feature map. The “integral image” algorithm is used in 

these calculations as in [88]. Since we define 20 feature maps, a fragment sample 

will generate a feature vector in 20 × 10 = 200 dimensions, as Eq. (4–3). Each 

dimension is defined as a structural element. We compute feature vectors for all the 

51234 fragment samples in the training set. By using feature vector 𝒇𝑖  of the i-th 

fragment sample as the i-th column, a feature matrix 𝑭 is obtained by Eq. (4–4). 

 

𝒇𝑖 = �𝑓1𝑖,𝑓2𝑖 , … ,𝑓200𝑖 �
𝑇

 (4–3) 

 

𝑭 = [𝒇1,𝒇2, … ,𝒇𝑡 , … , 𝒇51234] (4–4) 
 

The 200 × 51234 feature matrix is used for learning a text classifier in a 

Cascade-Adaboost model (see Section 4.4 for detail). A row of the feature matrix 

corresponds to a structural element, recording feature responses of a certain block 

pattern and a certain feature map on all fragment samples in training set. 

 

4.4. CASCADED ADABOOST LEARNING 

A supervised learning process is performed over a training set of fragment 

samples, in which text string fragments are labeled as positives and non-text outlier 

fragments are labeled as negatives. The learning process is to train a robust 
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classifier 𝐻 that is able to correctly predict whether a given fragment sample truly 

contains text or not. 

4.4.1. WEAK CLASSIFIERS 

For each fragment sample 𝑠, a feature vector 𝒇𝒔 in 𝑀 = 200 dimensions is 

generated by 6 Haar-like block patterns, 2 metrics and 14 feature maps. Thus in a 

training set with |𝑁+| positives and |𝑁−| negatives, we can obtain a feature 

matrix in (|𝑁+| + |𝑁−| ) × 𝑀 dimensions. As mentioned above, each dimension 

corresponds to a structural element, and we define a pool of weak classifiers by 

setting split-position and split-polarity at each structural element. 

In the process of Adaboost learning, weak classifier is defined as 〈𝑟,𝑇𝑟 ,𝜌〉. The 

three parameters denote the 𝑟-th structural element (r-th row) (1 ≤ 𝑟 ≤ 200), a 

threshold of the structural element 𝑇𝑟 , and polarity of the threshold 𝜌 ∈ {−1,1}. 

The 𝑟-th structural element represents the 𝑟-th feature element. In each structural 

element 𝑟, linearly spaced threshold values are sampled in the domain of its feature 

values by Eq. (4–5). 

 

𝑇𝑟 ∈ �𝑇�𝑇 = 𝑓𝑟𝑚𝑚𝑚 +
1
𝑁𝑇

�𝑓𝑟𝑚𝑚𝑚 − 𝑓𝑟𝑚𝑚𝑚�𝑡� (4–5) 

 

where 𝑁𝑇  represents the number of thresholds, 𝑓𝑟𝑚𝑚𝑚  and 𝑓𝑟𝑚𝑚𝑚  represent the 

minimum and maximum feature value of the 𝑟-th structural element, and 𝑡 is an 

integer ranging from 1 to 𝑁𝑇 . We set 𝑁𝑇 = 300 in the learning process. Thus there 

are in total 200 × 2 × 300 = 120000 weak classifiers denoted as ℋ. When a weak 

classifier 〈𝑟,𝜌,𝑇𝑟〉  is applied to a sample with corresponding feature vector 

𝒇 = [𝑓1, … ,𝑓𝑟 , … , 𝑓200]𝑻, if 𝜌𝑓𝑟 ≥ 𝜌𝑇𝑟 , it is classified as a positive, otherwise it is 

classified as a negative. 
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4.4.2. INFERENCE 

The Cascade-Adaboost classifier has proved to be an effective machine learning 

algorithm in real-time face detection [88]. The training process is divided into 

several stages. In each stage, a stage-specific Adaboost classifier is learned from a 

training set, which consists of all positives and the negatives incorrectly classified by 

previous Adaboost classifiers at this stage. We refer to this as a stage-Adaboost 

classifier in the following paragraphs. The Adaboost learning process at each stage 

is presented in detail in Appendix A.1. 

All the stage-Adaboost classifiers are cascaded into the final Cascade-Adaboost 

classifier, as shown in Fig. 4–7. This model can robustly handle the imbalance 

between the number of positive samples and that of negative samples. The training 

process is divided into several stages. In the first stage, a portion of negative 

samples (with the same number as positive samples) is randomly selected. They are 

combined with all positive samples to train a stage-Adaboost classifier. Starting 

from the second stage, the positive samples keep the same, while only the negative 

samples that cannot be correctly classified by previous stage-Adaboost classifiers 

are adopted to train another stage-Adaboost classifier. The negative samples that 

have been correctly classified by previous stage-Adaboost classifiers will be 

discarded in later training process. In the whole training process, each 

stage-Adaboost classifier ensures that 99.5% of positive samples are correctly 

classified while 50% of negative samples are correctly classified. Thus a testing 

sample with positive ground-truth will have a (0.995)𝑇  probability of correct 

classification, and a testing sample with negative ground-truth will have (0.5)𝑇 

probability of incorrect classification. where 𝑇 represents the total number of 

stage-Adaboost classifiers. 

When a testing fragment sample in the form of image patch is given, we first 

extract its feature vector based on the haar-like block patterns and feature maps, the 

same as a training fragment sample. Then the feature vector is input into the final 

classifier, it will classified as a text patch if all the cascaded stage-Adaboost 
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classifiers determine it is a positive, and otherwise it will be classified as a non-text 

patch. 

 

4.5. SUMMARY OF CONTRIBUTIONS 

In this chapter, our main contributions are designing feature maps to model text 

structure. The measurements related to text structure, including gradients, stroke 

width, stroke orientation, edge distribution, and wavelet response, are adopted to 

design feature maps of text/non-text patches. Each feature map is then developed 

into a weak classifier between text string fragments (positive samples) and non-text 

background outliers (negative samples). Then cascaded adaboost learning model is 

applied to train a text classifier to distinguish text from non-text patch. As one of our 

contributions, the cascaded learning model is adopted to solve text detection 

problem because of the imbalanced number of positive samples and negative 

samples in training dataset. 
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Fig. 4–7. The flowchart of cascaded Adaboost classifier. It consists of a sequence of 

stage-Adaboost classifier. Each stage-Adaboost classifier combines an optimized set of weak 

classifiers. The set of negative fragment samples in training process keeps updated 

stage-by-stage, ensuring that a negative cannot be correctly classified by all previous stages. 

  



 

 

 
57 

Chapter 5 STRUCTURE MODELING FOR SCENE TEXT CHARACTER 

PREDICTION 

5.1. PROBLEM FORMULATION 

Scene text detection as presented in Chapter 3 and Chapter 4 is able to extract the 

image regions containing text information, and filter out most non-text background 

outliers. Structure modeling in last chapter is to distinguish text fragment sample 

from non-text background outlier. However, in this chapter, structure modeling is to 

distinguish the category of a text character in an image patch. It is used to transform 

the image-based text information in the detected regions to code-based text 

information. Scene text recognition is to generate readable text codes in the form of 

words and phrases from the detected text regions. Scene Text Character (STC) 

recognition, which generally includes feature representation to model character 

structure and multi-class classification to predict label and score of character class, 

mostly plays a significant role in scene text recognition. It serves as the basic 

process of word-level/phrase-level recognition. 

Most off-the-shelf Optical Character Recognition (OCR) systems (e.g. OmniPage 

[62], Tesseract-OCR [76], ABBYReader [1] ) are designed to work on scanned 

document images with relatively clean background and uniform text patterns, and 

they could not obtain good recognition performance on text regions of scene images. 

Text recognition is implemented by STC segmentation and STC prediction. STC 

segmentation partitions a detected text region into multiple image patches, each of 

which contains only one text character (see Fig. 5–1). STC prediction is a multi-class 

classification within pre-defined sample space, predicting recognized code from 

extracted features of a character patch. In previous text recognition algorithms, STC 

segmentation and recognition were processed in three ways [12]. First, 

character-like properties were defined to dissect text regions into candidate 

patches, where STC prediction was then applied to. Second, text regions were 
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densely searched for text component with high confidence score of one character 

class, and the confidence score was obtained from STC prediction. Third, lexical 

analysis is applied to directly infer the whole words from confused STC prediction 

within text regions. Above methods show that STC prediction would always play a 

significant role in text word recognition. Thus, an improvement of STC prediction 

will result in better performance of word/phrase recognition in text regions. 

 

 

 

Fig. 5–1. Flowchart of STC prediction framework in performance evaluation, where the 

shadowed boxes denote the processing steps with multiple options and the white boxes 

denote the outputs of the processing steps. The blue arrows denote the processing of local 

sampling based feature representation, and the red arrows denote the processing of global 

sampling based feature representation. 

To predict the category of an STC, we need a discriminative feature 

representation to model STC structure. Each STC patch is mapped into its feature 

representation in the form of a vector, which is regarded as a point in feature space. 

Then learning model is applied to train a robust character classifier, and perform 

multi-class classification to predict the category of a testing patch. 

Most of the existing feature representations for STC prediction are generated 

from local sampling in Bag-of-Words (BOW) model. In this chapter, we summarize 

the categories of local-sampling and BOW based feature representation, and design 
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better feature representation to improve STC prediction by using global sampling 

and Fisher vector. In local sampling, we detect key-points and compute local 

descriptors. In BOW model, we build dictionary of visual words, and perform feature 

coding and pooling to obtain a histogram of visual words, i.e., BOWs. To obtain 

feature representation from global sampling, we compute descriptor directly from 

the whole character patch without processing key points, dictionary, coding or 

pooling. Fig. 5–1 depicts the flowchart of feature representation from local and 

global sampling. 

5.2. PREVIOUS WORK 

A variety of feature representations for STC prediction were proposed. In [93], 

Gabor filter responses on synthetic STC were employed to extract features of 

character appearance. Then the results of STC prediction are combined with 

language, similarity and lexicon model to perform word-level recognition. In [77], 

SIFT descriptors were adopted to build a similarity expert to compute the character 

similarity, based on which integer program was applied for word recognition. In 

[91], HOG descriptors were densely extracted and cascaded as feature 

representations of character patches, and normalized cross correlation analysis of 

character similarity was used for STC prediction. In [90], Random Ferns algorithm 

was adopted for character detection, and pictorial structures with lexicon model 

were employed for word configuration and recognition. In [57], HOG feature was 

extracted for character recognition conditional random field was adopted to 

combine character detection and word-level lexicon analysis. In [16], local features 

of character patches were extracted by an unsupervised learning method related to 

a variant of K-means clustering, and spatially pooled by cascading sub-patch 

features. In [59], feature extraction for STC prediction was generated from 

Maximally Stable Extremal Regions (MSER), which is split into 8 levels by MSER 

boundary orientations. In [105], STC prediction for Chinese, Japanese and Korean 
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characters was performed by Scale Invariant Feature Transform (SIFT) feature 

matching to template character patches, in which a voting and geometric 

verification algorithm was designed to remove false positive matches. However, 

most previous algorithms considered STC prediction as a small component of the 

whole framework of scene text information extraction. They focused more on 

lexicon-based word configuration and recognition, without complete quantitative 

analysis of image-based feature representation. However, most word-level 

processing depends on the results of character recognition, e.g., prediction score of 

character classifier. In this paper, we present performance evaluations on STC 

prediction under a general framework of object recognition, which consists of two 

processes: feature representation and multi-class classification. 

 

5.3. FEATURE REPRESENTATIONS FOR PREDICTING STC CATEGORIES 

The most significant role in scene text recognition is to work out a multi-class 

classifier to predict the category of a given STC. This classifier relies on a feature 

representation that models the representative structure of each STC category and 

the discriminative structure between STC categories. 

5.3.1. LOW-LEVEL FEATURE DESCRIPTOR 

Low-level features are extracted from STC image patches to describe appearance 

and structure of STCs from all 62 STC categories. Our framework involves 6 

state-of-the-art feature descriptors which are applied to the key points sampled 

from STC image patches, including Histogram of Oriented Gradient (HOG) [18], 

Scale Invariant Feature Transform (SIFT) [49], Speed Up Robust Features (SURF) 

[4], DAISY [83], Binary Robust Independent Elementary Features (BRIEF) [9], and 

Oriented Fast and Rotated BRIEF (ORB) [70]. These feature descriptors have been 
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commonly-used in the general visual recognitions, and many previous publications 

have demonstrated their effectiveness on object, texture, and scene recognitions.  

In the implementations of these low-level, descriptors, HOG sets block size to be 

half of patch (or sub-patch) size, and block stride to be half of block size. Each block 

contains 4×4 cells, and the bin number of gradient orientations is 9. The other 5 

descriptors are implemented by default parameters in public available source code 

and OpenCV2.4 [64]. We tried to tune the parameters, but did not obtain any 

apparent improvement in the two benchmark datasets CHARS74K and ICDAR2003. 

In the design of feature representation, besides the choice of local feature 

descriptors, key-point sampling and feature coding/pooling play a significant role. 

We will present several methods of key-point sampling and schemes of feature 

coding/pooling. 

5.3.2. DENSE SAMPLING AND BAG-OF-WORDS MODELING 

Dense sampling is to extract key-points row-by-row and column-by-column 

under a stride from STC image patch. It covers more complete character structure, 

than sparse interest point detectors along with local feature descriptors that are 

widely used in image matching. In our experiments, dense sampling is designed as 

follows. Given a character patch, we first resize it into a square patch whose width 

equals to height, and then extend the side length into the nearest power of 2 (e.g., 

128×128, 256×256). Next, in an 𝐿 × 𝐿 character patch, sub-patch in (𝐿 2⁄ ) × (𝐿 2⁄ ) 

is generated as feature window to extract feature descriptor, sliding from top-left to 

horizontal and vertical directions. The center of a sub-patch is regarded as a 

key-point, and the stride of two neighboring key-points is 𝐿 8⁄  in both directions. 

Since 𝐿 is a power of 2, we obtain [(𝐿 2⁄ )/(𝐿 8⁄ ) + 1] × [(𝐿 2⁄ )/(𝐿 8⁄ ) + 1] = 25 

key points from a character patch. The sub-patch at a key point is regarded as 

support region, generating a feature descriptor 𝑥 ∈ 𝑅𝑀  where 𝑀  denotes the 

dimensions. Since key point locations and sub-patch sizes are determined by the 
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character patch size 𝐿, this local sampling method can be adaptive to scale changes 

of character patches. 

Low-level feature descriptors are extracted from the sampled key-points of 

character patches, and we apply K-means clustering to build dictionary 𝐷 ∈ 𝑅𝑀×𝐾, 

where 𝑀 denotes the dimension of feature descriptors and 𝐾 denotes the number 

of visual words. We use 𝑑𝑗  to denote the j-th visual word. The dense sampling 

extracts 25 key-points from each character patch, so we generate a total of 23250 

feature descriptors from CHARS74K and 154625 feature descriptors from 

ICDAR2003. To evaluate the impact of dictionary size on STC prediction, each type 

of feature descriptor at each dataset generates 5 dictionaries in different sizes. 

According to the number of feature descriptors from the datasets, we set the 

dictionary sizes to be 500, 1000, 2000, 3000, and 5000 respectively. 

A number of low-level feature descriptors {𝑥𝑖 | 1 ≤ 𝑖 ≤ 𝑁} are extracted from a 

character patch, where 𝑁  denotes the total number of descriptors. They are 

mapped into a histogram of visual words by coding and pooling [48]. The coding 

process is used to map each feature descriptor 𝑥𝑖  into a histogram of visual words 

𝑐𝑖 based on the dictionary 𝐷. The state-of-the-art coding schemes include Hard 

Assignment (HARD), Soft Assignment (SOFT), and Sparse Coding [98] (SC) as Eq. 

(5–1) in top-down order. The parameter 𝛽 and 𝛾 in SOFT and SC are used to 

control softness and sparseness respectively.  

𝑐𝑖𝑖 = �
1 𝑖𝑖 𝑗 = argmin

𝑗=1,…,𝑛
�𝑥𝑖 − 𝑑𝑗�2

2

0             𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒              
 

 

𝑐𝑖𝑖 =
exp (𝛽�𝑥𝑖 − 𝑑𝑗�2

2
)

∑ exp (𝛽‖𝑥𝑖 − 𝑑𝑘‖22)𝑁
𝑘=1

 

 

𝑐𝑖 = argmin
𝑐

‖𝑥𝑖 − 𝐷𝐷‖22 + 𝛾‖𝑐‖1 

(5–1) 

 



 

 

 
63 

The pooling is employed to aggregate coded features 𝑐𝑖 into the final BOW 

feature representation𝑝. The popular pooling schemes include Average Pooling 

(AVE) and Max Pooling (MAX) as Eq. (5–2) in top-down order. 

 

 

𝑝𝑗 = (1 𝑁)⁄ � 𝑐𝑖𝑖
𝑁

𝑖=1
 

𝑝𝑗 = max
𝑖
𝑐𝑖𝑖 

 (5–2) 

 

In BOW model, the final feature representation is denoted as 

𝛹(𝑋) = {𝑝1,𝑝2,𝑝3, … , 𝑝𝑁} 

5.3.3. DENSE SAMPLING AND FISHER VECTOR 

To generate more discriminative feature representation, we employ the Fisher 

Vector to represent each STC based on the keypoints obtained from dense sampling. 

Fisher Vector provides a feature aggregation scheme based on the Fisher kernel 

which takes the advantage of both generative and discriminative models. Fisher 

Vector describes each feature descriptor using the deviation with respect to the 

parameters of a generative model. 

Fisher Vector employs the Gaussian mixture model (GMM) as the generative 

model 𝑈𝜆(𝑥) = ∑ 𝑤𝑘𝑢𝑘(𝑥)𝐾
𝑘=1 , and 𝑢𝑘 is the 𝑘th Gaussian component: 

 

𝑢𝑘(𝑥) =
1

2𝜋
𝐷
2 |𝛴𝑘|

1
2

exp �−
1
2

 (𝑥 − 𝑑𝑘)′ 𝛴𝑘−1 (𝑥 − 𝑑𝑘)� , 

 

∀𝑘 ∶ 𝑤𝑘 ≥ 0, ∑ 𝑤𝑘
𝐾
𝑘=1 = 1. 

(5–3) 
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where the feature descriptor 𝑥 ∈ ℝ𝐷; 𝐾 is the number of Gaussian components; 

𝑤𝑘, 𝑑𝑘, and 𝛴𝑘 correspond to the mixture weight, mean vector, and covariance 

matrix, respectively. We assume 𝛴𝑘 to be a diagonal matrix with the variance 

vector 𝜎𝑘2 . The parameters 𝜆 = {𝑤𝑘,𝑑𝑘,𝛴𝑘, 𝑘 = 1, … ,𝐾} of GMM are estimated 

based on a large set of training low-level descriptors by the Expectation 

Maximization (EM) algorithm to optimize the Maximum Likelihood (ML). 

For a set of descriptors 𝑋 = {𝑥1, … , 𝑥𝑁} extracted from a STC patch, the soft 

assignment of descriptor 𝑥𝑖  to component 𝑘 is defined as: 

 

𝛾𝑖𝑘 =
𝑤𝑘𝑢𝑘(𝑥𝑖)

∑ 𝑤𝑗𝑢𝑗(𝑥𝑖)𝐾
𝑗=1

 . (5–4) 

 

 

The Fisher Vector representation of 𝑋 is 𝛹(𝑋) = {𝜌1, 𝜏1, … ,𝜌𝐾 , 𝜏𝐾}, where 𝜌𝑘 

and 𝜏𝑘 are the 𝐷-dimensional gradients with respect to the mean vector 𝑑𝑘 and 

the standard deviation 𝜎𝑘 of the 𝑘th Gaussian component: 

 

𝜌𝑘 =
1

𝑁�𝑤𝑘
� 𝛾𝑖𝑘

𝑁

𝑖=1
�
𝑥𝑖 − 𝑑𝑘
𝜎𝑘

� , (5–5) 

 

𝜏𝑘 =
1

𝑁�2𝑤𝑘
� 𝛾𝑖𝑘

𝑁

𝑖=1
�
(𝑥𝑖 − 𝑑𝑘)2

𝜎𝑘2
− 1� . (5–6) 

 

Compared to BOW-based representations, Fisher Vector has the following merits: 

(1) BOW is a particular case of Fisher Vector, i.e., the gradient to the component 

weights of GMM. The additional gradients with respect to the means and variances 

in Fisher Vector provide extra distribution information of descriptors in the 

low-level feature space. (2) The Fisher Vector can be computed upon a much 

smaller visual vocabulary which significantly reduces the computational cost. (3) 



 

 

 
65 

Fisher Vector performs quite well with simple linear classifiers which are efficient in 

both training and testing. 

We follow the two normalization schemes introduced in [68], i.e., L2 and power 

normalization. The L2 normalization is used to remove the dependence on the 

proportion of class-specific information contained in a patch, in other words, to 

cancel the effect of different amount of foreground and background information 

contained in different images. The power normalization is proposed due to the fact 

that as the number of Gaussian components increases, Fisher Vector becomes peaky 

around zero in a certain dimension. This negatively impacts the computation of 

feature distance. The power normalization 𝑓(𝑧) = sign(𝑧)|𝑧|𝛼 with 0 < 𝛼 ≤ 1 is 

applied to each dimension 𝑧 in the Fisher Vector. We utilize 𝛼 = 0.5 (i.e., the 

Hellinger kernel) to compute the signed square-root. In our representation, we first 

apply the power normalization and then the L2 normalization.   

In order to decorrelate the data to make it fitted more accurately by a GMM with 

diagonal covariance matrices, we apply a PCA on the SIFT descriptors to reduce 

them from 𝐷 = 128 to 32. The number of Gaussian components 𝐾 is empirically 

determined as 50. So each image patch of STC is represented as a feature vector 

with 3200 dimensions. SVM learning model is employed to generate a max-margin 

hyper plane in this feature space to classify the 62 STC categories. This hyper plane 

is defined as the STC predictor. The LIBLINEAR is used to implement SVM training 

and testing. Given an STC cropped from image frame, the STC predictor is able to 

compute its category from one of the 62 candidates as a label and output a 

62-dimensional prediction scores as the probability of each category. 

5.3.4. GLOBAL SAMPLING 

Text characters are atomic objects, and a portion of a text character contains little 

information related to the whole structure. It is difficult to use part-based schemes 

like [23] to detect and recognize text. Thus global sampling is designed to use the 
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whole character patch as a key-point neighborhood window to extract features. Key 

point detection, coding and pooling process are all skipped to largely reduce 

information loss. Compared with local sampling, the advantages of global sampling 

are two aspects. Firstly, there is no coding, so no information loss. Secondly, spatial 

structure is preserved when concatenating descriptors of grids in order. 

Since most of local feature descriptors like SIFT, SURF and DASIY are usually 

paired with their respective key-point detectors, global sampling process adopts 

only HOG descriptor which does not require specific key-point detection. Thus we 

define it as GHOG. In Chapter 8, we will present the evaluation result of each feature 

representation and compare their performance under the same measurements.  

 

5.4. FEATURE REPRESENTATIONS FOR PREDICTING TRUE POSITIVE STCS FROM 

BACKGROUND OUTLIERS 

 

As described in Chapter 4, feature maps and haar-like block patterns are able to 

model specific structure of text string fragment sample, for distinguishing text string 

from non-text background outlier. One positive fragment sample usually contains 2 

~ 4 different candidate character components, which have large intra-class 

variation. Some non-text background outliers may exist in text regions, and STC 

prediction cannot filter them out but only assign them to one of the 62 categories. 

To remove the possible background outliers before STC prediction, in this section 

we design a feature representation to distinguish single character from background 

outlier through a binary classification, which is named as STC certification. 

First interest points and their neighboring windows are detected over a character 

sample. As shown in Fig. 5–2, multi-scale saliency detector [38] and Harris corner 

detector [29] are employed to detect interest points in a character sample. 

Multi-scale saliency detector prefers blob parts, such as strokes and holes, in a 
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character. Harris corner detector prefers corner points around the ends of a stroke 

and the joints of neighboring strokes in a character. The salient and corner points 

correspond to characteristic components of STCs, so we can extract characteristic 

low-level features of STCs. However, these low-level features are still not 

discriminative enough to classify text characters from non-text background outliers, 

because the interest point windows cover only stroke fragments of the character 

sample, in the form of bars or arcs. These stroke fragments cannot provide spatial 

information of character structure. To solve this problem, we calculate the 

correlation between local interest points and their counterparts of the character 

sample, and generate more complex and characteristic structure (see Fig. 5–3), 

where discriminative features can be extracted to model character structure. 

 

 
 

Fig. 5–2. Detected interest points in red and their neighboring windows in cyan. The left is 

obtained from multi-scale saliency detector and the right is obtained from Harris corner 

detector. 

 

For an interest point window 𝑤0, we use 3 symmetrical windows 𝑤𝑖 (1 ≤ 𝑖 ≤

3) as correlated counterparts of 𝑤0 . They are generated with respect to horizontal 

midline, vertical midline and center of the image patch respectively, as shown in Fig. 

5–3. To combine the structure layout of 𝑤0 and its correlated counterparts, we 
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define 4 types of structure correlations as Eq. (5–7) including sum, absolute 

difference, reciprocal of sum, and reciprocal of absolute difference. The 4 types of 

structure correlations could efficiently fuse the structure components of interest 

point window 𝑤0 and its 3 symmetrical counterparts, and ensure the values of the 

fused windows within a reasonable range.  

 

𝑹 = 〈𝑤0 + 𝑤𝑖,
1

𝑤0 + 𝑤𝑖
, ‖𝑤0 − 𝑤𝑖‖,

1
‖𝑤0 − 𝑤𝑖‖

〉 (5–7) 

 

Structure components generated by the fused windows can provide more 

discriminative low-level features of STC, although these components do not belong 

to original character structure. Then state-of-the-art low-level feature descriptors, 

HOG [18], SIFT [49] and LBP, are employed to extract appearance features from the 

fused windows.  

 

 
 

Fig. 5–3. Two structure correlation examples. The cyan squares represent original detected 

interest point windows, and the red squares represent their corresponding symmetric 

counterparts. We extract the original windows and one of their symmetric counterparts 

(marked by red dash line), and calculate their correlated windows under absolute 

difference and reciprocal of sum. 
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The low-level features are then input into BOW model for coding and pooling 

processes, obtaining feature representation in the form of visual word histogram. 

The visual word histograms are further processed according to specific structure of 

STC, and then input into SVM model to train a binary classifier that distinguishes 

single character from background outlier. A comparative experiment (see Section 

8.2.1) proves that structure correlation can improve the performance of text 

classification. 

STC certification can improve the performance of scene text extraction only if text 

information in camera-based scene image appears in enough resolution, because it 

is difficult to distinguish a low-resolution character from background outlier. 

Therefore, our prototype system in real applications skips this step to improve the 

efficiency of the whole system. 

 

5.5. LEARNING PROCESS 

STC prediction depends on SVM-based training and testing over the STC samples. 

While the learning process in scene text detection is to select the representative 

combinations of feature maps, haar-like block patterns and calculation schemes to 

distinguish text from non-text, the learning process in STC prediction treats the 

feature representation vector of an image patch as a point in feature space, which 

describes the STC structure in that patch. Thus we would adopt SVM learning model 

to generate hyper-planes in feature space as STC classifier, rather than the Adaboost 

algorithm to select optimized combinations of the weak classifiers. 

In the SVM-based learning process, we adopt multiple SVM kernels, including 

Linear Kernel and 𝜒2  Kernel, to evaluate the feature representations of STC 

structure. A brief introduction of SVM model will be presented in detail in Appendix 

A.2. 
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5.6. SUMMARY OF CONTRIBUTIONS 

In this chapter, our main contributions are to find out discriminative feature 

representations to model scene text character structure for recognition task, on the 

basis of state-of-the-art low-level descriptor and Bag-of-Words model and Fisher 

vectors. In each step of designing the feature representation, we adopt multiple 

available algorithms. Then a comparative study is performed to find out the best 

combinations of low-level descriptors, BOW dictionary sizes, and coding/pooling 

schemes.  
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Chapter 6 WORD-LEVEL CONFIGURATION OF SCENE TEXT BY CONDITIONAL 

RANDOM FIELD 

6.1. PROBLEM FORMULATION 

Due to the cluttered background noise and multiple STC patterns in natural 

scene, the accuracy of STC prediction is limited. It only takes account of the 

appearance of a single STC in an image patch, but ignores its context information of 

neighboring STCs. Besides, it does not involve any lexical analysis and word 

recognition only based on one-by-one single STC prediction ignores the possible 

constraints of STC combinations in the lexicon model. Moreover, some STCs tend to 

be incorrectly classified to other categories in a similar structure, e.g., letter “O” and 

digit “0”. Therefore the STC prediction can only be considered as preliminary results 

of word recognition in the character level. As shown in Fig. 6–1, if STC prediction 

can obtain perfect results, word-level recognition is also perfect by just listing all the 

results of STC predictions. However, when STC prediction is not perfect, the 

performance of word recognition will seriously decrease. 

 

 

Fig. 6–1. Top row demonstrates the word recognition based on perfect STC predictions, and 

bottom row demonstrates the error of word recognition because of slight error of STC 

predictions. 
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6.2. CONDITIONAL RANDOM FIELD 

To rectify STC prediction and obtain recognized words compatible with 

dictionary, CRF model [92] [90] [57] [75] was usually adopted to configure text 

word from predicted STCs and the resulting prediction score in SVM. CRF model is a 

discriminative undirected probabilistic graphical model 〈𝑉,𝐸〉 and encodes both 

the relationships between observations and category labels of nodes as well as the 

relationships between neighboring nodes in the graphical model. In the notations 

〈𝑉,𝐸〉, 𝑉 denotes the node set and 𝐸 denotes edge set. 

In the potential results of word recognition, we define each STC prediction as a 

random variable 𝑉𝑖 as a node in CRF model. STC prediction assigns a category label 

to each node, which can also be considered as assigning an observation to each 

random variable. We set the total number of STC predictions, which is also the total 

number of nodes as |𝑉|. The cost function of a CRF model is defined as Eq. (6–1). 

 

𝐿(𝑽 = 𝒄) = �𝜇𝑖𝑆(𝑉𝑖 = 𝑐𝑖)
𝑖∈𝑉

+ � 𝜆𝑖𝑖𝑇�𝑉𝑖 = 𝑐𝑖 ,𝑉𝑗 = 𝑐𝑗�
(𝑖,𝑗)∈𝐸

 (6–1) 

 

where 𝑽 is the set of all nodes, 𝒄 represents their corresponding category label, 𝑆 

is the cost function of single node to measure the suitability of category labels 

obtained from STC prediction, 𝑇 is the cost function of an edge to measure the 

compatibility of neighboring category labels obtained from STC predictions. In word 

recognition, CRF model always appears in the form of chain, that is, each pair of 

neighboring characters are connected by an edge. µi  and λij  are parameters 

obtained from training data.  

CRF model provides a framework to build probabilistic model and label sequence 

nodes. The concrete cost functions of node and edge in CRF can be customized 

according to different problems. In our framework, the involved cost functions are 

defined as: 
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𝑆(𝑉𝑖 = 𝑐𝑖) = 1 − 𝐧𝐧𝐧𝐧(𝑆𝑆𝑆𝑆𝑆(𝑉𝑖)) 

 

𝑇�𝑉𝑖 = 𝑐𝑖,𝑉𝑗 = 𝑐𝑗� = 1 − 𝐹𝐹𝐹𝐹(𝑐𝑖 , 𝑐𝑗) 

(6–2) 

 

where 𝑆(𝑉𝑖 = 𝑐𝑖) is unary cost of a node, 𝑇�𝑉𝑖 = 𝑐𝑖 ,𝑉𝑗 = 𝑐𝑗� is pairwise cost of 

neighboring nodes, 𝑆𝑆𝑆𝑆𝑆(𝑉𝑖) represents the STC prediction scores at node 𝑋𝑖, 

𝐧𝐧𝐧𝐧(∙) represents normalization and 𝐹𝐹𝐹𝐹(𝑐𝑖, 𝑐𝑗) represents the frequency of the 

bigram lexicon 𝑐𝑖  and 𝑐𝑗 . In our experiments, the bigram lexicon frequency is 

generated from all ground truth words of ICDAR-2003, ICDAR-2011 and Street View 

Text Datasets. In future work, we will design more robust cost functions to further 

improve word recognition under CRF model. 

 

 

Fig. 6–2. On the left, STC is extracted by detection and tracking, and then transformed into a 

feature representation through low-level feature descriptor and coding & pooling 

processes. SVM-based STC predictor is applied to obtain its category label and prediction 

score. On the right, in a tracking frame of scene text, each STC bounding box is defined as a 

node in CRF model. Unary cost of STC prediction and pairwise cost of bigram lexicon is 

defined in this graphical model. 
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Fig. 6–2 illustrates the CRF model 〈𝑽,𝑬〉 of an image patch cropped from a video 

frame. Each STC is defined as a random variable node in CRF, and each pair of 

neighboring STC nodes is mutually connected by an edge. CRF model will generate 

proper 𝜇𝑖 and 𝜆𝑖𝑖 parameters from training data, minimizing the cost function Eq. 

(6–1). Given a word in the form of scene text, if each character of this word has been 

assigned a score by STC prediction, the learned CRF model will assign compatible 

category labels 𝒄 to nodes 𝑽. In this process, some incorrect STC predictions can 

be rectified if they lead to high cost. For example, as shown in Fig. 6–1, the word 

“NATIONAL” is recognized as “NATION41” because the structures of “A” and “4” and 

the structures of “L” and “1” are very similar. STC predictions cannot distinguish 

them by vision-based feature representation. But in CRF model, the combination 

“N4” and “41” results in larger edge cost because the frequencies of the two bigrams 

are lower than “NA” and “AL” respectively. 

 

6.3. SUMMARY OF CONTRIBUTIONS 

In this chapter, our main contribution is to adopt the CRF model to perform 

word-level recognition. CRF model combines vision-based STC recognition and 

bigram frequency based lexical analysis. It is able to generate optimized labels that 

minimize the node costs and edge costs in CRF model. CRF is able to correct the STC 

recognition results.  
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Chapter 7 SCENE TEXT DETECTION 

7.1. DATASETS 

We evaluate the performance of our proposed framework on three benchmark 

datasets of scene images, ICDAR 2003 Robust Reading Dataset [31], ICDAR 2011 

Robust Reading Dataset [32], Born-Digital Images Dataset [33], and Street View 

Dataset [89].  

ICDAR-2003 and ICDAR-2011 are collected for robust reading competitions, and 

annotated text regions. ICDAR 2003 robust reading dataset contains about 500 

scene images and 2258 ground truth text regions in total. In our experiments, the 

scene images containing non-text or only a single character are excluded. Thus 487 

scene images are used for performance evaluation. The involved image sizes range 

from 640×480 to 1600×1200.  

ICDAR-2011 robust reading dataset contains 484 scene images with 848 ground 

truth text regions in total, in which 229 images are for training and 255 images for 

testing in ICDAR 2011 Robust Reading competition. We evaluate the framework on 

all the images containing text strings with no less than two character members. The 

image size ranges from 422×102 to 3888×2592. The proposed framework is applied 

on the above datasets for text localization. The localization processes are carried out 

in each scene image and its inverse image, and the results are combined to calculate 

the localized text regions.  

Born-digital images and broadcast video images are also used to evaluate our 

framework. Born-digital images are electrical documents with colorful captions and 

illustrations. Mostly they exist in web pages, book covers, and posters. In 

born-digital images, text characters and strings are more colorful. Besides, 

born-digital image has higher frequency of occurrences of text and smaller character 

sizes than scene image. A dataset of born-digital images is released for ICDAR-2011 
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robust reading competition [33]. It contains 420 born-digital images with ground 

truth text regions. The average image size is about 352×200. 

The Street View Text Dataset [89] is collected from Google street view. This 

dataset is more challenging because it is captured from outdoor environments with 

illumination variations. The text characters usually have low resolutions and are 

embedded into complex background outliers. It contains about 350 scene images 

and 900 ground truth text regions in total. In Street View Dataset, due to more 

complex background interferences, more false positive detections are generated, so 

the precision is much lower than that in ICDAR Robust Reading Dataset. 

7.2. EVALUATION MEASURES 

Evaluation results are obtained from the comparisons between a group of 

detected text regions and ground truth text regions from manual labeling. The 

overlaps between detected regions and ground truth regions are defined as hit 

regions, which mean the correct detections. Then we define the area of a text region 

as the number of pixels in the region.  

Based on these measures, Precision is defined as the ratio between the area of hit 

regions and the area of the detected regions. It is used to sense the amount of false 

positives in the detected regions. Recall is defined as the ratio between the area of 

hit regions and the area of the ground truth regions. It is used to sense the amount 

of missing detections in the ground truth regions. Then they are combined by 

harmonic mean to obtain f-measure as Eq. (7–1). 

 

𝑓 𝑚𝑚𝑚𝑚𝑚𝑚 =
2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅

 (7–1) 
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7.3. EVALUATING SCENE TEXT DETECTION BY TEXT LAYOUT ANALYSIS ON ICDAR 

DATASETS 

 

At first, we evaluate the performance of text layout analysis without considering 

the structural feature analysis. Experimental results on the Robust Reading dataset 

demonstrate that the combination of color-based partition and adjacent character 

grouping (CA) achieves the highest precision and recall. In most of the cases, color 

uniformity acts as a stronger indicator to distinguish the connected components of 

text characters from surrounding background. However color-based partition takes 

more computing time than gradient-based partition. Also color-based partition 

makes adjacent character grouping be performed in each of the color layers. 

Color-based partition still performs better when adjacent character grouping is 

replaced by the text line grouping. Text line grouping gives lower efficiency and 

precision than the adjacent character grouping for either partition. Adjacent 

character grouping is supported by the information of text orientations while text 

line grouping is performed for arbitrary text orientations, so its calculation cost is 

more expensive. Meanwhile, the indetermination of text orientation produces more 

false positive fitted lines. 

By comparison with the algorithms presented in the text locating competition in 

ICDAR-2003, the precision of our algorithm achieves the first rank while the recall 

and f-measure is comparable with the algorithms with the high performance, as 

shown in Table 7–1. 
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Table 7–1. The comparison between our algorithm and the text detection algorithms 

presented in [51] [50] on the Robust Reading Dataset. 

 Precision Recall f-measure 

Ours 0.71 0.62 0.62 

H. Becker 0.62 0.67 0.62 

A. Chen 0.60 0.60 0.58 

Ashida 0.55 0.46 0.50 

HWDavid 0.44 0.46 0.45 

Q. Zhu 0.33 0.40 0.33 

Wolf 0.30 0.44 0.35 

J. Kim 0.22 0.28 0.22 

Todoran 0.19 0.18 0.18 

N. Ezaki 0.18 0.36 0.22 

 

7.4. EVALUATING SCENE TEXT DETECTION BY STRUCTURAL FEATURE MAPS ON IMAGE 

PATCHES FROM ICDAR DATASETS 

Five feature maps of string fragment sample, including gradient magnitude, 

gradient orientation, stroke width, stroke orientation, and stroke width consistency, 

are measured in our experiments. We estimate the performance of each feature map 

by generating an SVM-based classifier of string fragments and evaluating its 

classification accuracy. 

To train robust text classifier, we collect a training set of string fragments, which 

consists of 2000 representative positive samples and 2000 representative negative 

samples. We perform two experiments to evaluate our designed feature maps. First, 

the feature is evaluated within the collected training set of string fragments. The 

2000 positive samples and 2000 negative samples are equally divided into two 

subsets respectively, one of which is used for classifier training and the other is used 
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for evaluation. Second, the classifier is learned from the collected training set, and 

then evaluated on about 18,000 image patches, which are obtained from layout 

analysis on the scene images of ICDAR 2003 robust reading dataset. 

Fig. 7–1 illustrates the evaluation results of the two experiments respectively, 

where hit rate represents the ratio of correctly classified samples in positive set, and 

false positive rate represents the ratio of incorrectly classified samples in negative 

set. The two figures demonstrate that stroke width consistency is more robust than 

the other features of text. Gradient magnitude and stroke width achieve comparable 

performance with stroke distribution and gradient orientation in the first 

experiment, but they become inferior in the second experiment. It is inferred that 

gradient orientations and stroke distributions are normalized into the ranges 

(−𝜋,𝜋] and [0, 1] respectively, so they are more robust to the variations of large 

number of samples in the second experiments. In our framework, all the feature 

maps are combined to model string fragments, because both figures show that the 

best performance of string fragment classification is achieved when combining all 

the features. 

 

Fig. 7–1. Evaluation results of the 5 Gabor-based features on ICDAR-2003 robust reading 

dataset of scene images. Here hit rate is the ratio of correctly classified samples in positive 

set, and false positive rate is the ratio of incorrectly classified samples in negative set. 
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7.5. EVALUATING SCENE TEXT DETECTION BY COMBING LAYOUT ANALYSIS AND 

STRUCTURAL ANALYSIS 

We combine layout analysis and structural analysis to improve the performance 

of scene text detection. ICDAR-2003 and ICDAR-2011 Datasets are respectively used 

for performance evaluation.  

Table 7–2 presents the performance comparisons between our framework and 

the localization algorithms involved in ICDAR-2003 dataset [31]. It shows that the 

proposed framework outperforms most previous localization algorithms. Fig. 7–2 

illustrates some example of text localization in ICDAR-2003 where the text regions 

are marked in cyan boxes. 

Table 7–2. The comparison between our framework and the text localization algorithms 

presented in [22] [51] [50] on the Robust Reading Dataset. 

Method Precision Recall f-measure 

Ours 0.73 0.67 0.66 

B. Epshtein 0.73 0.60 0.66 

H. Becker 0.62 0.67 0.62 

C. Yi 0.71 0.62 0.62 

A. Chen 0.60 0.60 0.58 

Ashida 0.55 0.46 0.50 

HWDavid 0.44 0.46 0.45 

Wolf 0.30 0.44 0.35 

Q. Zhu 0.33 0.40 0.33 
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Fig. 7–2. Example results of text localization in the ICDAR-2003 Dataset, where the text 

regions are marked by cyan boxes. 

 
Table 7–3 presents the performance comparisons between our framework and 

the localization algorithms involved in ICDAR-2003 dataset [31]. It shows that the 

proposed framework outperforms most previous localization algorithms. Fig. 7–3 

illustrates some example of text localization in ICDAR-2003 where the text regions 

are marked in cyan boxes. 
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Table 7–3. The results of ICDAR-2011 Robust Reading Competition on Scene Text 

Localization (%) [72]. Our proposed framework won 2nd place. 

 

Method precision recall f-measure 

Yi (2012) 81.00 72.00 71.00 

Kim 62.47 82.9871. 71.28 

Yi (2011) 58.09 67.22 62.32 

TH-TextLoc 57.68 66.97 61.98 

Neumann 52.54 68.93 59.63 

TDM_IACS 53.52 63.52 58.09 

LIP6-Retin 50.07 62.97 55.78 

KAIST AIPR 44.57 59.67 51.03 

 

 

 

Fig. 7–3. Some example results of text localization in the ICDAR-2011 Dataset, where the 

text regions are marked by cyan boxes. 
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7.6. EVALUATING SCENE TEXT EXTRACTION ON BORN-DIGITAL IMAGES AND VIDEO 

IMAGES 

We further evaluate our framework to extract text information from born-digital 

images and broadcast video images. Born-digital images are electrical documents 

with colorful captions and illustrations. Mostly they exist in web pages, book covers, 

and posters. In born-digital images, text characters and strings are more colorful. If 

we adopt color-based partition to process the scene image, the initial number of 

Gaussian mixtures in bigram color reduction is set as 𝐾 = 7. Besides, born-digital 

image has higher frequency of occurrences of text and smaller character sizes than 

scene image. Thus in layout analysis we consider some connected components 

directly as string fragments and slice the corresponding image patches vertically to 

overlapped partitions with width-to-height ratio 2:1.  

A dataset of born-digital images is released for ICDAR 2011 robust reading 

competition [33]. It contains 420 born-digital images with ground truth text 

regions. The average image size is about 352×200. We evaluate our framework by 

using the same measures on this dataset. Fig. 7–4 presents some examples of 

localized text regions in born-digital images. 

Moreover, our framework is evaluated on broadcast video images. In most video 

images, text serves as titles and captions to introduce the content of television 

program. It is distributed on the top or bottom of the screen. The characters and 

strings also have the features of bigram color uniformity, stroke width consistency, 

and character alignment. Different from scene images, most text information in 

broadcast video image is subsequently added for audience reading, so they 

generally encounter fewer background interferences and pattern variations. Fig. 7–5 

depicts some results of localization in broadcast video images.  
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Fig. 7–4. Example results of text localization in the born-digital images. 

 

 

Fig. 7–5. Example results of text localization in broadcast video images. 

 

7.7. SOME CHALLENGING SITUATIONS TO BE ADDRESSED 

Although our framework is able to detect most text information from complex 

background in natural scene, there are still some challenging situations that our 
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framework cannot well handle. The main reason is that these situations do not 

satisfy our assumption of text layout and structure. Fig. 7–6 depicts some examples 

that our method cannot handle to locate the text information because of very small 

size, overexposure, characters with non-uniform colors or fade, strings with less 

than 3 character members, and occlusions caused by other objects such as wire 

mesh. 

 

 

Fig. 7–6. Examples of images where our method fails. 
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7.8. SUMMARY OF CONTRIBUTIONS 

In this chapter, the proposed methods of scene text detection are evaluated over 

benchmark datasets. The experimental results demonstrate the effectiveness of our 

method in handling complex background and multiple text patterns. From the 

perspective of quantitative analysis, our method outperforms the state-of-the-art 

results in the benchmark datasets. 
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Chapter 8 SCENE TEXT RECOGNITION 

8.1. DATASETS AND EVALUATION MEASURES OF SCENE TEXT CHARACTER PREDICTION 

The benchmark datasets prepared for scene text detection and recognition are 

mostly composed of natural scene images with text information. The image regions 

containing text are provided as ground truth labels. However, most of them are 

word-level text regions, without dissecting them into image patches of single 

characters. To evaluate STC prediction, two public datasets, CHARS74K [19] and 

ICDAR2003CH [51], are adopted in our experiments. 

In CHARS74K dataset, there are three types of text characters, image-based 

characters cropped from natural scene image, hand-written characters, and 

computer-generated font characters. The first type is used for evaluating our STC 

prediction task. The characters from this type contains 62 character categories, i.e., 

digits 0~9, English letters in upper case A~Z, and lower case a~z. The 62 character 

categories have nearly balanced numbers of character patches. 

ICDAR2003CH dataset was used for the Robust Reading Competition of scene 

text detection and recognition. It contains 509 scene images and 2268 word-level 

text regions. These text regions have been partitioned into 11615 image patches of 

characters, obtaining 6185 training patches and 5430 testing patches. They cover all 

the 62 character categories, but the numbers of character patches between different 

classes are imbalanced. 

Fig. 8–1 illustrates some examples of STCs cropped from text regions. We can 

observe the STCs have irregular patterns and similar structure to each other. The 

performance of STC prediction is measured by the average accuracy rate, i.e., the 

ratio of correctly predicted STCs in the testing set. 
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Fig. 8–1. Some examples of STCs cropped from text regions. Most STCs have similar 

structure to another counterparts. 

8.2. EVALUATING FEATURE REPRESENTATIONS OF DENSELY LOCAL SAMPLING AND 

BOW MODELS 

8.2.1. EVALUATING LOW-LEVEL DESCRIPTORS 

 

Fig. 8–2 demonstrates performance evaluations of the 6 types of feature 

descriptors under dense sampling. Under HARD-AVE scheme, SURF obtains the best 

performance and HOG obtains the close second best. Under SOFT-AVE and 

SOFT-MAX schemes, HOG obtains the best performance.  

BRIEF and ORB could obtain good performance in recognizing texture-rich 

object. The simple binary tests between pixels in a local support region in BRIEF and 

ORB is not well adapted to character recognitions because binary tests from 

uniform intensity regions (frequent in character patches) are not able to provide 

sufficient discriminative information. Fig. 8–2 also shows that SOFT-MAX scheme 

obtains better performance than SOFT-AVE and HARD-AVE schemes. 
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Fig. 8–2. Performance evaluations of 6 types of feature descriptors under three 

coding/pooling schemes, dictionary size 2000 and Chi-square SVM kernel. The value -0.1 in 

horizontal axis denotes 𝛽  value in Eq. (5–1). The top figure shows results from 

CHARS74K and the bottom figure shows results from ICDAR2003CH. 



 

 

 
90 

As described in Section 5.4, a feature representation based on structure 

correlation of scene text character is designed to distinguish text character from 

background outlier. Over a set of image patches, in which text characters from 

ICDAR2003CH are used as positives and the other non-text patches are used 

negatives, an experiment is carried out to compare the performance of text 

character classification. We extract two types of low-level features from each 

sample, with and without structure correlations respectively. Three types of 

low-level features are adopted in this experiment. Then the low-level features are 

projected into respective visual word histograms. SVM-based cross-validation is 

performed to train classifier for distinguishing text character from background and 

evaluate the classifier. By setting thresholds of the SVM prediction scores, we 

generate curves in Fig. 8–3, in which the performance is measured by recall and 

precision. We define recall as the ratio between the number of correctly predicted 

positives and the total number of truth positives, and define precision as the ratio 

between the number of correctly predicted positives and the total number of 

samples being predicted as positives. The results show that structure correlation is 

able to generate more discriminative feature representations. 

 

 

Fig. 8–3. Evaluation results of text classification. Text descriptors derived from structure 

correlation perform better than those directly derived from interest point windows. In 

addition, text descriptor presented by left figure is calculated from appearance features 

under Harris-Corner detector and HOG descriptor, and the right one is obtained from 

appearance features under Harris-corner detector and SIFT descriptor. 
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8.2.2. EVALUATING DICTIONARY SIZE IN BOW MODEL 

The evaluation results in Fig. 8–4 show the relationship between STC prediction 

rate and the dictionary size. We can get some insights of the relationship between 

dictionary size and STC prediction accuracy. 

 

 

Fig. 8–4. Performance evaluations of 5 dictionary sizes under four feature descriptors and 

Chi-Square SVM kernel. Top figure results from CHARS74K and bottom figure results from 

ICDAR2003CH. 
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When the dictionary size is less than 2000, the performance is increased along 

the dictionary size change. However, the growth trend will cease when the 

dictionary size reaches a certain level. Then the performance will keep 

approximately consistently or slightly decrease. Compared with general object 

recognition in multiple scales and view angles in scene image, STC in image patches 

have relatively stable structure since the scale has been normalized with the STC 

patch size and the view angle does not largely change STC appearance. Thus this 

amount of visual words is sufficient to represent local features extracted from STC, 

and growth saturation of STC prediction performance on dictionary size is reached 

more rapidly. 

8.2.3. EVALUATING CODING POOLING SCHEME 

 

Fig. 8–5 depicts the performance evaluations of different coding and pooling 

schemes. In SOFT, we obtain two groups of results by setting the parameter 𝛽 in 

Eq. (5–1) as -0.1 and -1 respectively. In SC, we set the parameter 𝛾 in Eq. (5–1) 

as 0.15. Currently, SC is not applied to ICDAR2003CH because of its high 

computational cost in coding optimization. In coding schemes, SOFT and SC are 

comparable, and both obtain better performance than HARD. As shown in Eq. (5–

1), this is probably because the extreme sparseness of codes generated by HARD 

(only one coefficient per code is non-zero) might be ill-suited to character images, 

and SOFT and SC loose the constraint to alleviate information lose. In pooling 

schemes, MAX always obtains better performance than AVE, because maximum 

value usually contains the most significant information and its statistical properties 

make it well adapted to sparse representations. 
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Fig. 8–5. Evaluating 6 coding/pooling schemes, under three feature descriptors, dictionary 

size 1000, and Chi-Square SVM kernel. Top figure is from CHARS74K and bottom figure is 

from ICDAR2003CH. 

Above experimental results show that SOFT coding and MAX pooling obtains the 

best performance in the two datasets. Now we compare the performance of 

SOFTMAX with Fisher vector, still on the basis of HOG, SIFT and DAISY descriptors. 



 

 

 
94 

The experimental results are shown in Fig. 8–6. It demonstrates that Fisher vector 

obtains even better performance than SOFTMAX and all other coding/pooling 

schemes in BOW model. 

 

 

Fig. 8–6. STC prediction results in Chars74K, including all kinds of coding and pooling 

schemes. Fisher vector obtains better performance than the others. 

 

8.2.4. EVALUATING SVM KERNEL 

 

Besides the design of STC feature representation, the choice of classification 

model plays an important role in STC prediction. The feature vector of a character 

patch, which is a histogram of visual words, is regarded as an observation point in 

classification model. Currently, all the experimental results of STC prediction are 

obtained from SVM learning models with linear kernel and 𝜒2 kernel [87]. 
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Fig. 8–7. Evaluating linear kernel and 𝜒2 kernel in SVM. Top figure is from CHARS74K and 

bottom figure is from ICDAR2003CH. 
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8.3. EVALUATING FEATURE REPRESENTATIONS OF GLOBAL SAMPLING 

8.3.1. COMPLETE STC IN GLOBAL SAMPLING 

Above experiments are based on densely local sampling of key-points in 

character patch. Feature descriptor is computed from each key point and then 

normalized and pooled through coding-pooling schemes. In this section, we propose 

a new feature representation for STC prediction based on global sampling. We 

extract GHOG features directly from the whole character patch. Compared to local 

sampling, the GHOG based global sampling obtains even better performance of STC 

prediction. Because global sampling has the following advantages: (1) there is no 

coding so no information loss (2) spatial structure is preserved when concatenating 

descriptors of grids in order. The evaluation results show that GHOG obtains 

accurate rate up to 0.62 at CHARS74K and 0.76 at ICDAR2003, which are better than 

the highest results (0.58 at CHARS74K and 0.75 at ICDAR2003) in local sampling. In 

addition, GHOG outperforms most existing methods as shown in Table 8–1. 

 

8.3.2. INCOMPLETE STC IN GLOBAL SAMPLING 

STC prediction is usually based on the resulting character patches from text 

region detection and STC segmentation. However, the two steps cannot ensure 

complete character patches. We evaluate the performance of GHOG on these 

incomplete (truncated) character patches and illustrate the results in Fig. 8–8. It 

shows that more complete structure obtains better recognition performance, and 

the top and bottom parts of character patch generate more discriminative structure 

features than the left and right parts. 
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Fig. 8–8. Performance evaluations based on GHOG global sampling. The left first bar denotes 

the accurate rate of global HOG in complete and original patch. Blue bars and yellow bars 

denote accuracy rate of incomplete patches as their top examples. The first red bar denotes 

accuracy rate (0.63) of preprocessed patches by Gaussian and the second red bar denotes 

that of Laplacian filters (0.46). 

 
Moreover, we apply Gaussian and Laplacian filters to preprocess character 

patches before extracting GHOG features. Gaussian filter removes background noise, 

while Laplacian filter emphasizes the boundary that contains much information on 

character structure. The evaluation results (see Fig. 8–8) show that Gaussian 

smooth improves the recognition performance slightly, but Laplacian lowers the 

performance because the noise negatively influences HOG descriptors. 
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Table 8–1. Comparations between our best results and existing methods of STC prediction 

over the benchmark datasets. 

 CHARS74K-15 ICDAR2003CH 

Global HOG+SVM 0.62 0.76 

Local HOG+SVM 0.58 0.75 

Geometrical blur + NN [19] 0.47 / 

Geometrical blur + SVM [19] 0.53 / 

Shape context + NN [19] 0.34 / 

Shape context + SVM [19] 0.35 / 

Multiple kernel learning [19] 0.55 / 

ABBYY [19] 0.31 / 

Coates method [16] / 0.82 

HOG+NN [90] 0.58 0.52 

SYNTH+FERNS [90] 0.47 0.52 

NATIVE+FERNS [90] 0.54 0.64 

NN: Nearest neighbor classification; SYNTH: synchronic patch for training; NATIVE: native 

scene image patch for training 

 

8.4. DATASETS AND EVALUATION MEASURES OF WORD RECOGNITION 

ICDAR-2011 robust reading dataset contains 484 scene images in total, in which 

229 images with 619 ground truth text regions are used for training and 255 images 

with 934 ground truth text regions are used for testing in ICDAR 2011 Robust 
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Reading competition. The image size ranges from 422×102 to 3888×2592. The 

proposed framework is applied to the text regions for word recognition. 

The performance of word recognition is evaluated based on edit distance 

between ground-truth words and recognized words. Whenever a word is updated 

by inserting a new character, deleting a character or modifying a character, its edit 

distance from the original word is increased by 1. However, it might be too strict to 

only compute the accuracy of perfectly recognized words with edit distance 0 (ED0) 

to ground truth. We also measure word recognition of the edit distance 1 (ED1) to 

ground truth. This is because even though the recognized word has 1 edit distance 

from, we still can recognize it in most cases. 

 

8.5. EVALUATING WORD RECOGNITION 

Two experiments are carried out to evaluate the performance of word 

recognition on the basis of STC prediction. In the first experiment, we perform word 

recognition by sequentially combining the results of STC predictions in a text region, 

but not adopt CRF model to correct the STC predictions. In the second experiment, 

CRF model is adopted to combine vision-based STC prediction with lexicon-based 

word configuration knowledge. 

Table 8–2. The experimental results of word recognition in ICDAR 2011, which are 

evaluated by ED0 and ED1. 

 Sequential STC prediction CRF correction 

ED0 0.161 0.210 

ED1 0.432 0.433 
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From the experimental results, we can observe that word recognition is a 

challenging task. A tolerance of one edit distance will much improve the 

performance. Besides, the CRF model is able to improve the performance of word 

recognition, but the improvement is not significantly large. It shows that word 

recognition mostly relies on the accuracy of STC prediction based on STC feature 

representation. 

 

8.6. SUMMARY OF CONTRIBUTIONS 

In this chapter, the proposed methods of scene text character recognition are 

evaluated over benchmark datasets, in which a comparative performance evaluation 

of different low-level descriptors, dictionary sizes and coding/pooling schemes is 

carried out. The experimental results demonstrate the effectiveness of our method 

in recognizing the 62 categories of scene text character. From the perspective of 

quantitative analysis, our method outperforms the state-of-the-art results in the 

benchmark datasets. 
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Chapter 9 BLIND-ASSISTANT HAND-HELD OBJECT RECOGNITION 

9.1. BLIND-ASSISTANT PROTOTYPE SYSTEM 

Scene text extraction can be widely used in blind assistance. The 2008 National 

Health Interview Survey (NHIS) [58] indicates that about 25.2 million adult 

Americans (8% of the total population) are visually impaired. There are about 314 

million visually impaired people all over the world, and 45 million of them are blind 

[94]. A number of assistant reading systems have been designed specifically for the 

blind or visually impaired people [41] [54] [81] [73]. 

Many blind assistant systems are developed to help visually impaired people 

through some wearable devices [17]. For example, a portable bar code reader is 

designed to help blind people identify different products in an extensive product 

database, and it enables users who are blind to access information about these 

products [71] through speech and braille. But a big limitation is that it is very hard 

for blind users to find the position of the bar code and to correctly point the bar 

code reader at the bar code. To our knowledge, no existing system can read text 

from the kinds of challenging patterns and backgrounds found on many everyday 

commercial products. To assist blind or visually impaired people to read text from 

these kinds of hand-held objects, we have conceived of a camera-based text reading 

scheme to track the object of interest within the camera view and extract print text 

information from the object. The system demonstrates that our framework of scene 

text extraction can effectively handle complex background and multiple patterns, 

and obtain text information from both hand-held objects and nearby signage, as 

shown in Fig. 9–1. 

In most assistive reading systems, users have to position the object of interest 

within the center of the camera’s view. According to our survey, there are still no 

acceptable solutions. We try to handle this problem step-by-step. To make sure the 

hand-held object can be easily captured in the camera view, we use a camera with 
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sufficiently wide angle to accommodate users with only approximate aim. However, 

this wide angle camera will also capture many other text objects (for example while 

shopping at a supermarket). To centralize the hand-held object from the camera 

image, a motion-based method is adopted to acquire a region of interest (ROI) of the 

object. Then we perform scene text extraction from only this ROI, including 

detecting text regions and recognizing text codes. In the end, the recognized text 

codes are output to blind users by audio device. To present how our prototype 

system works, a flowchart is presented in Fig. 9–2. 

 

 

Fig. 9–1. Two examples of extracting text by the prototype system from camera-captured 

images. Top: a milk box; Bottom: a men bathroom signage. (a) camera-captured images; (b) 

localized text regions (marked in blue); (c) text regions cropped from image; (d) text codes 

recognized by OCR. The top-right portion of the bottom image that contains text is also 

shown in a magnified callout, for clarity. 



 

 

 
103 

 

Fig. 9–2. Flowchart of our prototype system to read text from hand-held objects for blind 

users. 

9.2. IMPLEMENTING SCENE TEXT EXTRACTION IN PC PLATFORM 

A prototype system of scene text extraction is designed and implemented in PC 

platform, which is compatible with Windows and Ubuntu-linux platforms. Fig. 9–3 

illustrates the hardware of this prototype system based on our proposed 

framework. This system consists of three components: scene capture, data 

processing and audio output. The scene capture component collects surrounding 

scenes or objects containing text, and the captured data is in the form of images or 

video. In our current prototype system, this component is implemented by a camera 

attached to a pair of sunglasses. The data processing component is used for 

deploying our proposed framework. In our current prototype system, a min-laptop 

is used as the processing device in our current prototype system. The audio output 

component is to inform the blind user of recognized text codes. A Bluetooth earpiece 
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with mini-microphone is adopted for speech output. This simple hardware 

configuration proves the portability of the assistive text reading system. 

 

 

Fig. 9–3. A snapshot of our prototype system, including three functional components for 

scene capture, data processing and audio output. 

The core component of this prototype system is data processing, which is 

implemented according to the proposed scene text extraction framework in this 

dissertation. It consists of 5 modules, extracting candidate character components as 

Chapter 2, extracting candidate string fragments as Chapter 3, modeling structural 

feature representations as Sections 4.1-4.3 and Section 5.3, learning the classifier of 

true positive text fragment sample as Section 4.4, learning the classifier of STC 

prediction as Section 5.5 (LEARNING), data I/O and management (DATA), and 

system testing module (TESTING). The whole system is implemented by C++ 

programming language. In our implementations, OpenCV 2.4 library [64] is 

employed to support some basic data structure like Matrix, and some basic 

algorithms related to low-level image processing like Canny Edge Detection and 

feature descriptors like SIFT and HOG. LIBSVM [85] is employed to implement SVM 

training and testing processes. VLFeat [86] library is employed to implement MSER 

operator which is used to extract possible character component. 



 

 

 
105 

The prototype system has been used to assist blind or visually impaired people to 

recognize hand-held object as described, as shown in Fig. 9–4. 

 

 

Fig. 9–4. Prototype system assists blind user read text information from hand-held objects, 

including the detected text regions in cyan and the recognized text codes. 

Currently, the system efficiency is decided by the efficiency of scene text 

extraction in each image or video frame. But we will design parallel processing of 

text extraction and device input/output to further improve the efficiency of this 

assistant reading system. That is, speech output of recognized text and localization 

of text regions in the next image are performed simultaneously. 

9.3. EVALUATION RESULTS AND DISCUSSIONS 

To evaluate the performance of the prototype system and develop a user-friendly 

interface, following Human Subjects Institutional Review Board approval, we 

recruited 10 blind persons to collect a dataset of reading text on hand-held objects. 

The hardware of the prototype system includes a Logitech web camera with 

autofocus, which is secured to the nose bridge of a pair of sunglasses. The camera is 

connected to a mini laptop by a USB connection. The laptop performs the processing 

and provides audio output. To avoid serious blocking or aural distraction, we will 

choose a wireless “open” style Bluetooth earpiece for presenting detection results as 

speech outputs to the blind users in a full prototype implementation.  
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The blind user wore the camera/sunglasses to capture the image of the objects in 

his/her hand, as illustrated in Fig. 9–5. The resolution of the captured image is 

960×720. There were 14 testing objects for each person, including grocery boxes, 

medicine bottles, books, etc. They were required keep their head (where the camera 

is fixed) stationary for a few seconds and subsequently shake the object for an 

additional couple of seconds to detect the region of object of interest. Each object 

was then rotated by the user several times to ensure that surfaces with text captions 

are exposed and captured. We manually extracted 116 captured images and labeled 

312 text regions of main titles. 

 

 

Fig. 9–5. Examples of blind persons are capturing images of the object in their hands. 

The user-captured dataset of object text is used to evaluate our prototype system. 

In our evaluations, a region is correctly detected if the ratio of the overlapping area 

of a detected region and its ground truth region is no less than 3/4. Experiments 

show that 225 of the 312 ground truth text regions are hit by our localization 

algorithm. By using the same evaluation measures as above experiments of scene 

text detection, we obtain precision 0.52, recall 0.62, and f-measure 0.52 over this 

dataset. The precision is relatively lower than that on the ICDAR Robust Reading 

Dataset. It is because the images in the blind-captured dataset have lower 

resolutions and more compact distribution of text information, so they generate 

low-quality edge maps and text boundaries, which result in improper spatial layouts 

and text structural features. Some examples of extracted scene text from hand-held 
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objects are illustrated in Fig. 9–6, proving that our proposed framework is suitable 

for real applications. 

In this application, off-the-shelf OCR is adopted for scene text recognition in the 

detected text regions. Since the existence of false positive text regions and the low 

recognition accuracy of OCR on scene text regions, the practical system would 

restrict the range of possible recognized words by a prior dictionary of common 

words that are frequently printed in hand-held objects. A text extraction result is 

output by audio only if it has close edit distance to some word in the dictionary. 

 

 

Fig. 9–6. (a) Some results of text detection on the user-captured dataset, where localized 

text regions are marked in blue. (b) Two groups of enlarged text regions, binarized text 

regions, and word recognition results from top to down.  

(a)

(b)
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9.4. SUMMARY 

In this chapter, we combine scene text extraction in PC platform and combining it 

with background subtraction algorithm to build a blind assistant system of 

hand-held object recognition. 
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Chapter 10 TRACKING-BASED SCENE TEXT RECOGNITION 

Due to the cluttered background and multiple text patterns, scene text 

recognition even from a detected text region is still a challenging problem. Most OCR 

systems are designed for scanned documents with relatively clean background or 

segmented STCs, and they do not obtain good performance over scene text as 

mentioned in Chapter 9. 

On the other hand, in a number of real-world applications of text information 

retrieval, the raw data captured from natural scene is in the form of video frames 

rather than a single scene image. This means frame relationships are ignored in the 

traditional scene text recognition methods as described in Chapter 5 based on a 

single image. Thus we propose a method of scene text recognition from a video of 

natural scene. In our method, a text recognition method can be combined with a 

tracking algorithm to improve the recognition accuracy. We carry out text detection 

on the first frame of a given video, and generate an initial bounding box of text 

region. Then we adopt an object tracking algorithm to the detected text region and 

obtain its bounding box in succeeding frames. Next, STC prediction and CRF model 

are applied to the tracking boxes of text regions to recognize text information. 

10.1. SCENE TEXT TRACKING 

At first, scene text detection based on MSER detector and adjacent character 

grouping is performed to extract bounding boxes of text regions from the first video 

frame. In this process, we can obtain bounding box of each STC, which will serve as 

the input to scene text tracking. Text tracking will generate corresponding STC 

bounding boxes in succeeding video frames, as shown in Fig. 10–1. 

To simultaneously track several STCs belonging to the same word, multi-object 

tracking is applied to scene text regions. In scene text scenario, we can avoid some 

challenges of multi-object tracking by the three constraints. First, we do not need to 

estimate the STC trajectories in the same word independently because we can 
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instead estimate the trajectory of the whole word at first as a hint. Second, the STCs 

in the same word are well aligned and have relatively low dependencies with each 

other. Third, the locations of characters are always stable. So the inter-object 

occlusions rarely happen as long as the whole word is clearly captured. 

 

 

Fig. 10–1. Initial text regions are extracted by grouping adjacent connected components in 

similar size and horizontal alignment in the MSER map. Each scene text character will be 

independently tracked with the multi-object tracking method. A trajectory is then estimated 

by merging the tracked STC bounding box in each frame. The STC prediction scores along 

this STC trajectory will be used to improve scene text recognition. 

We adopt the tracking by detection method in our framework, i.e., each STC is 

traded as an independent object model that is detected and tracked in continuous 

multiple frames [63] [96]. An online tracking model in [27] is able to handle the 

variations of lighting and appearance. Compared with other tracking methods such 

as the first-order Markov chain model which predicts object location in next frame 

from that in current frame, these tracking by detection method category successfully 

solves the re-initialization problem even when a target has been lost in some frames 

accidentally and the excessive model drift problem due to similar appearances of 

some STCs.  
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At each frame in tracking process, the algorithm searches for the globally optimal 

hypothesis for the location of each STC. The detection output is then used as a 

constraint to optimize the trajectory search. Optimized trajectory estimation is then 

fed back to guide text detection in subsequent frames and reduce the effects of 

motion blur. The two processes are iteratively performed to track STC bounding 

boxes. 

10.2. STC PREDICTION AND WORD-LEVEL CONFIGURATION 

A tracked STC bounding box is cropped from video frame of natural scene, and 

STC prediction as described in Chapter 5 is performed to label the most probable 

category of the STC from the 62 candidate categories. A 62-dimensional prediction 

score is obtained from STC prediction to represent the probability of each category. 

Based on the prediction labels and scores, we can infer the involved text 

information by using three schemes as described in Section 10.4. First, we could just 

randomly select a tracking frame and use its STC prediction results as the final 

results. Secondly, we could use majority voting among all video frames to decide the 

final results of STC predictions. Third, we could extend the CRF model as described 

in Section 6.2 to fuse the prediction results in all video frames in an optimized way. 

10.3. DATASET AND EVALUATION MEASURES 

Since our framework works on multiple frames, we first collect a video dataset of 

text information from natural scene, which consists of 50 videos including both 

indoor and outdoor environments. These videos are captured by a moving and 

shaking camera, which results in some motion blur. Each video sample in this 

dataset contains more than 300 frames, where the target signage is shot from about 

−45°~45° view angles. The difference between neighboring frames is not quite 

large, so we uniformly sample 100 frames from each video as the effective frames in 
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our experiments. The following experiments extract the STC trajectories in the 100 

effective frames to perform multi-frame scene text recognition. 

To evaluate the performance of scene text recognition, we use different 

measurements for STC prediction and word recognition. In STC prediction, we 

measure the accuracy in a testing set by CH-RATE. In word recognition, the 

difference between two words is measured by the edit distance. Whenever a word is 

updated by inserting a new character, deleting a character or modifying a character, 

its edit distance from the original word is increased by 1. However, it might be too 

strict to only compute the accuracy of perfectly recognized words with edit distance 

0 (ED0) to ground truth. We also measure word recognition of the edit distance 1 

(ED1) to ground truth. This is because even though the recognized word has 1 edit 

distance from, we still can recognize it in most cases. 

10.4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

To validate the effectiveness of multiple frames in scene text recognition, we first 

carry out the experiment by using a single frame. Each sample in our dataset 

consists of multiple frames, and we could randomly choose one frame and perform 

scene text recognition. However, the image quality of the video frames is largely 

different, so it is unreasonable to use only one frame to evaluate text recognition in 

a sample. In our experiments, 10 frames, i.e., 1/10 of the total number of effective 

frames in a video, are randomly selected to evaluate scene text recognition. Each 

STC bounding box generates a vector of prediction scores in 62 dimensions, since 

we define 62 categories of STCs. We compute the prediction scores of the 

corresponding STCs in the same trajectory from the randomly selected frames, and 

then calculate their mean as the result of scene text recognition in a single frame. 

Next, we evaluate multi-frame text recognition. In text tracking, STC bounding 

boxes obtained from text detection are extended into succeeding frames. It is worth 

noticing that although the motion blur due to camera shaking is well handled, not all 
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STC bounding boxes in video frames are correctly tracked, and not all STC categories 

are correctly predicted. Therefore, we fuse the STC prediction scores in each frame 

along its trajectory to improve the recognition accuracy. We propose two fusion 

methods. The first fusion method employs Majority Voting model, which makes 

statistics of category labels of STC prediction in all frames and choose the one in the 

highest frequency as the final result. For each STC trajectory, we generate a vector of 

predicted category labels from the frames. Then the highest-frequent label is 

computed as the result of STC prediction. All STC prediction results are then 

cascaded into word recognition result. 

The second fusion method employs CRF model to fuse multi-frame STC 

prediction scores under the lexical constraints. CRF model is learned from ground 

truth text regions in CHARS74K, ICDAR2003, and ICDAR2011 datasets. We perform 

scene text detection and STC prediction in those ground truth regions, and use the 

prediction scores and bigram lexicons to train CRF model. Then the CRF model is 

applied to the STC prediction labels and scores in multiple frames of text tracking. 

Fig. 10–2 demonstrates some example results of text tracking and word recognition 

from multiple frames. 

Table 10–1. The results of word recognition in a single frame and multiple frames of text 

racking. 

 CH-RATE ED0 ED1 

Single Frame 0.640 0.333 0.583 

Multi-Frame (Majority) 0.680 0.389 0.611 

Multi-Frame (CRF) 0.713 0.389 0.722 

 

 

The experimental results in Table 10–1 demonstrate that multi-frame scene text 

recognition significantly improves the performance of STC prediction and word 
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recognition in comparison with single-frame recognition. Majority voting 

suppresses the minority frames that generate incorrect STC prediction, so it obtains 

better performance of STC prediction and word recognition than single-frame 

method. Furthermore, CRF brings in lexical prior knowledge of bigram STCs. It 

further improves the performance of STC prediction and word recognition. Since the 

bigram lexical prior is calculated from ground truth words of three other datasets, 

and the size of our self-collected text video dataset is not large enough, CRF obtains 

the same performance on ED0 as majority voting. But we infer that CRF will give 

better performance as the size increasing of text video dataset. 

 

 

Fig. 10–2. Some example results of word recognition from multiple frames of text tracking. 

Right column shows recognized words. 

 

10.5. SUMMARY 

In this chapter, we combine scene text extraction with text tracking algorithm to 

design an algorithm of scene text recognition in multiple video frames. 
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Chapter 11 LICENSE PLATE DETECTION 

Another application of scene text extraction is to detect license plate (LP) in a car, 

which is captured from rear view. LP detection plays an important role in many 

applications such as car identification and privacy protection. Based on scene text 

detection, we design an LP detection algorithm to automatically find out LP regions 

in scene image. It is able to handle multiple LPs in different sizes and positions. The 

LP algorithm consists of three components, car detection, scene text detection and 

edge-based post processing. It extracts the possible LP regions step-by-step from 

complex background.  

11.1. CAR DETECTION 

Car detection is to extract car regions from a scene image, for reducing LP search 

domains. Car instances in our experiments are all captured from backside, so we 

train a car-rear classifier through Haar features and Adaboost learning model as 

[88]. Some samples from car-rear dataset are shown in Fig. 11–1. 

 

 

Fig. 11–1. Some examples of car-rear training samples. Each car is located at complex 

background. The LPs are mostly located in the central parts of car rear. 

Next, sliding window is employed to search the whole scene image for possible 

car regions by using the car-rear classifier. As shown in Fig. 11–2(c), red box depicts 

a detected car region. 
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11.2. LICENSE PLATE LOCALIZATION 

To localize the LP within a detected car region, we should extract the sub regions 

with text information, and filter out those with tires and bumper. Scene text 

detection algorithm is employed to extract text characters and strings from car 

region. This algorithm can be divided into two steps, rule-based layout analysis and 

learning-based structural feature analysis, as respectively described in Chapter 2, 

Chapter 3 and Chapter 4. The rule-based analysis assumes that text information in 

scene image consists of text characters in similar size and horizontal alignment. At 

first, connected components of possible text characters are extracted from boundary 

extraction in edge map of scene image. Then a group of constraints is defined to 

filter out connected components from background outliers, and these constraints 

are related to size, aspect ratio and the number of inner holes. Next, we perform 

adjacent character grouping as described in Section 3.3 to extract the candidate 

components aligned with neighbors, and combine these neighboring components 

into a candidate patch. A text classifier is then applied to the candidate patch to 

predict whether it contains text or not. This text classifier is obtained by 

learning-based text feature analysis. First we build a training set by using text 

patches as positive training samples and non-text background patches as negative 

training samples. From each training sample, we extract text features based on 

gradient distributions and stroke orientations and normalize them into feature 

vector. Then cascaded adaboost model is applied to train a text classifier by all 

feature vectors from training set. In the end, the neighboring text patches in similar 

sizes and heights are merged into text region, as the cyan rectangle regions in Fig. 

11–2(c). 

11.3. POST PROCESSING 

Furthermore, a post process based on edge density is designed to filter out false 

positive text regions. An LP is usually located at the central part of a car region, and 
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it has much higher edge density than all the other backside car components 

including bumper, car-body, windshield, and taillight, as shown in Fig. 11–2(b). 

Based on these observations, two conditions are defined to crop out valid LP region 

from the detected text regions. Firstly, for a rectangle text region and a rectangle car 

region, the text region will be removed if one of the two conditions is satisfied; 1) 

the height of the text region is larger than 1/4 height of the car region; 2) the 

distance between their left-sides (or right-sides) is smaller than 1/5 width of the car 

region, or the distance between their top-sides is smaller than 1/5 height of the car 

region. Second, the edge density of each text region is calculated as the number of 

edge pixels divided by the area of the region, and we preserve the region with 

highest edge density as detected LP region (see Fig. 11–2(d) and Fig. 11–3). 

 

 

Fig. 11–2. (a) Original image of license plate. (b) Edge map from canny edge detection. (c) 

Detected car region in red box and detected text regions in cyan rectangle boxes. (d) 

Post-processing is applied to filter out background outliers and preserve the region with the 

highest edge density as ultimate LP region. 
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Fig. 11–3. Some post-processing examples in LP detection. Cyan regions inside red car boxes 

represent the true positive LP, and red regions inside red car boxes represent false positive 

LP detections that are filtered out by post processing. 

11.4. EVALUATION RESULTS AND DISCUSSIONS 

To evaluate the performance of LP detection, we adopt a dataset [10] of car rears 

with LPs in high enough resolutions. This dataset contains 126 natural scene images 

captured from complex background. The experimental results show that our 

framework is able to detect 74 of the 126 LPs completely, as shown in Fig. 11–2(d) 

and Fig. 11–3. Besides, 46 of the 126 LPs are partially detected, as shown in Fig. 11–

4(a). The remaining 6 LPs are missing because of severe illumination or low 

resolution, as shown in Fig. 11–4(b). 

 

 

Fig. 11–4. (a) LPs are partially detected. (b) Some LPs are missing because of severe 

illuminations or low resolutions.  
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11.5. SUMMARY 

In this chapter, we combine scene text extraction with car detection to localize 

license plate in a natural scene image. 
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Chapter 12 INDOOR NAVIGATION 

A blind-assistant prototype system is designed for hand-held object recognition 

in Chapter 9. We can further extend the system to indoor navigation, by extracting 

indicative information from surrounding signage in indoor environment. In most 

cases, indoor navigation is to lead blind users to a specific office, a restroom or an 

elevator entrance. All of them have doors by a room name or a room number. The 

people in normal vision can refer floor plan map to find their ways, but blind or 

visually impaired people cannot acquire this information. Thus our proposed 

prototype system can perceive their current location and generate a proper path 

from current location to their destination. 

The hardware of this prototype system is similar to the system of hand-held 

object recognition in Chapter 9, including wearable camera, process unit, and audio 

output device. However, the system implements indoor navigation by adding in 

door detection and floor plan parse algorithms, which will be described in detail. 

 

12.1. DOOR DETECTION AND ROOM NUMBER EXTRACTION 

In both floor plan map and real indoor environment, doors serve as important 

landmarks and transition points for way-finding. They also provide entrance and 

exit information. Thus, an effective door detection method plays an important role 

in indoor navigation. Our system adopts the vision-based door detection method 

presented in [97] to localize surrounding doors for blind users. 

This method adopts a very general geometric door model, describing the general 

and stable features of doors—edges and corners, as shown in Fig. 12–1. This method 

can handle complex background objects and remove most door-like shapes. 
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Fig. 12–1. (a) Edges and corners are used for door detection. (b) Door detection under 

cluttered background. 

Based on the detected doors, scene text extraction is performed within the door 

region or around its immediate neighboring region, for obtaining text information 

related to room names and room numbers, as shown in Fig. 12–2.  

 

 

Fig. 12–2. Door detection and further scene text extraction from doors. This is a 

combination of door detection and scene text extraction techniques for generating current 

locations. 
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The doors and its attached text information serve as a valuable indicator for 

navigation. In general, it is difficult for blind user to take high-quality images or 

videos [82] for information retrieval. We design a method to select high-quality 

image frame from a camera-based video. Also many sophisticated algorithms were 

proposed [44] [24] [8] [14] to perform de-blurring and de-noising in camera-based 

scene image, which will be integrated into this system. 

 

12.2. FLOOR PLAN PARSE FOR WAY-FINDING 

Most buildings custom floor plan maps as tourist guide, as shown in Fig. 12–3(a). 

A floor plan map contains room numbers and relative locations of the offices, 

restrooms, and elevator entrances in this building. However, floor plan map can only 

provide static information without tracking the locations of blind users. Thus, our 

navigation system combines floor plan parse and vision-based information retrieval 

techniques such as door detection and scene text extraction to figure out a solution 

of blind-assistant way-finding in unfamiliar buildings.  

A primary design of floor plan based way-finding can be found in [35]. Our design 

is as follows. A floor plan map will be parsed into a graph, in which a room is defined 

as a node (see Fig. 12–3(b)). Each pair of nodes is connected by an edge, and an 

available path of way-finding is defined on each edge. For example, in Fig. 12–3(c), 

the yellow edge corresponds to a proper path marked in yellow in Fig. 12–3(b) from 

room “632” to room “623”. According to the length and the number of turning 

corners of the path, a cost value is assigned to its corresponding edge in the graph. 

In this weighted graph, the current location of a blind user is regarded as a starting 

point while his/her destination is regarded as an ending point. In the navigation 

process, our system will use breadth first search and [20] to find out a path with 

minimum cost value. Then the navigation system will refer floor plan map and 

generate the corresponding ways to destination. 
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Both the localization and navigation processes are based on accurate scene text 

extraction. Fortunately, the indoor environment mostly does not contain too much 

background interferences, and the text information has relatively fixed pattern, e.g., 

room number contains only digits in print format. Thus our proposed scene text 

extraction can adapt its parameters to this specific environment and application. 

This prototype indoor navigation system is still under construction. 

 

 

Fig. 12–3. (a) An example of floor plan, where the blue shaded region will be analyzed. (b) 

Each room number is regarded as a node, and a way from room “632” to room “623” is 

marked in yellow. (c) The abstract graph of the floor plan map, where the yellow edge 

indicates an edge from node “632” to node “623”, corresponding the yellow way in (b). 

 

12.3. IMPLEMENTING SCENE TEXT EXTRACTION IN MOBILE PLATFORM 

To apply the scene text extraction technique in indoor navigation, we develop a 

prototype system in Android platform. It is able to detect regions of text strings 

from cluttered background, and recognize characters in the text regions in mobile 

device.  
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Fig. 12–4. Our prototype system of scene text extraction in Android platform. The text 

strings “GARMIN”, “FIRE”, “EXIT”, and “Cheerios” are extracted from complex background. 

Although some characters are incorrectly recognized in current prototype, we will 

introduce lexicon analysis to improve the recognition performance. 

 
Compared with a PC platform as described in Section 9.2, the Android-based 

mobile platform is portable and more convenient to use. Scene text extraction will 

be more widely used in mobile applications, so it is indispensible to transplant 

prototype system into the popular Android mobile platform. However, two main 

challenges should be overcome in developing the scene text extraction application 

in mobile platform. First, our framework is implemented by C++ programming, 

while Android platform is based on Java engine. Fortunately, Android NDK is 

provided to compile C++ code into the Android platform. Second, due to the 

limitations of computing speed and memory allocation in mobile device, we attempt 

to make our implementations efficient enough for real applications. To improve the 
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efficiency, we skip layout analysis of color decomposition in text detection, but 

directly apply the canny edge map for layout analysis of horizontal alignment. It 

lowers the accuracy of text detection, but is still reliable for text extraction from 

nearby object in enough resolutions. In addition, code optimization is performed. In 

our test, each frame spends about 1 second in completing the whole process of 

scene text extraction. One of prototype systems runs on Samsung Galaxy II smart 

phone with Android 2.3 as shown in Fig. 12–4. It captures natural scene by the 

phone camera, and extract text information online from the captured scene images, 

which are frame-by-frame processed. 

The prototype system in Android Platform gives us some insight into algorithm 

design and performance improvement of scene text extraction. First, the 

assumptions of horizontal alignment in text layout analysis make sense in real 

applications. Although some text detection algorithms attempts to extract text 

strings in arbitrary orientations, they usually bring in more false positive text 

regions and lower the efficiency. However, the user can rotate the lightweight 

mobile devices to adaptively fit the non-horizontal text strings. Second, the accuracy 

of scene text detection could be improved by using the intersections of extracted 

text regions from consecutive frames captured by the camera at an identical scene. 

 

12.4. SUMMARY 

In this chapter, we combine scene text extraction with door detection, signage 

detection and floor plan parse, which generates a blind assistant system of indoor 

way-finding. To adopt scene text extraction in this kind of navigation system, we 

develop a prototype system in Android-based mobile platform. 
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Chapter 13 CONCLUSIONS AND DISCUSSIONS 

We have discussed a complete framework of scene text extraction and its related 

applications by combining with other techniques. In this section, let us summarize 

how we address the challenges existing in scene text extraction process. 

 

Candidate character component: To filter out most background outliers and 

preserve only text characters, gradient-based and color-based partition of natural 

scene image is performed according to the characteristic gradient distribution and 

color uniformity of scene text. We propose gradient-based connecting path method 

and color-based bigram color reduction method to extract candidate character 

component. Both methods work well on camera-based scene images. 

 

Candidate string fragment: Scene text mostly appears in the form of text string, 

which consists of several text characters in similar size and linear alignment. 

Accordingly, we design adjacent character grouping and text line fitting to group the 

candidate character components in similar size and linear alignment. The non-text 

background outliers without siblings can be removed in this process, and the 

grouped candidate character components evolve into possible fragments of text 

strings. 

 

Text structure modeling of true positive string fragments: To extract true 

positive text string fragments obtained from above step, structural analysis is 

performed on image patches of text string fragments, by extracting Haar-like 

features from several feature maps related to gradient distribution, stroke 

consistency and distribution, and edge density. Cascaded Adaboost learning model 
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is adopted to train text classifier based on the Haar-like structural features to find 

out true-positive text string fragments. 

 

Text structure modeling of scene text character for STC prediction: To 

recognize text information in detected text regions, we first recognize the extracted 

text character by designing feature representations of STC structure. We evaluate 

multiple feature descriptors, coding/pooling schemes and learning models to find 

out the most robust and discriminative feature representations of STC structure. 

 

Hand-held object recognition: Scene text extraction is combined with 

motion-based background subtraction to develop a blind-assistant system of 

hand-held object recognition. 

 

Tracking-based scene text recognition: Scene text extraction is combined with 

object tracking to improve the performance of text recognition and adapt text 

recognition to real applications. 

 

LP detection: Scene text extraction is combined with car detection to localize the 

car LPs in camera-based scene image 

 

Indoor navigation: Scene text extraction is used to parse floor plan map and 

report the current locations. 
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In future work, we will further improve the performance of scene text extraction 

from the perspective of both accuracy and efficiency. Firstly, we will design more 

robust algorithm of searching possible text characters on the basis of the 

newly-proposed MSER operator [55], and will design more robust algorithm of text 

character segmentation in both intensity and spatial level from detected text 

regions. Then, we will transform our framework into parallel computing model, to 

accelerate the whole process in real applications. Next, we will try to combine the 

proposed scene text extraction framework with other techniques, so that it can be 

more widely used in all kinds of real applications. 
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Appendix A. THE INVOLVED LEARNING MODELS IN OUR FRAMEWORK 

A.1 ADAPTIVE BOOST 

The learning process based on the Adaboost model [88] [25] is as follows.  

1) Given the set of 𝑚  fragment samples (𝑥1,𝑦1), (𝑥2,𝑦2), … , (𝑥𝑚,𝑦𝑚) where 

𝑥𝑖 ∈ 𝑋  denotes feature vector and 𝑦𝑖 ∈ {−1,1}  denotes ground truth. Each 

fragment sample 𝑖 is assigned a weight 𝐷𝑖 , which is initialized to be 1/m.  

2) In the t-th iteration, we select the optimized weak classifier ht from the set of 

weak classifiers ℋ , such that ℎ𝑡 = argminℎ∈ℋ ∑ 𝐷𝑖𝑦𝑖ℎ(𝑥𝑖)𝑚
𝑖=1 , and calculate 

𝜀𝑡 = ∑ 𝐷(𝑖) ∙ (𝑦𝑖 ≠ ℎ(𝑥𝑖))𝑚
𝑖=1  and 𝛼𝑡 = 0.5 ln((1− 𝜀𝑡) 𝜀𝑡⁄ .  

3) Update the weights by 𝐷𝑖 ≔ 𝐷𝑖exp (−𝑦𝑖ℎ(𝑥𝑖)).  

4) Start the next iteration from step (2) until all the fragment samples are 

correctly classified or the maximum number of iterations is reached.  

5) The optimized weak classifiers are combined into a stage-Adaboost classifier 

as 𝐻(𝑥) = ∑ 𝛼𝑡ℎ𝑡(𝑥)𝑡 . 

Given a testing sample 𝑥𝜏 , we can input it into the learned classifier 𝐻 to 

calculate 𝐻(𝑥𝜏). Then the predicted label of 𝑥𝜏 is obtained from the sign of the 

value 𝐻(𝑥𝜏), that is, 𝑦𝜏 = 1  𝑖𝑖 𝐻(𝑥𝜏) ≥ 0  and 𝑦𝜏 = −1  𝑖𝑖 𝐻(𝑥𝜏) < 0. 

 

 

A.2 SUPPORT VECTOR MACHINE 

A brief introduction of SVM model will be givenin this section. A binary SVM 

model computes two hyperplanes in high dimensional feature space of training 

samples for making classification. One hyperplane is used as the boundary of 

positive training samples, while the other is used as the boundary of negative 

training samples. An optimized pair of hyperplanes is able to separate positive 
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samples and negative samples in minimized error, while they have maximized 

distance from each other. 

The detail of SVM learning model for binary classification task is as follows. At 

first, a training dataset of positive samples and negative samples is given, denoted as 

{(𝑥𝑖,𝑦𝑖)|𝑥𝑖 ∈ ℝ𝑝, 1 ≤ 𝑖 ≤ 𝑚} where 𝑥𝑖  represents a 𝑝-dimensional feature vector 

that combines all the features of the training sample 𝑖, and 𝑦𝑖 ∈ {−1,1} is the 

ground truth label to tell whether it is a positive sample or negative sample. Then 

the object is to construct a hyperplane as 𝑤 ∙ 𝑥 − 𝑏 = 0, such that the positive 

samples fall in one side of the hyperplane and the negative samples fall into the 

other side of the hyperplane, while the distance from the hyperplane to the nearest 

samples is maximized. To solve the optimized 𝑤  and 𝑏 , two hyperplanes 

𝑤 ∙ 𝑥 − 𝑏 = 1  and 𝑤 ∙ 𝑥 − 𝑏 = −1  are established. There is 𝑤 ∙ 𝑥 − 𝑏 ≥ 1  for 

positive samples and 𝑤 ∙ 𝑥 − 𝑏 ≤ −1 for negative samples if the samples are linear 

separable. If the distance between the two hyperplanes is maximized, the two 

classes of samples can be correctly classified while producing maximized distances 

to the hyperplane of each other.  

From the geometrical computation, the distance between the two hyperplane 

boundaries is calculated by 2 ‖𝑤‖⁄ . Thus the following task is to minimize the ‖𝑤‖. 

This problem is then transformed into the minimization of ‖𝑤‖2/2 [6]. By the 

training of the hyperplane classifier, the testing sample 𝑥𝑗  can be classified by 

checking whether (𝑤 ∙ 𝑥𝑗 − 𝑏) ≥ 1 or �𝑤 ∙ 𝑥𝑗 − 𝑏� ≤ −1. The primary form of SVM 

model is written in Eq. (A.2–1) 

 

arg min
(𝑤,𝑏)

�
1
2
‖𝑤‖2 + 𝐶�𝜉𝑛

𝑛

𝑖=1

� 

subject to 𝑦𝑖(𝑤 ∙ 𝑥𝑖 − 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0 

(A.2–1) 
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where 𝜉𝑖 is slack variable representing soft-margin of the hyperplane. By using 

Karush–Kuhn–Tucker conditions 𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖𝑛
𝑖=1  and ∑ 𝛼𝑖𝑦𝑖𝑛

𝑖=1 = 0, the primary 

form can be transformed into dual form as Eq. (A.2–2). 

 

arg max
(𝛼)

��𝛼𝑖

𝑛

𝑖=1

−
1
2
�𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾�𝑥𝑖 , 𝑥𝑗�
𝑖,𝑗

� 

subject to 0 ≤ 𝛼𝑖 ≤ 𝐶 

 

(A.2–2) 

where 𝛼𝑖 is the Laplacian multiplier. 𝐾(∙) denotes the kernel used to calculate the 

distance between two samples. In most cases, 𝐾�𝑥𝑖, 𝑥𝑗� = 𝑥𝑖𝑇𝑥𝑗  is linear kernel. 

Several non-linear kernels are designed to map the samples into the higher 

dimensional space to improve the classification performance. 

Our framework adopts LIBLINEAR library [85] to implement the SVM training 

and testing for STC prediction. STC prediction is a task of multi-class classification. 

In training/testing process, one-v.s.-the rest scheme is used to implement multi-class 

classification under SVM model. 
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Appendix B. PUBLICATIONS DURING PHD STUDY 

Journal papers 
1. C. Yi and Y. Tian. Scene Text Recognition in Mobile Applications by Character 

Descriptor and Structure Configuration. IEEE Transactions on Image Processing, 2014. 
2. C. Yi, Y. Tian and A. Arditi. Portable Camera-based Assistive Text and Product Label 

Reading from Hand-held Objects for Blind Persons. IEEE/ASME Transactions on 
Mechatronics, No. 99, pp. 1-10, 2013. 

3. C. Yi, R. Flores, R. Chincha, and Y. Tian, Finding Objects for Assisting Blind People, 
Network Modeling Analysis in Health Informatics and Bioinformatics, Volume 2, Issue 
2, pp 71-79, 2013. 

4. S. Wang, C. Yi, and Y. Tian, “Signage Detection and Recognition for Blind Persons to 
Access Unfamiliar Environments,” Journal of Computer Vision and Image Processing, 
Vol. 2, No. 2, 2012. 

5. C. Yi, and Y. Tian. Text Extraction from Scene Images by Character Appearance and 
Structure Modeling. Computer Vision and Image Understanding, 2012. 

6. C. Yi, and Y. Tian. Localizing Text in Scene Images by Boundary Clustering, Stroke 
Segmentation, and String Fragment Classification. IEEE Transactions on Image 
Processing, Vol. 21, Issue 9, 2012. 

7. Y. Tian, X. Yang, C. Yi, and A. Arditi. Toward a Computer Vision-based Wayfinding Aid 
for Blind Persons to Access Unfamiliar Indoor Environments. Machine Vision and 
Applications, 2012. 

8. C. Yi, and Y. Tian. Text String Detection from Natural Scenes by Structure-based 
Partition and Grouping. IEEE Transactions on Image Processing, Vol. 20, Issue 9, pp. 
2594-2605, 2011. 

 

Conference papers 
9. X. Rong, C. Yi, X. Yang and Y. Tian. Scene Text Recognition in Multiple Frames based on 

Text Tracking. International Conference on Multimedia and Expo, 2014. 
10. S. Joseph, X. Zhang, I. Dryanovski, J. Xiao, C. Yi, and Y. Tian. Semantic indoor navigation 

with a blind-user oriented augmented reality. International Conference on Systems, 
Man, and Cybernetics, part SMC: Human-Machine, 2013. 

11. H. Pan, C. Yi and Y. Tian, A Primary Travelling Assistant System of Bus Detection and 
Recognition for Visually Impaired People, IEEE Workshop on Multimodal and 



 

 

 
136 

Alternative Perception for Visually Impaired People (MAP4VIP), in conjunction with 
ICME 2013. 

12. C. Yi, X. Yang and Y. Tian. Feature Representations for Scene Text Character 
Recognition: A Comparative Study. International Conference on Document Analysis and 
Recognition, 2013. 

13. Z. Ye, C. Yi and Y. Tian, Reading Labels of Cylinder Objects for Blind Persons, IEEE 
International Conference on Multimedia & Expo (ICME), 2013 

14. X. Yang, C. Yi, L. Cao, and Y. Tian. MediaCCNY at TRECVID 2012: Surveillance Event 
Detection. In NIST Trecvid Workshop, 2012. 

15. C. Yi, Y. Tian, and S. Yi, CinC Challenge: Predicting In hospital Mortality of Intensive Care 
Unit by Analyzing Histogram of Medical Variables under Cascaded Adaboost Model. The 
39th annual meeting of computing in cardiology, 2012. 

16. C. Yi, and Y. Tian. Text Detection in Natural Scene Images by Stroke Gabor Words. 
Proceedings of International conferences on document analysis and recognition 
(ICDAR), pp. 177-181, 2011. 

17. C. Yi, and Y. Tian. Assistive Text Reading from Complex Background for Blind Persons. 
ICDAR Workshop on Camera-based Document Analysis and Recognition (CBDAR), 
Springer LNCS-7139, pp.15-28, 2011. 

18. X. Yang, Y. Tian, C. Yi, and A. Arditi. Context-based indoor object detection as an aid to 
blind persons accessing unfamiliar environments. ACM International Conference on 
Multimedia (ACM-MM), 2010. 

19. Y. Tian, C. Yi, and A. Arditi. Improving Computer Vision-Based Indoor Wayfinding for 
Blind Persons with Context Information. Int. Conf. on Computer Helping People with 
Special Needs (ICCHP), pp.255-262, 2010. 
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