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Abstract

Human Activity Analysis using Multi-modalities and Deep Learning

by
Chenyang ZHANG

Advisor: Professor Yingli Tian

With the successful development of video recording devices and shar-
ing platforms, visual media has become a significant component of every-
one’s life in the world. To better organize and understand the tremendous
amount of visual data, computer vision and machine learning have become
the key technologies to resolve such a huge problem. Among the topics in
computer vision research, human activity analysis is one of the most chal-
lenging and promising areas. Human activity analysis is dedicated to de-
tecting, recognizing, and understanding the context and meaning of human
activities in visual media. This dissertation focuses on two aspects in hu-
man activity analysis: 1) how to utilize multi-modality approach, including
depth sensors and traditional RGB cameras, for human action modeling. 2)
How to utilize more advanced machine learning technologies, such as deep
learning and sparse coding, to address more sophisticated problems such
as attribute learning and automatic video captioning.

To explore the utilization of the depth cameras, we first present a depth
camera-based image descriptor called histogram of 3D facets (H3DF) and
its utilization in human action and hand gesture recognition and a holis-
tic depth video representation for human actions. To unify both the inputs
from depth cameras and RGB cameras, this dissertation first discusses a
joint framework to model human affections from both facial expressions
and body gestures with a multi-modality fusion framework. Then we present
deep learning-based frameworks for human attribute learning and auto-
matic video captioning tasks. Compared to human action detection recog-
nition, automatic video captioning is more challenging because it includes
complex language models and visual context. Extensive experiments have
also been conducted on several public datasets to demonstrate that our pro-
posed frameworks in this dissertation outperform the state-of-the-art ap-
proaches in this research area.
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Chapter 1

Introduction

Human activity analysis is a significant component in image and video un-
derstanding. The large visual variance as well as semantic ambiguity un-
derlying this topic makes it a difficult task. Applying advanced feature en-
gineering and machine learning models, researchers in computer vision can
build automatic software systems to recognize activity categories in con-
trolled environments, such as smart-home surveillance and video gaming
interactions. Over the past decade, many research efforts have been made
towards recognizing human actions from RGB videos [85, 84, (111} |72].

Recently, with the increasing applications of depth cameras in surveil-
lance and human-computer interaction, multi-modality-based human ac-
tion recognition using both RGB and depth information becomes more at-
tractive to the success of many intelligent systems. Compared with solely
using RGB channel, including depth cameras provide more geometric in-
formation such as human body size, shape and position, which is signifi-
cantly important for action recognition. This dissertation addresses how to
effectively utilize and combine the depth maps with RGB frames to address
multiple human activity related tasks, such as hand gesture recognition,
holistic human action recognition and affection recognition.

Compared with conventional hand-designed features, deep-learned fea-
tures are advantageous not only because they need much less effort and do-
main knowledge to become more generic to different modalities, but also
because of their potential to automatically learn an organized hierarchy of
semantic features [174]. Although the deep learning network has been very
successful in visual recognition, the deep features are usually treated as
mid-level features [129], and function like signal filters, which affect the
recognition performance and limit their applications. Therefore, inspired
by [83], instead of directly mapping deep features onto action labels, we
define a set of action attributes. These attributes can boost recognition
and enable new applications such as zero-shot learning. As human bod-
ies/joints are easier to track than open source videos in [83]], we argue that
action attributes are more appropriate for actions in depth videos. To our
knowledge, our work is the first attempt to leverage “attributes” to recog-
nize actions from depth videos.

Including [83], most existing attribute learning approaches tend to learn
the attribute detectors independently. As a result, some detectors may learn
the properties that do not belong yet correlate to the attribute of interest. In
other words, they do not “learn the right thing” [55]. For example, the
attribute detector “arm motion” may learn patterns related to “torso up-
down motion” in action “jogging” because of their co-occurrence. It is be-
lieved that the semantic/geometric relationships among the attributes can
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serve as constrains during the attribute learning, and eventually enable the
detectors to learn the exact human motions and postures. Therefore, we
propose a joint attribute learning framework which leverages the relation-
ships among attributes represented by a graph, as shown in Figure The
proposed algorithm incorporates the relation graph during the optimiza-
tion of attribute detector learning. It tends to decorrelate attributes that
are semantically distant, while enhance correlation of neighboring attribute
detectors. This dissertation also includes a deep learning-based action at-
tribute learning framework which embeds group sparsity among attribute
groups. The group sparsity introduced to the learning process is proven to
be effective in decorrelating the features for different attributes.

However, solely recognizing human activity from images or videos is
not enough in providing more descriptive information about the human ac-
tivity. To generate more informative and detailed descriptions about the hu-
man activity content in videos, a deep learning-based sequence-to-sequence
framework for video captioning is proposed in this dissertation. The pro-
posed framework is based on recurrent neural networks and long short-
term memory cells which are effective to model sequential signals. The ap-
plication of this framework on automatic American Sign Language recog-
nition is also discussed in this dissertation. To accomplish this task, we
collected about 20,000 video clips from YouTube website containing ASL
signing and captions and trained a network to learn the correspondences
between the video and text.

Overall, the contributions of this dissertation are summarized as follow-
ing:

* Two types of novel and effective depth map-based image descrip-
tors are proposed (a local one and a holistic one). Their applica-
tions include both human action and hand gesture recognition tasks.
The proposed descriptors show superiorities over a lot of related ap-
proaches on a variety of benchmark datasets.

¢ A combinational multi-modality recognition framework is proposed
to handle human affection recognition from two perspectives: facial
expressions and body gestures. The proposed framework utilize both
depth and RGB data modalities and jointly handle variances intro-
duced by subjective differences and is demonstrated effective on hu-
man affection recognition. In addition, a novel multi-modality dataset
is proposed.

* To further investigate how semantic information can affect human ac-
tion recognition, the cutting-edge deep learning techniques and a se-
mantic graph are combined to jointly learn mid-level human action
attributes from depth data. The study on human action attributes
bridges the gap between features such as motion traits and action cat-
egories.

* Beyond simply learning the mapping from the visual features to a dis-
crete set of action or attribute labels, we further propose a combina-
tional framework to jointly model the sequential information in input
videos describing human activities and describe the visual contents
with human-level English sentences.
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The rest of the dissertation is organized as following. The previous re-
lated research work are reviewed in Chapter 2l Then a two depth camera-
based descriptors for human action and hand gesture recognition are in-
troduced in Chapters[Bland @ A multi-modality human affection recogni-
tion framework is presented in Chapter 5| Deep learning based action at-
tribute learning framework is introduced in Chapter|f|and automatic video
description method is presented in Chapter |7} Finally, the dissertation is
summarized in Chapter |8 and the future direction of our research is also
elaborated.



Chapter 2

Related Work

In this chapter, the context of the dissertation is discussed by reviewing the
related work. Firstly, both RGB-based and depth-based human action anal-
ysis frameworks are discussed. Secondly, multi-modality-related frame-
works as well as their application areas in human activity analysis are re-
viewed. Thirdly, the recent developments and progress of deep learning
techniques are reviewed.

2.1 Human Activity Recognition

2.1.1 Overview

Human activity analysis is a critical component in many important applica-
tions, such as video surveillance systems and intelligent household robots.
However, recognizing human activities from visual signals, mainly video
sequences, is a challenging task due to many issues such as scaling, rota-
tion, occlusion, background clutter, efc. In this section, the related work is
firstly reviewed and categorized based on their signal modalities, RGB or
Depth-based. Secondly, a mid-level representation: action attribute, and its
related methods are briefly reviewed.

2.1.2 RGB Camera-based Human Action Recognition

The RGB or gray scale-based human action recognition has been studied
more than two decades, which forms the majority body of human action
recognition research.

A popular paradigm for action recognition is to firstly extract visual fea-
ture descriptors and then apply a final classification such as a multi-class
SVM classifier. Space-time approaches tackle the feature representation
problem by considering a human action as a 3D space-time volume. Then
the 3D volume is represented by a set of space-time features [31} 120, 56]
or trajectories [77,142,92]]. In [31], the authors firstly tracked figure-centric
image patch sequences from input videos and represented the sequences
using optical flow-based motion descriptors. Then a nearest-neighbor clas-
sifier was applied to retrieve action labels. In [120], the motion patterns in
human actions were represented by space-time features [71] correspond-
ing to moving 2D image structures at moments of non-constant motions.
Then a SVM classifier is applied for classification. In addition, the concept
of “histogram of interest points” was introduced as an action descriptor in
[120]. The authors in [56] proposed a hierarchical approach to model the
input video into a set of feature descriptors ranking by their complexities.
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In [92], trajectory snippets of interest points were extracted by KLT fea-
ture tracking algorithm [89] and quantized to build a visual codebook for
action representation. Similarities among actions were also modeled with
angles between associated subspaces in a trajectory system [77]. Sliding
window technique was also exploited in [142] to relax the tight constraints
of bounding box-based tracking, which resulted to a scale and shape invari-
ant spatial-temporal action descriptor.

Another perspective of human activities is to treat them as a stochasti-
cally predictable sequence of states [116,(156,[133]]. Therefore, many stochas-
tic techniques such as hidden Markov model (HMMs) and hidden condi-
tional random fields (h-CRFs) [68] were applied to inference useful traits
in human activities. In [116], the authors treated the whole video as a se-
quence of actions. Action recognition was achieved by probabilistic search
of feature vectors composed of location, speed and visual descriptors. HMMs
were exploited to perform human behavior analysis by smoothing the de-
tected actions. Wang et al. [156] proposed a part-based approach for human
action recognition from video sequences using motion features. The hu-
man actions were modeled by a flexible constellation of parts conditioned
on image observations. Then h-CRFs were applied for action recognition.
Instead of using a holistic representation of the whole video, the authors of
[133] described each video sequence as a set of short clips corresponding to
a latent variable in an HMM model. Besides single-person action or event
recognition, stochastic approaches were also proven to be useful in activ-
ity recognition tasks of multiple subjects, such as group activities[17] and
human interactions [64]. Stochastic approaches are useful when the action
categories have complex temporal structures.

Other related human action recognition methods include rule-based meth-
ods [12} 83] and shape-based methods. The rules were modeled as graphs
in [12], where the authors sought to pose activity detection as a maximum-
weight connected subgraph problem over a learned space-time graph. The
optimal subgraph that maximized the activity classification score was inter-
preted to find both the probable action label as well as the spatial-temporal
position. In [83], mid-level semantic labels named “action attributes” were
proposed to model the relationships among different actions. Action recog-
nition was performed by pre-defined rules of action label combinations.
However, the relationships among attributes were not modeled in [83]. In
this dissertation, a framework to jointly learn action attributes guided by
their relationship graphs will proposed in Chapter [6}

As for shape-based methods, human body parts are usually modeled
as rectangular patches in 2D space or volumetric spaces in 3D space. For
example, Thurau et al. [139] modeled a set of pre-defined human-shape
templates as “pose primitives” and the action recognition was conducted
based on the template matching. Instead of utilizing holistic human shapes,
Ikizler et al. [53] proposed to model human bodies as sets of 2D rectangles.
Holistic representations were then carried out by computing histograms of
the body parts.

2.1.3 Depth Camera-based Human Action Recognition

Due to the explicit 3D structure representation of objects and human body
parts from depth maps, there are more and more research efforts invested in
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depth map-based human activity recognition. This is especially true since
the release of low-cost 3D sensors (e.g. Microsoft Kinect) and associated
software development kits (e.g. Microsoft Kinect SDK) and the success in
real-time body joints position estimation [125]. Action recognition from
depth sequences can be roughly categorized into two groups, depth map-
based methods [79} 103, |155]], and joint based methods [163, 147, (173} 153],
which are based on a skeleton joint estimator.

Depth map-based Methods. Early research has focused on applying
existing 2D image representations on 3D depth data, such as bag of 3D
points by Li et al. [79], which sampled representative 3D cloud points from
depth maps for action recognition; histogram of 3D gradient orientations
(derived from histogram of orientation gradients (HOG) [22]); and extend-
ing 2D interest point detectors to depth maps [44]. In our previous work
[169], projections of 3D depth maps onto three 2D orthogonal planes were
stacked as three depth motion maps, and then HOG descriptors were com-
puted from the depth motion maps as the global representations of human
actions. This method transfers a sequence of 3D depth maps to a 2D im-
age that is further treated as a gray image without explicitly encoding 3D
shape information. Recently, researchers have paid more attention to intrin-
sic features from depth images. Surface-normal, as a natural and explicit
description of a local 3D volume, has been used in depth image descriptors
[103] [137] and graphics [108]], and has demonstrated its potentials in both
activity recognition and object recognition.

Joint-based Methods. Another branch of depth video-based action recog-
nition methods focuses on a pre-detected set of skeleton joints such as “head”,
“torso”, “leg”, etc. Compared to directly using depth maps, skeleton joints
are more compact and abstract. In [102], the authors described actions by
an affinity matrix between joint angle features. Xia et al. [163] modeled the
action representations by histograms of 3D joint locations and then applied
discrete HMMs for classification. In [153]], the authors exploited a hierar-
chical structure of body parts composed by different sets of skeleton joints
which can explicitly model body-part based movements and relationships
among different body parts. 3D positions were also exploited in [173] to
form a kinematic-based descriptor called “moving pose”, which also en-
coded velocity and acceleration information. In one of our previous work
[176], both motion and structure features were computed from 3D positions
of joints by composition of different pair-wise location offsets among joints.
In [167], the authors extended this idea by adding a layer of principle com-
ponent analysis (PCA) for obtain a more compact and efficient descriptor.

214 Action Attribute Recognition

As mid-level semantic features, attributes serve as important components
in image-based visual recognition tasks [69, 34]. The utilization of attributes
can enable several new tasks such as zero-shot learning [54] and trans-
fer learning [66]. This idea was extended to action recognition tasks [83,
170, 80], demonstrating that action attributes are useful for zero-shot action
recognition and improving the performance of action recognition. More
specifically, the authors in [170] integrated both action attributes (pose-
lets) and object parts to model the interactive actions between human and
objects. More recently, in [178], the authors showed promising results of
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deep learning in human attribute classification. The relationships among
attributes are often ignored in attribute learning, which may result in learn-
ing the correlated yet wrong properties. In [55], the authors proposed to
decorrelate the attributes by grouping object attributes into disjoint groups
to eliminate the ambiguity. However, simply grouping attributes is inad-
equate to model the complexness of action attributes. Therefore, in this
dissertation, a novel joint attribute learning algorithm which integrates an
undirected graph to preserve the complex action semantics in Chapter|6]

2.2 Multi-modality Human Activity Analysis

2.2.1 Overview

An activity can be described by more than one types of features which con-
vey more informative signals. Therefore, mutli-modality fusion is also a
very active research direction in human activity analysis. Despite from
audio-visual analysis, multi-modality frameworks have shown its effective-
ness in many application areas. In this section, the multi-modality methods
are reviewed in three categories based on its application area: 1) human
affection recognition, 2) behavioral and social networking-based activity
analysis, and 3) American sign language (ASL) recognition.

2.2.2 Human Affection Recognition

Human affection is the core component to understand the relationship be-
tween emotional states and human activities. It is capable to shed light on
the intrinsic logic of human activities and to predict how one reacts to oth-
ers [109]. In [87], the authors argued that single modality is not enough
for affective computing, therefore they proposed to combine textual infor-
mation with other visual features to identify the affection in a static image.
A new classification diagram named “joint h-CRF” was proposed in [126],
where four affective dimensions were analyzed (namely, “activation”, “ex-
pectancy”, “power”, and “valence”) and the proposed new diagram can
take advantage of the multi-modality data.

Besides the methods discussed above, human affection also includes
several other core modalities such as hand gestures, facial expressions, phys-
iological changes, speech and other activities [104]. In this section, we
mainly focus on reviewing the hand gesture and facial expression modali-
ties of them and several main fusion mechanisms as following.

Hand gesture recognition. Hand gestures serve as a significant modal-
ity of human activity analysis as well affective computing tasks. Hand
gestures convey important information that covers multiple function cate-
gories in communication including conversational gesture, controlling ges-
tures, manipulative gesture, and communicative gestures [161]. As a first
step of hand gesture recognition, hand detection and tracking is either done
by skin color or shape-based segmentation, which can be inferred from
the given RGB images [38]]; or directly resolved by leveraging the depth
information [61] [81]. Based on detection and tracking of hand regions,
both dynamic and semantic features are extracted and utilized for gesture
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recognition [161]]. Because of its intrinsic vulnerability to background clut-
ter and illumination variation, RGB-channel-based hand gesture recogni-
tion usually requires a clean background, which limits its application. Van
den Bergh and Van Gool et al. [8] successfully used a Time of Flight (ToF)
camera combined with RGB camera to recognize four simple hand gestures
in an HCI application by simply using small depth patches of hands. In
[112], Ren et al. employed a template matching-based approach and rec-
ognized hand gestures using a histogram distance metric of Finger-Earth
Mover’s Distance (FEMD) with near-convex estimation [113]. However,
this method only considered the contours of fingers while ignoring the
palm region (which also provides important information for complex hand
gestures.) Pugeault and Bowden [110] employed Gabor Filter features at
different scales and orientations to recognize characters in American Sign
Language (ASL).

Facial expression recognition. Another very informative channel for
human activity analysis is the facial expression. Other than body motions
or gestures, facial expression is one of the non-verbal communication meth-
ods which convey the mood or mental state of a person (e.g., happy, sad,
fear, anger etc.) The early facial expression analysis frameworks are based
on facial action coding system (FACS) [39], which has been treated as the
foundation of facial expression description. The FACS contains 44 action
units (AUs) and each of which is reserved for a different facial action and
has three or five levels of magnitude. The Facial expression methods can
be roughly grouped into two categories: deformation-based [21, 50, |63] and
motion-based [140} 3, 4, 165]. More specifically, Gabor filters and PCA were
applied to extract facial features in [21] and in [50] the authors proposed
a point distribution model to capture face deformations. Authors in [63]
built up a 3D geometric face model for representation of human faces. In
[140], the authors divided the face patch into upper and lower parts. Then
several geometry traits were utilized on each part for feature extraction.
Neural networks were trained to compute AU confidence scores. Dense
optical flow fields was utilized to capture facial movements in [3]. Similar
to [63], a 3D model was built from face but it was designed to represent 3D
movements of human faces. In [165], the authors proposed to model non-
rigit local facial motions by adapting local motion models. In addition, the
local models can also be used for parametrize the shape of eyes, noses, etc.
In addition, recent facial expression recognition frameworks are based on
local features such as local binary patterns (LBPs) [124] or sparse PCA [99].

Modality fusion methods. The fusion methods of multiple modalities
can be categorized into three groups: 1) shallow fusion and 2) mid-level fu-
sion. Shallow fusion is the most common method by simply either concate-
nating features from different modalities or averaging over multiple classi-
fication scores by some pre-defined priors. Feature-level fusion is effective
in combining different type of information together as a holistic feature vec-
tor [135]. One drawback of this fusion type is that the fusion mechanism is
not controlled and follows a hidden mechanism determined by subsequent
learning algorithms. Another drawback is that the feature dimensions of
different feature types can result in imbalance and undesired results. Deci-
sion level fusion is superior that it can be computed in parallel, but one has
to tune the weights among different modalities. Another type of fusion is



Chapter 2. Related Work 9

to transferring between feature spaces, such as canonical correlation anal-
ysis (CCA) [45], which enable feature vectors matching between different
modalities.

2.2.3 Behavioral and Social networking-based Activity Analysis

Human behavior is a complex association of human personalities and psy-
chological states. Its application could be human identification in video
surveillance systems or human-computer interaction systems. Effort has
been made in recognizing human emotions [95, 119, 94, [13]]. Defining emo-
tional attributes for multi-modality dyadic interactions in the data annota-
tion level has been studied in [95]. Audio information was also integrated
in hybrid frameworks as in [119] and [94], where the former method stud-
ied how to synchronize the multi-modality features and the latter one fo-
cused on combining audio information with facial expressions via a GMM-
based probability model. In [13], the emotion recognition system reached
real-time by modeling 3D facial features with random forests. More com-
plex human activities have been studied in [160] for audio-video combina-
tion by late-fusion of multiple classifiers.

As for more complex relationship among a group of people, research
effort has also been invested in social networking-based activity analysis
[35, 70]. In [35], the social interaction types were recognized by inferenc-
ing different social roles of different people. Their social interactions were
estimated by their locations and the orientations of their faces. There were
three types of interactions been discovered: dialog, discussion and monolog.
As a result, the algorithm would generate a social network among all de-
tected persons. The authors in [70] studied social interactive activities in
sports by jointly recognizing both low-level actions and high-level events.
Other social activity recognition systems include recognizing abnormal be-
haviors in group activities [20], attribute-based social activities [40], func-
tional positions of sport players [88] and social interactions in TV shows
and movies [91) 48].

2.24 American Sign Language Recognition

As an important sign language in the world, ASL is used by deaf people
across U.S. and Canada. Some researchers have estimated that the popula-
tion using ASL as a primary language was about 500, 000 [58]. In automatic
ASL recognition, early attempts have been made to explore the use of Hid-
den Markov Models (HMMs) in sequence modeling [152}132]. ASL intrin-
sically covers multiple modalities such as hand gestures, body movements
and facial expressions. In [100], the authors proposed a Hough transform-
based hand gesture recognition system for ASL recognition. Neural net-
works were applied for classification. In [96] and [86], the authors pro-
posed to combine facial expression recognition with hand gestures by track-
ing varies facial landmarks in ASL videos. In [29]], the authors proposed a
combinational and continuous speech recognition framework for sign lan-
guage. The facial and hand gesture features were extracted by both head
and hand tracking algorithms. In addition, n-gram language models were
also applied for sign speech recognition. In recent years, since the progress
in commercial multi-modality sensors, researchers have been focusing on
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exploring the utilizations of multiple sensors. For example, in [110] and
[37], the authors proposed to employ Kinect and Leap Motion sensors,
respectively, for real-time hand-gesture-based ASL recognition. Attempts
have also been made towards educational software to automatically recog-
nize ASL from video for students learning the language [52]. In this disser-
tation, we propose to study ASL recognition from the perspective of data-
driven video captioning. To the best of our knowledge, this is the first time
ASL recognition is combined with video captioning.

2.3 Deep Learning in Human Activity Analysis

2.3.1 Overview

In recent years, due to the rapid growth of computing and data commu-
nicating capacities of computers, artificial neural networks have won nu-
merous contests in the field of pattern recognition and machine learning.
Besides, these techniques has also shown their great potential in many ap-
plication areas, such as hand-written digit recognition [46], object recog-
nition [76], scene understanding [27, 130], and action recognition [57]. In
particular, deep architectures of neural networks are the most favored not
only because their superior performance but also their intrinsic hierarchi-
cal structures which could learn meaningful features. In this section, we
mainly focus on reviewing deep learning techniques in activity-related top-
ics.

2.3.2 Deep Learning in Action Recognition

Deep Convolutional Neural Network (CNN) has been applied in video
classification [60] and action recognition [74]. In [74], learned spatio-temporal
features from video sequences using independent subspace analysis achieved
the state-of-the-art performances on several benchmark datasets. Com-
bined with the exploration by Zeiler et al. [174], the deep-learned fea-
tures demonstrate desirable properties such as increasing invariance and
class discrimination with ascending layers. In [57], the authors proposed
3D CNN models to capture the temporal information inside multiple adja-
cent frames and the developed model was demonstrated to be able to rec-
ognize human actions in real-world environments. Similarly, the authors
in [143] also proposed to learn action recognition-oriented features form a
large set of labeled human action videos. In [129], the authors explored
multi-modality fusion with deep learning by training two streams of input
videos (one regular stream and one optical flow-based stream) for action
recognition.

2.3.3 Deep learning in video captioning

Deep-learning based visual content captioning is originated from machine-
translation and is first applied in image captioning [90, 59, 151, 164, 28, 14]
due to the astonishing success of RNNs with LSTM cells [158, 49]. Many
of these approaches took two steps: 1) firstly the input image was encoded
using a deep network, often pre-trained from a large dataset (such as Ima-
geNet [23]) and then 2) the encoded vector was fed into a RNN to output
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a sequence of encoded words, which formed an output sentence. In [59],
the authors tackled the dense captioning problem by combining Region-
CNN and the previous mentioned frameworks to generate rich descriptions
for image regions. The success in image captioning provides many useful
schemes for video captioning, such as attention model [164].

Similar to image captioning, RNNs were also employed to video de-
scription [118] 172, 149, 148, 118, 117]. In [172], the authors treated a video
as a sequence of image frames and exploited the temporal structure of them
in both feature extraction level and pooling level. In feature extraction level,
they employed CNN with 3D convolutional filters to capture local temporal
structures; in the pooling level, a soft-attention model was employed to cap-
ture the information of frame order, which is potentially capable to capture
the global temporal structure. Similarly, in [148], the authors directly dele-
gated the responsibility of learning temporal structure to the LSTMs. Par-
ticularly, they followed a more sophisticated sequence-to-sequence scheme
which was used in machine translation area [136]. Additionally, attention
models were also applied in [164] to learn a weighting function over sam-
pled key-frames. The temporal-aware model was demonstrated to capture
more temporal dynamics than pure average pooling. In this dissertation,
a novel sequential-modeling framework for human activity-oriented video
captioning framework will be described in Chapter[7} Our proposed frame-
work utilizes two separated streams of networks to handle different modal-
ities. Additionally, applying such a separate model can enable us to conve-
niently combine multiple channels of input instead of raw-feature concate-
nation [[164] or late score fusion [148].
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Chapter 3

H3DF: A Local Depth
Descriptor for Action and Hand
Gesture Recognition

In this chapter, a local depth-based image descriptor and its applications in
both human action and hand gesture recognition are described.

The recent successful commercialization of depth sensors has made it
possible to effectively capture depth images in real time, and thus creates
a new modality for many computer vision tasks including hand gesture
recognition and activity analysis. Most existing depth descriptors simply
encode depth information as intensities while ignoring the richer 3D stereo
information. In this chapter, we propose a novel and effective descriptor,
the Histogram of 3D Facets (H3DF), to explicitly encode the 3D shape in-
formation from depth maps. A 3D facet associated with a 3D cloud point
characterizes the 3D local support surface. By robust coding and circular
pooling 3D facets from a depth map, the proposed H3DF descriptor can ef-
fectively represent both 3D shapes and structures of various depth maps. To
address the recognition problems of dynamic actions and gestures, we fur-
ther extend the proposed H3DF by combining it with an N-gram model and
dynamic programming. We extensively evaluate the proposed descriptor
on two public 3D static hand gesture datasets, one dynamic hand gesture
dataset, and one popular 3D action recognition dataset. The recognition
results outperform or are comparable with state-of-the-art performances.

3D shape representation is a significant component of object catego-
rization and action recognition. Compared to 2D image-based appearance
representation, 3D depth-map-based representation is not only invariant
to lighting changes, but also very robust to viewpoint and pose changes.
Therefore, the depth-map-based representation holds great promise for mod-
eling physical-related attributes such as positions, poses, shapes, and scene
contexts.

Over the last few years, the successful commercialization of a variety of
depth sensors and corresponding development toolkits has made 3D shape
information more accessible for objects as well as human activities. Re-
search topics reformed by 3D depth maps have attracted more and more at-
tention [154, 79] [121] [125]. RGBD cameras have demonstrated their capa-
bilities to provide more information about object sizes, shapes, poses, and
positions. Compared to research with traditional RGB cameras, research
with depth cameras has significant advantages for capturing strong bound-
ary clues and spatial layouts, especially in environments with cluttered
backgrounds and large illumination changes. In particular, conventionally
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challenging tasks such as object segmentation and scene parsing [127] have
become much easier with depth information involved. The depth sensors
have also motivated recent research efforts to explore object and human
gesture recognition by using 3D information [110] [112] [8]. However, these
methods for 3D depth-map-based hand gesture recognition have only ap-
plied the existing 2D feature descriptors black to the depth images, such as
Gabor Filter Bank [110] or contour matching [112].

In order to directly and effectively capture and encode 3D shape infor-
mation using depth maps, in this chapter we propose a novel characteris-
tic descriptor we call Histogram of 3D Facets (H3DF). In 3D depth maps,
we define a 3D cloud point together with its surrounding points as a “3D
Facet”, which includes the informative local surface pattern surrounding
the cloud point. We first model each facet using a small plane. Then we
apply a spatial centric pooling strategy to organize the collection of facet
planes using their normal orientations to describe the current region of in-
terest (ROI), which forms the final H3DF descriptor. In our applications of
hand gesture recognition and human activity recognition, a region of in-
terest may be an image patch describing a hand gesture or a body part.
To integrate the static depth map descriptor with temporal information in
depth video sequences, we propose two approaches: 1) We approximate
the depth video sequence as an ordered collection of a number of represen-
tative frames. The optimal collection of representative frames is selected
by minimizing a sequential loss function defined by using only selected
frames to represent the whole video using Dynamic Programming (DP). 2)
We capture and represent the local temporal structure patterns via N-gram
modeling. The N-gram model can be viewed as a collection of “visual word
transitions,” which is insensitive to different temporal structures caused by
different execution rates.

Compared to existing depth-map descriptors, our proposed H3DF depth-
map descriptor has three advantages: 1) it explicitly captures the 3D infor-
mative shape patterns conveyed by depth maps. 2) It applies a compact
representation to describe a depth image compared to other 2D feature
descriptors, e.g. Histogram of Orientated Gradients (HOG) [22]. 3) Com-
pared to existing surface normal-based descriptors such as HONV [137]
and HON4D [103], H3DF utilizes a circular grid for spatial pooling to en-
code more information such as shape and local depth patterns, which im-
plicitly manifests the importance of the center part and makes the descrip-
tor more robust to external contour deformations. By utilizing Dynamic
Programming-based temporal segmentation and N-gram-based represen-
tation [11], we generate more robust representations for depth video se-
quences by combining H3DF with temporal structure information. We eval-
uate the proposed descriptor on two public datasets of hand gesture recog-
nition: the NTU Hand Digits Dataset [112] and the ASL Finger Spelling
Dataset [110]; one dynamic hand gesture data set: the MSR 3D Gesture
Dataset [155], and one popular action recognition dataset: the MSRAc-
tion3D [79]. The recognition results on all the tasks demonstrate that our
approach outperforms or is comparable to state-of-the-art methods.
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Figure 3.1: Pipeline of the proposed Histogram of 3D-Facets (H3DF) modeling
for each depth frame. H3DF utilizes surface normals and centric spatial pooling
together to encode a depth frame.

3.1 Histogram of 3D Facet (H3DF) Representation of
Single Image

In this section, we describe the computation procedures of the new 3D fea-
ture descriptor, Histogram of 3D Facets (H3DF). The pipeline of H3DF rep-
resentation from a single depth image is illustrated in the top row of Figure
m (the bottom row will be explained in Section . Given a static depth
image, we first delimit its in-plane rotation freedom by normalizing the
dominant orientation of the depth image. Then for each 3D point in that
image associated with its neighbor points (a 3D Facet), we compute the
normal vector located in that point and then encode the normal vector to
represent the current 3D Facet. The encoding is processed by projecting the
normal vector onto three orthogonal planes (i.e. zy,yz,x2) and quantizing
each projection. To generate a compact description of the whole image, we
design a concentric spatial pooling to organize all encoded 3D Facets into a
compact descriptor vector to capture the spatial layout and local structure
of the depth image. In the following subsections, each step will be elabo-
rated in detail.

3.1.1 Gradient-based Object Orientation Normalization

One challenge of hand gesture recognition is the large appearance varia-
tions when hand rotates. To make H3DF rotation invariant, we first con-
duct gradient-based orientation normalization for an input depth image or
patch. For each depth patch as shown in Figure 3.2fa), the dominant orien-
tation (denoted as ) of the hand depth patch is first computed based on its
shape and gradients. We then can rectify the 3D cloud points set (denoted
as P) to obtain orientation-corrected 3D cloud point set P’ of its salient ori-
entation with the following equation:

P' = PR(H)T, (3.1)

where P and P’ are K x 3 matrices as the collection of K 3D points; R(6)”
= R(—0) represents an in-plane correction rotation matrix.

Let D be the depth image patch before orientation correction, we define
a pixel-to-point mapping I(-), as it takes a 2D coordinate as input and out-
put a 3D coordinate, where P = I(D), and its inverse mapping I~ (-), vice
versa, where D = I~}(P). Together with Eq. , we have the corrected
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Figure 3.2: Examples of gradient-based orientation correction results of hand
gestures. (a) Significant appearance variations of the same hand gesture when
hand rotates. (b) Estimated dominant orientations are illustrated as yellow ori-
entated circles. (c) Orientation normalized depth patches with removed appear-
ance variations.

patch as:
D' =11 (I(D)R(O)"), (32)

which provides the orientation correction of a depth image patch of domi-
nant orientation ¢. As illustrated in Figure 3.2(a), depth images (D) of the
same hand gesture may significantly vary due to rotation. Dominant ori-
entations (see Figure [3.2(b)) can be detected based on Gradient Consensus to
rectify the images to more similar corrected images (D’) as shown in Figure
(c).

In order to estimate the dominant orientation # and achieve in-plane ro-
tation invariance, we compute the dominant depth gradient orientation as
the normalization used by most local image descriptors [71]. A dominant
orientation corresponds to the largest bin of the histogram of gradient an-
gles, weighted by gradient magnitudes and smoothed by a Gaussian filter.
As suggested in [71]], each local maximum bin with a value above 80% of
the largest bin is retained as well. Thus, each depth image might be associ-
ated with multiple orientations which are considered as multiple samples
in our training set. As for a testing image with multiple dominant orienta-
tions, we choose only the key angle corresponding to the largest gradient
angle bin. In this way, we ensure that the training set includes as much in-
formation as possible and that for each testing image there is only a single
sample, to avoid decision ambiguity.

3.1.2 Defining a 3D Facet

To model a 3D object in a depth image, in addition to the outer contour, 3D
surface properties and different shape patterns such as bumps and grooves
provide rich and discriminative information. In some cases, the outer con-
tour cannot be defined, and features inside the contour convey relative
plentiful details.

Since these 3D surface details from depth information can be visual-
ized as intensities in a gray image, it is natural to directly apply existing
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Figure 3.3: (a) Computing the 3D facet .S, of a cloud point ¢ according to its
neighbor cloud point set f,. The pink plane is the fitted plane S; and the blue
region indicates the local constraint. The normal vector n is used as the repre-
sentation of the 3D facet. (b) The normal vector » is encoded by projecting onto
three orthogonal planes in (c) (xz and yz) and (d)(zy). As n, is non-negative, the
projected normal orientation ranges in zz and yz (c) are both [0, 7], but [0, 27] in
the x — y plane (d). A soft assignment strategy is employed to weight the two
nearest orientation bins as shown in (d).

2D visual descriptors to obtain a compact representation. For example, the
authors in [169] employed dense HOG to describe motion energy distribu-
tions from 2D motion maps which were generated from projections of 3D
depth maps on three 2D orthogonal planes. However, this method used
only the 2D information rather than explicitly modeling 3D surface details.
In this chapter, we propose a novel 3D surface feature descriptor which can
directly represent the rich information conveyed by 3D object surfaces.

3D Facets are used to model the shape details of a 3D surface, as shown
in Figure A 3D Facet associated with a cloud point ¢ is determined by
a local support surface defined by its surrounding cloud point set f,:

fo=Adla.4d € Q,|ld —qll, <}, (3.3)

where o is a threshold to control the size of the support region around the
cloud point ¢, applying a locality constraint that only neighbor points can
contribute to f,. We then fit a plane S, according to f, such that the sum of
distances between each point in f; and the fitted plane is minimized. The
normal vector n of a fitted plane S is then calculated as the representation
of a 3D Facet. The normal fitting can be computed as a least-squares solu-
tion to the stack of N equations of the form n”'p; = 1 where N is the number
of cloud points p; in the 3D facet f,. When we set IV equal to 4, there is an
analytical solution for the normal, which will be discussed in later sections.

Additionally, in Eq. (3.3), the parameters p together with threshold o
can jointly control the granularity of sampling surrounding points of ¢. In
this work, we utilize two particular forms of them:

* (p,o0)=(1,1): Bi-linear (analytical solution) or 4-neighbor (least-squares
solution)

* (p,o0) = (inf, a): a x a patch. (least-squares solution)

In the first case, the difference between “Bi-linear” and “4-neighbor” is
that the former one excludes the center point (i.e., ¢) where the latter one
does not. In the second case, the Chebyshev () distance is used to define
the supporting area as a patch in the corresponding 2D depth map. The
difference of different selections of (p, o) will be discussed in Section|3.1.4
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3.1.3 3D Facet Coding

Since a 3D Facet is defined as a plane, which is a subspace projected from
a 3D space, it can be represented by using [n,,n,,n,d]’, where the first
three coefficients are the normal vector n = [n,, ny, n.]T of this plane and
the forth attribute 4 is the Euclidean distance from origin point to the plane.
Although all four coefficients are used to fix a plane, in this chapter we focus
on the orientation rather than the distance of the plane, thus 4 is not coded
and is highly dependent on the distance of an object to a camera. Therefore,
a 3D Facet is only coded by its normal vector. The procedure of coding is
angular-based using the orientation of each 3D Facet as illustrated in Figure
(b-d).

First, the normal vector (the vector n colored in red in Figure b)) is
projected into three orthogonal planes, i.e., zy, yz, and zy planes as shown
in Figure[8.3(c-d). Since the 3D point set is mapped from a 2D depth image,
every cloud point corresponds to a pixel in the 2D depth image. Conse-
quently, all the 3D points actually locate in front of the surface they formed
(namely, the normal are pointing outward). So we can safely assert that all
the normal vectors are pointing outward, in other words, their z-attributes
are always non-negative.

Then, we evenly deploy m (for zz and yz planes) and n (for zy plane)
bin centers on different planes. Each normal projection votes to two nearest
bin centers (indices are colored red in Figure[3.3(c-d)). The benefit of this lo-
cal soft assignment strategy over a hard assignment (in which each normal
projection only votes to the nearest bin center) is that the loss of informa-
tion can be significantly reduced and thus the coded feature vector is much
more informative. The weights of each normal vector assigned to the two
nearest bin centers are given as:

-
S ik € Iy j A, (3.4)

W; = ————
S
where 6; is the angular offset between the normal projection and the bin
center indexed . I is the bin center indices that composed by two near-
est bin centers (¢, c2). Therefore the encoded 3D Facet is represented as a
vector of length 2m + n, in which there are up to six non-zero elements.

3.1.4 3D Facet Pooling to Generate H3DF

Once all encoded 3D Facets are computed, we design a concentric spatial
pooling scheme to group these 3D Facets from the image patch into a com-
pact H3DF descriptor as shown in Figure Another perspective of the
proposed spatial pooling is to capture the information of facets arrange-
ment coordinated in the center. In this phase, we address the boundary
information as in [[112]].

For a spatial grid centered at (p,, py), the bin index (a, b) of a pixel in the
depth image D(i, j) can be determined by the spatial distance ||i — p;,j —
pyll2 and the angle arctan((j — py)/(¢ — pz)), where a € [1, Al and b € [1, B]
and A, B are the spatial bin dimensions. Therefore, the dimension of the
final H3DF descriptor of the image patch is A x B x (2m + n).

The proposed pooling strategy is inspired by the invariant property
of shape context in modeling rotations and scales of exterior contours [6].
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Figure 3.4: Illustration of the first phase spatial pooling for creating H3DF de-
scriptors. The region of interest of the the depth image or patch is divided into
4 x 8 bins which are determined by both radial and angular offsets. (a), (b), and
(c) are from three different hand gestures. Red line segments illustrate angu-
lar bin boundaries, yellow circles illustrate off-center radial distance bin bound-
aries, and green line segment shows the normalized patch orientation.

However, our usage of circular bins is beyond modeling exterior contours.
Circular bins intrinsically put more weight in modeling interior parts of
a depth object and thus it enables H3DF to capture more local depth pat-
terns such as holes and bumps. Besides, bigger outer bins are capable to
capture the shape information and robust to subtle shape variants. The us-
age of circular bins is a key difference between other surface normal-based
descriptors [103] [137] by discriminating information intrinsically from in-
terior parts and exterior parts of a depth object.

3.2 Video Sequence Representation using H3DF

In order to represent the temporal structure of depth video sequences by
H3DF, we propose two approaches for coping with dynamic temporal struc-
ture information of the videos: Dynamic Programming-based (DP) repre-
sentation and N-gram bag-of-phrases-based representation [[11].

Traditionally, Temporal Pyramid (TP) is used to extend an image repre-
sentation model (e.g., Bag of Words) to represent a video sequence. How-
ever, TP is sensitive to time, speed, and state-composition variances within
each video sequence. The phenomenon can be intuitively illustrated in Fig-
ure In particular, if two time sequences share very similar contents but
are not well aligned, they are far from each other in the metric space gener-
ated by temporal pyramid matching.

To overcome this issue and adapt H3DF to accommodate varied tempo-
ral structures, we propose two methods: 1) Dynamic Programming-based
(DP) temporal segmentation to dynamically partition a video into cohesive
sub-sequences and 2) N-gram bag-of-phrase-based representation.

3.2.1 Dynamic Programming-based Representation

The pipeline of DP-based representation is illustrated in Figure[3.5| Let V =
{vec(1y),vec(1z), ...,vec(I;)} be a sequential set of ¢ frames with each frame
I of dimension M x N, i.e., vec(I;) € R I; € RM*N A K-segmentation S of
the video is a partition S of the frames into K non-overlapping contiguous
segments, i.e., S = (s1,...,s5),s.t.(V_ysi = 0, s; = V. The optimal
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Figure 3.5: Pipeline of the proposed DP-based video sequence representation ex-
ample. DP-based temporal segmentation is used to partition each depth video
sequence into a fixed number of segments, while the sum of within-segment
intra-variances is minimized. A compact video representation is the concatena-
tion of pooled H3DF codes of all segments.

segment S is defined as:

§ = argmins(3" S Ilt - nsl3), (3.5)

seS tes

where (5 is the mean of samples in each segment s.

This optimization problem is well-known to be efficiently solved by Dy-
namic Programming [5]. We implement the DP-based temporal segmenta-
tion in a recursive manner, as is detailed in Algorithm

Algorithm 1: DP Temporal Segmentation, (¢, S) = DP_TS(V,K)
Input: Video sequence V, number of partitions K
Output: Optimal Partitions .S, cost ¢

1 if K==1 then

2 | S=0;

3| o= llo—nV)I5;

4 return S, ¢

5 end

6 Cc = 00;

7 fori e {1,...,|V| — 1} do

8 (c1,S51) =DP_TS(V(1:4), K —1);
9 (c2,82) =DP_TS(V (i +1:end),1);
10 if ¢c1 + ¢o < cthen

11 c=c1 + cy;

12 S = [Sl,i, Sj]}

13 end

14 end

15 return c, S

This description is robust to dynamic warping of a video sequence. For
example, as shown in Figure since the initial hand gesture occupies
50% of total frames, the evenly TP-based method generally assigns a large
weight to the initial pose. However, because the overall representative error
is minimized (Eq. in our proposed DP-based temporal segmentation,
only the most representative frames are selected, while dynamically tun-
ing the partition boundaries and thus the selected representatives are more
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K=3

Figure 3.6: For a depth video sequence, Dynamic Programming-based tempo-
ral segmentation computes an optimal segmentation in terms of minimum rep-
resentative error. We illustrate the idea with a dynamic American Sign Lan-

e

guage (ASL) gesture for character “j” and two segmentations with number of
segments, K, set to 3 (middle row) and 4 (bottom row) respectively. In par-
ticular, the DP-based segmentation is a better representation than the temporal
pyramid since it can overcome the uneven gesture distribution, e.g. in the exam-
ple case, initial pose occupies almost 50% of total frames.

informative and generic.

3.2.2 N-gram Bag-of-phrase based Representation

In the N-gram Bag-of-phrase model, instead of building a global represen-
tation of the whole temporal structure of a time sequence 7', we attempt to
discover local patterns of the time sequence. Using the same notation as in
the previous section for DP, the time sequence T' = (¢4, ..., t,) is character-
ized by its local N-grames, i.e., the tuples constructed by every consecutive
N signals. For example, if N = 2, the bi-grams of the time sequence are
{(t1,t2), (t2,t3), vy (tn—1,tn) }-

The N-gram model has been successfully used in speech recognition
and natural language processing [11]. In computer vision, the N-gram
model is used to generate Bag-of-phrases model [106] and is effective in
image retrieval because it conveys more temporal information than the tra-
ditional Bag-of-words model. In our work, we propose to use the Bag-of-
phrases model to represent video sequences, with each N-gram (a visual
and phrase) describing a local pattern of the action. In particular, with V =
2,let B = {b1, by, ..., b; } be the sequence of image (frame) representations, b;
is the Bag-of-visual-words representation of frame i, the sequence B is then
modeled as a non-sequential set of tuples { (b1, b2), (b2, b3), ..., (bs—1, b:) }. Each
tuple (b;, bi+1) is simply represented by their concatenation [/, b7, ;]7. Then
to fix the dimensions of representations of video sequences, we compute the
codewords of the set of concatenations using Sparse Coding (the bag-of-
phrase model works better with Sparse Coding than K-means in our exper-
iments) and then use a max-pooling to generate a histogram of codewords
for each video. A flowchart is shown in Figure

3.3 Applications and Implementation Details

In this section, we introduce the applications of H3DF on hand gesture
recognition and human action recognition and the implementation details
of H3DE.
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Figure 3.7: Illustration of a two-layer bag-of-phrases model for video descrip-
tion. Firstly, a bag-of-words model using K-means is used to generate a rep-
resentation vector for each frame in the video (frame level coding). Secondly,
a bag-of-phrases model using Sparse Coding is used to generate a representa-
tion vector for the video (video level coding). The final output is a histogram of
N-gram codewords.

3.3.1 Hand Segmentation

far near

2} E 1

Figure 3.8: Illustration of segmenting a hand from a 480 x 640 depth image.
Relative intensity in each pixel indicates its depth value.

In hand gesture recognition, if the hand region is not segmented, ex-
tracting hand region from background is necessary. One method is to re-
trieve hand joint using a pose estimator [121, 125] or a hand tracker [144]
in the corresponding 2D color image. In a human-computer interaction set-
ting, as in [110, [112], it is a reasonable to assume that the hand is always
the most front body part facing to the camera. In our work, we inherit this
assumption and use it to pre-process the 3D depth image to segment hand
regions based on the depth information. As a special case, in [112], all the
subjects wore a black hand-wrist band to obtain the accurate hand regions.

As displayed in Figure[3.8) we first select a cloud point with the shortest
camera-object distance from the depth image and record its value as dycqr,
then threshold the depth image within the range of [d.cqar, dnear + t], where
t is the threshold of the distance of the hand region. In our experiments,
we set ¢t = 100 millimeters. Thus, the segmented hand region can be repre-
sented as a set of 3D points calculated by:

p= { U (i)j) Dl,])‘Dl,] < dnear + t}7 (36)
(4,4)€Y x X

where X and Y indicate the image coordinates and D represents the depth
image.
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3.3.2 Pooling Center Selection

In both hand gesture representation and human action recognition, how to
select the center point (p,,p,) for the hand or a body part is an essential
step which can greatly affect the recognition. An ideal center point should
be relatively stable for similar objects and robust to minor shape changes.
One option is to use the centroid of the convex hull of a shape. We prefer
to find a center on the object rather than on the background, while centroid
cannot be ensured when the shape is neither convex nor near-convex (as
shown in Figure 3.9). Therefore, we propose to use an interior center in-
stead. The procedure of computing the interior center is as: first the depth
map is transferred to a binary map(setting foreground pixels as 1 and back-
ground pixels as 0), second Euclidean Distance Transform [93] is applied
on the binary map and the “brightest” point is selected as the interior cen-
ter. The benefit of selecting the interior center rather than the centroid is
that the center locates inside the boundary and the major part thus is more
robust to minor shape changes such as extensions and branches.

(b) (©) (d)

Figure 3.9: (a) and (c) are two depth images of hand gestures and associated con-
vex hulls. (b) and (d) are the Euclidean Distance Transform maps of (a) and (c),
respectively. For near-convex shapes such as in (a), the centroid and interior cen-
ter are similar, but for non-convex shapes such as in (c), the interior center can be
ensured to locate within the object and robust to extensions and branches, such
as fingers. Brightness of pixels in distance maps (b,d) indicates the Euclidean
distance from the nearest boundary pixel to the corresponding pixel locations.

® Centroid

Interior Center

(@)

3.3.3 Normal Estimation Methods

Here we discuss two estimation methods of the normal vector of a 3D
Facet: bilinear estimation (analytical) and least-squares (plane-fitting) es-
timation. Bilinear normal estimation is suitable for a grid-organized 3D
point set (or 2D depth image). Similar to bilinear interpolation, it takes the
four neighbors and calculates the two orthogonal line segments that each
connects two of them. Given the 3D Facet whose center is at (i, 7, d; ;), it
computes a vector as the normal of this 3D Facet such that this vector is
orthogonal to two line segments, one which connects points (i — 1, j, d;—1 ;)
and (i + 1,j,di+1,7), while the other connects points (i,j — 1,d; ;1) and
(4, j+1,d; j+1). This approach is simple to implement and suitable for depth
image calculation where 3D points are organized as gridded depth pixels.
However, when considering 3D point clouds with non-uniform density, this
approach will not work.

Plane fitting-based normal (least squares) estimation is more general
and can be used in the situations where point density is non-uniform. It
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takes the center of a 3D Facet along with its neighbor points in a certain
range, which we define as its local support surface. Then a plane is fitted
using them. Despite its ability to generalize, there is a risk of losing detail
when the size of the local support surface is enlarged.

3.3.4 Sparse Representation based Classification

To further explore the discriminative power of the proposed H3DF descrip-
tor and its compatibility with different classification schemes, we apply two
classification methods with H3DF to recognize hand gestures or human ac-
tions: Linear-SVM and Sparse Representation-based Classification (SRC),
which is proposed by Write et al. [159] with good performance in face recog-
nition. A brief review of SRC is provided as follows: given C as the set of
class labels, we have A = [A¢,, Acy, .., Ac.] as the dictionary of training
samples. In our approach, A is the matrix of vectored H3DF descriptors,
ie, Ac,ec = [vec(mlci),vec(xzci), ..., vec(z)], where a:ycl is the j** H3DF
vector of gesture or action class ¢. For a query descriptor y, the SRC via
l1-minimization is:

& = argmin ||af1 st |ly — Aafl2 < A. 3.7)

Therefore, the classification rule is:

identity(y) = argminrc, (y), (3.8
&

where the class-wise reconstruction residual ¢, (y) is computed as:

re;(y) = lly — Adc; (a) ]2, (3.9)

where d¢; is the characteristic function that selects the coefficients associ-
ated with that class.

Runtime of H3DF. Computing an H3DF descriptor is fast. Without pre-
processing, calculation of the H3DF for a 100 by 100 depth patch is about
2 ms with a Matlab implementation on one Intel Xeon Core (2.13 GHz).
H3DF is thus feasible for use in real-time applications.

3.4 Experimental Results

In this section, we evaluate the proposed H3DF descriptor in two aspects:
1) static hand gesture recognition and 2) dynamic hand gesture and human
action recognition.

3.4.1 Static Hand Gesture Recognition
Datasets and Experiment Set-up

For hand gesture recognition from static depth images, we employ two 3D
datasets: the NTU Hand Digits Dataset [112] and the ASL Finger Spelling
Dataset [110]. Both datasets were captured by a Kinect camera. The NTU
Hand Digits Dataset [112]] contains a total of 1000 depth images of 10 hand
gestures of decimal digits 0 — 9 from 10 subjects with 10 samples for each
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Figure 3.10: (a) Sample depth images from the NTU Hand Digits Dataset for

digits 0-9 [112]. (b) Sample depth images from the ASL Finger Spelling Dataset
for English character from “a” to “z” (without “j” and “z”) [110].

gesture. The ASL Finger Spelling Dataset [110] captures hand gestures in
24 different categories, each of which represents one English character from
“a” to while “j” and “z” are excluded since these two characters are
performed in ASL using motion. Compared with the NTU Hand Digits
Dataset, this dataset is much larger, containing about 60,000 depth im-
ages from 5 subjects. Unlike the NTU Hand Digits Dataset, the ASL Fin-
ger Spelling Dataset only provides segmented hand regions. Therefore the
pre-processing step of hand segmentation as described in Section is
skipped. Some images of the datasets are shown in Figure

For static hand gesture recognition, to explore the effect of subjective
variance, we conduct two types of experiments. One is a subject-independent
test, in which we use a “leave-one-out” strategy, i.e., for a dataset with N
subjects, we use NV — 1 subjects for training and the rest one subject for test-
ing. This process is repeated for each subject and the averaged accuracy is
reported as the overall accuracy. The other is a subject-dependent test in
which all subjects appear in both the training and testing data, but no video
appears in both training and testing.

Before comparison with the state-of-the-art approaches, we start by dis-
cussing the influences of 1) different approaches to estimate the normal of
a 3D Facet, 2) different resolutions of extracted depth map, and 3) differ-
ent numbers of grids while pooling encoded 3D Facet to generate the final
descriptor. We discuss the issues using the NTU Hand Digits dataset [112].

// 7

Normal Estimation and Hand Patch Resolution

Here, we first analyze the influence of different resolutions of extracted
depth maps as well as the robustness of proposed descriptors against res-
olution. We set different resolutions ranging from 150 x 150 to 25 x 25 for
the normalized hand regions.

This experiment is conducted on the NTU Hand Digits Dataset [112]. As
shown in Figure (a), results in terms of overall classification accuracy
of both leave-one-out subject-independent and subject-dependent tests are
above 90%, which demonstrates the robustness of the proposed H3DF de-
scriptor for different resolution of the normalized hand regions. Besides,
as the resolution decreases, the performances are relatively stable, except in
the case of 25 x 25 resolution. In all the following experiments of static hand
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Figure 3.11: Accuracies of hand gesture recognition on the NTU Hand Digits
Dataset [112] of (a) resolutions of hand-patches, and (b) different methods and
parameters of normal estimation. Subject Independent (S.I.) and Subject De-
pendent (S.D.) accuracies of H3DF with both SVM and SRC [159] classifiers are
shown.

gesture recognition, we use 150 x 150 as default patch size unless otherwise
noted.

We also conduct an experiment on the NTU Hand Digits Dataset [112]
to study the influence of different choices of normal estimation methods,
as shown in Figure (b). We compare the bilinear normal estimation
method with plane fitting-based method of different patch sizes (In Fig-
ure (b), (1,1)* indicates the analytical solution for normal computa-
tion.) As shown in Figure[3.11|(b), the analytical (1, 1)*) approach performs
best. For the plane-fitting approach with different sizes of local support
surface, performances of both subject-dependent and subject-independent
tests decrease and become stable when the size of the local support sur-
face is greater than 7 x 7. This observation has demonstrated that for this
particular problem, bilinear operator is more suitable and the proposed 3D
descriptor favors more detail rather than less noise. Based on this observa-
tion, we use the bilinear estimation approach in all following experiments.
We can also conclude from Figure that subject-dependent tests per-
form better than subject-independent tests and are less affected by increases
in the local support surface size. Additionally, proposed H3DF combined
with sparse representation-based classification (SRC) [159] performs better
than linear SVM. Thus, the default classifier is SRC in the rest of this chap-
ter, unless otherwise noted.

Discussion of Pooling Granularity

b=2b=2b=2b=4 b=2b=6b=2b=8b=2b

16 b=6 b =16

a

Figure 3.12: Illustration of pooling bins layouts with different radial bin (b,.) and
angular bin (b,) settings.
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To explore how the pooling granularity affects the discriminative power
of our proposed descriptor, we first conduct different settings of radial bin
layouts (number of bins = b,) and angular bin layouts (number of bins =
bs). Some of the pooling grids are illustrated in Figure Since inside
each cell of the pooling grid, the encoded facet vectors (dimension = 18) are
pooled together by taking the average, thus the total dimension of the final
H3DF descriptor is proportional to the product of b, x b,.

The recognition accuracies are illustrated in Figure We observe
that low pooling granularity (from upper-left corner to bottom-right corner,
pooling granularity increases) associates with relative low recognition ac-
curacy. As granularity increases, recognition accuracy tends to increase and
gradually reaches a stable value. We set a default of (b, = 4, b, = 10) unless
otherwise noted because this is an appropriate trade-off between feature
length and discriminative power based on our experiments.

Comparison with the State-of-the-arts

To compare our proposed H3DF feature descriptor with the benchmark
methods as well as traditional 2D HOG descriptor on both datasets, we
compare the H3DF with the Histogram of Gradients (HOG) on static hand
gesture recognition. In our implementation of HOG, we evenly separate
the normalized region of interest into 8 x 8 non-overlapping patches and
each patch has 8 orientation bins. Thus the dimension of each HOG de-
scriptor is 2046. We first evaluate our method on the NTU Hand Digits
Dataset [112]. The average accuracies are shown in Table Our method
outperforms the benchmark method and the traditional 2D HOG descrip-
tor for both subject-independent and subject-dependent tests. Compared
with [112], our H3DF feature descriptor contains more information, such
as folded thumb in palm than only contour information. Our method per-
forms 3.5% higher than [112] and 4.3% higher than 2D HOG descriptor in
the subject-independent test. As can be predicted, performances in subject-
dependent test are much higher than in subject-independent test, where
our method achieves 99.2% (H3DF+SVM) and 99.0% (H3DF+SRC) classifi-
cation accuracy. A confusion matrix of our method in subject-independent
test is shown in Figure We observe that, for H3DF+SRC, all classes
achieve accuracies higher than 90%, which demonstrate the effectiveness
of our proposed 3D H3DF feature descriptor. Recently, classification results
on this dataset are saturated (99% and 100% reported in [26]) via combining
over three kinds of features which are specifically designed for hand-shape
only. Since the proposed H3DF descriptor is a generic descriptor and can be
used for multiple purposes such as action recognition and object recogni-
tion, we will not directly compare it with the fusion mechanism as proposed
in [26].

Compared with the NTU Hand Digits Dataset [112], the ASL Finger
Spelling Dataset [110] contains more complicated (24 gesture categories vs.
10 gesture categories) and realistic (all gestures are as in American Sign
Language (ASL)) hand gestures. The ASL Finger Spelling Dataset is also
much larger (over 60,000 images ) than the NTU Hand Digits Dataset (1,000
images).

We follow the same experiment setting as previous stated. The class-
wise accuracies of subject-independent test are shown in Figure and
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Table 3.1: Performance comparison of different methods on the NTU Hand Dig-
its Dataset [112]. Best results are shown in bold.

’ Approach \ Subj. Ind. Test \ Subj. Dep. Test ‘
Ren et al. [112] 93.9% N/A
HOG [22] 93.1% 94.6%
H3DF+SVM 94.5% 99.2%
H3DF+SRC 97.4% 99.0%

Table 3.2: Performance comparison of different methods on the ASL Finger
Spelling Dataset [[110]. Best results are shown in bold.

| Approach | Subj. Ind. Test | Subj. Dep. Test |
Pugeault et al. [110] 49.0% N/A
HOG [22] 65.4% 96.0%
Keskin et al. [61] 84.3% 97.8%
H3DF+SVM 73.3% 99.0%
H3DF+SRC 77.2% 99.9%
denseH3DF+SVM 83.8% 100.0%

the average accuracies of both subject-dependent and subject-independent
tests are shown in Table Our descriptor achieves 77.2% average accu-
racy in the subject-independent test, which significantly outperforms [110]
with 28.2% higher accuracy, partially because we perform orientation cor-
rection before coding. Compared with the traditional 2D HOG descriptor,
which is also with orientation correction, our method still achieves 11.8%
higher accuracy and demonstrates the effectiveness of the proposed H3DF
descriptor in describing 3D depth images than just applying an existing 2D
descriptor. As shown in the confusion matrices (Figure [3.15), some ASL
gestures are difficult to distinguish, such as “p” and “q”, where hand poses
are almost the same and the only difference is the layout of two fingers (see
Figure (b) for hand gestures); another ambiguous pair of ASL gestures
are “m” and “n”, which shares quite similar shapes.

To further explore the capability of the proposed H3DF as a local pat-
tern descriptor, we combine the H3DF with dense sampling as used in
DenseSIFT [146] with an evenly dense sampling grid at multiple scales
(denseH3DF). In our experiment, we sample keypoints every 4 x 4 pix-
els at scales {8,12,16}. In each sampling keypoint, we compute the H3DF
with radial bin number as 2 and angular bin number as 8. The local de-
scriptor is then encoded using a soft vector quantization with a codebook
of 1024 codewords computed from training set. For spatial pooling, we use
a4 x 4 spatial grid which partition the sampled points into 16 sets. Within
each set, the sampled points (codes) are pooled using max pooling. Thus
the resulting dimension of the feature vector is 4 x 4 x 1024 = 262, 144. We
test denseH3DF using a linear SVM and the performance achieves 83.8%
in subject independent test (Table [3.2), which is very close to the current
best result obtained by Keskin et al. [61] (84.3%). However, [61] is specially
designed only for hand poses, not a generic descriptor as H3DF is.
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3.4.2 Dynamic Hand Gesture Recognition and Human Action Recog-
nition
Datasets

To validate our H3DF descriptor together with DP-based temporal segmen-
tation for dynamic hand gesture recognition from video sequences, we em-
ploy the MSR 3D Gesture dataset. This dataset contains 12 dynamic Amer-
ican Sign Language (ASL) gestures performed by 10 subjects. There is a
total of 336 video sequences captured by a Kinect camera. The gesture cat-
egories cover ASL gesture signs such as “Where”, “Store”, “Pig”, etc. The
hand region has been segmented. This dataset was collected by Wang et
al. [155] and state-of-the-art performance has been demonstrated by Oreifej
et al. [103]. We normalized each image along its height to 50 pixels for ef-
ficiency, while keeping the width/height ratio unchanged. We follow the
same setting as in [103], which leaves one subject out for testing and trains
on the rest and 10 repeats are processed to generate an averaged accuracy
as the reported accuracy.

Figure 3.16: (a) Sample frames from the MSR 3D Gesture dataset for dynamic
ASL hand gesture recognition. (b) Sample frames of action “Golf Swing”from the
MSRACction3D dataset [79].

To further investigate how well our proposed descriptor can cope with
more complex spatial-temporal feature descriptions, we also evaluated the
H3DF for human action recognition using a very popular benchmark, the
MSRACction3D dataset [79], and compare its performance with existing state-
of-the-art methods. The MSRAction3D dataset includes 20 action categories
such as “high arm wave”, “hand catch”, etc, which are performed by 10 sub-
jects facing the camera. Each subject performed each action two or three
times. The actions in this dataset capture a variety of motions related to
arms, legs, torso, and their combinations. Several samples from mentioned
datasets are shown in Figure [3.16]

Discussion of Pooling Granularity

Before comparing proposed H3DF descriptor with others on these two datasets,
We first conduct experiments to investigate both spatial and temporal pool-
ing granularity on MSR 3D Gesture Dataset. The experiment settings for
spatial pooling granularity are the same as in Section [3.4.1]and the tempo-
ral segments number (K) is set to 5 for consistency. The results are shown in
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Figure we can observe similar patterns as in Figure which again
validate our default settings for r, and r,. A second issue is how tempo-
ral pooling granularity affects the recognition accuracy of dynamic gesture
recognition. We compare the proposed dynamic programming-based tem-
poral segmentation with traditional evenly partitioning of different num-
bers of temporal segments (K), the accuracies are shown in Figure m
We observe that as K increases, more complementary information is mod-
eled which results in higher accuracies. We further observe that 5 is a good
selection for K; because normally “neutral”, “on-set”, “peak”, “off-set” and
“neutral” is a general sequence of action. Dynamic partitioning is consis-
tently a better strategy than even partitioning (except for K = 4) because
dynamic partitioning is more robust to variance in time sequences due to
its invariance to action execution rate.

Comparison with the State-of-the-arts

Dynamic Gesture Recognition. We further evaluate the proposed H3DF
descriptor together with DP-based temporal partitioning in the applica-
tion of dynamic hand gesture recognition on the MSR 3D Gesture Dataset
[155]. We compare our proposed descriptor with several state-of-the-art al-
gorithms for dynamic hand gesture representation such as the Histogram of
3D Gradient Orientations (klaser2008spatio) [62] and Histogram of 4D nor-
mals (HON4D) [103] which combines surface normals and Fourier trans-
forms to represent spatial-temporal 4D volumes. As shown in Table our
framework (DP-H3DF+SRC) outperforms all previous methods (the best
recognition rate of our method on the MSR 3D Gesture dataset is 95.6%
with a different pooling grid setting, but to be consistent, we report the
performance with default grid setting here).

Table 3.3: Performance comparison of different methods on the MSR 3D Gesture
Dataset [155]. Best results are shown in bold.

| Approach | Avg. Recognition Rate
H3GO [62] 85.23%
ROP [155] 88.50%
DMM [169] 89.20%
HON4D [103]] 92.45%
DP-H3DF 95.00%

Human Action Recognition. We also evaluate the proposed H3DF de-
scriptor in the application of human action recognition from depth sequences
on the MSRAction3D [79] and compare it with existing state-of-the-art meth-
ods. Since the actions are not constraint to hand gestures in this dataset, in-
stead of extracting hand patches, we compute H3DF around each skeleton
joint and use a codebook with 3000 codewords to encode each H3DF. Then
each frame is represented by the max-pooled histogram of all H3DF to gen-
erate a Bag-of-word representation of that frame. Next we use Bi-gram rep-
resentations as discussed in Section[3.2.2]to obtain a set of Bi-grams for each
video sequence. Finally, sparse coding is employed to generate a sparse his-
togram for each video using a dictionary with 1024 basis bi-grams trained.
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Our proposed method has decent performance compared with state-
of-the-art methods (Table [3.4]) and achieves comparable performance with
the best results [153]. As described in previous sections, our main goal is
to propose a generic depth descriptor to handle both static and dynamic
gesture and human action recognition. In both dynamic hand gesture and
human action recognition, our method achieves better performance than
other counterparts.

Table 3.4: Performance comparison of different methods on human action recog-
nition of the MSRAction3D Dataset [79].

’ Approach \ Avg. Recognition Rate
Bag of 3D Points [79] 74.70%
HOJ3D [[163] 79.00%
STOP [150] 84.80%
ROP [155] 86.50%
Actionlet [154] 88.20%
DMM [169] 88.73%
HON4D [103] 88.89%
DSTIP [162] 89.30%
Pose Set [[153] 90.00%
Proposed Method 89.45%

3.5 Discussion

In this chapter, a novel depth-based descriptor is proposed for both hand
gesture and human action recognition for depth videos. A dynamic pro-
gramming based modification is added to handle dynamic hand gestures
and human actions. The framework is evaluated on several public bench-
mark datasets and is demonstrated to be effective in modeling shapes in
depth maps. The drawback of current pipeline is that the approach to
model temporal dynamics is not unified. The proposed two approaches of
extending H3DF to cope with dynamic representation of a video sequence
have different objectives. DP-based partitioning aims to solve the temporal
alignment problem caused by different execution rates. The N-gram-based
method, on the other hand, is designed to model local transition patterns.
For example, to model a sequence of “raising hand”, the DP method seeks
to end up with 2 (or 3) gestures that can sufficiently summarize the action,
i.e., “lowered hand”, (“raising hand”) and “raised hand”; while N-gram
method pursues to capture the motion during “raising hand”. In other
words, the DP-based method generates “a sequential collection of gestures”
while the N-gram-based method generates “a bag of motions”. The two
perspectives are both useful to capture temporal structures and transition
patterns. But in practice, we found that the proposed DP method works
better with dynamic hand gesture recognition while the proposed N-gram
method works better with human action recognition. The reason for this
may be the intrinsic difference between hand gestures and action recogni-
tion. Hand gestures information is conveyed mainly by the shape of hand
while motion is complementary information and human actions are highly
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performed by drastic motions of body parts. In addition, the I> metric used
in our DP algorithm is prone to sparse noise but large in magnitude, which
is more common in human action recognition. In our future work, a unified
temporal dynamics-handling component will be studied.
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Figure 3.13: Recognition accuracies of different pooling granularity settings (y-
axis for b,, x-axis for b,) on the NTU Hand Digits dataset [[112].
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Figure 3.14: Confusion Matrices of our method on the NTU Hand Digits Dataset
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Dataset [110] in “leave-one-out” subject-independent test.



Chapter 3. H3DF: A Local Depth Descriptor for Action and Hand Gestugeé
Recognition

0.936 0.930 0.846 0.847 EI.EI4?.

0.912 0.835 0.840 0.834 0.946 0.940

0.923 0.940 0.950 0.950 0.950 0.950

# of radial hins
oy

0.922 0.8943

0.925 0.840 0.850

4 B g 10 1z 16

# of angular bins

Figure 3.17: Recognition accuracies of different pooling granularity settings (y-
axis for b,., x-axis for b,) on the MSR 3D Gesture dataset.

100
=== Evenly Partition
98
w=ge== Dynamic Partition
96

94 N
%2 7;
90

88 pd

86

84 pd

82
80 . . . . . .

Figure 3.18: Recognition accuracies of different temporal strategies and numbers
of segments (i.e., x-axis shows K).



34

Chapter 4

Edge Enhanced Depth Motion
Map for Dynamic Hand
Gesture Recognition

After introducing a local depth descriptor (H3DF), we introduce a holistic
depth descriptor (E2DMM) in this chapter. Compared to single depth map-
based descriptor (H3DF), E2DMM is computed based on temporal accumu-
lations of global motion traits, therefore it can naturally capture temporal
information of human activities. In this chapter, we also introduce the Dy-
namic Temporal Pyramid (DTP) technique which can be applied in pooling
strategy and counter the effects of temporal offsets.

In recent years, the ease of using depth cameras together with the promis-
ing application potential of depth cameras has attracted a lot of research
efforts into it. As the representative successful debut of Xbox-Kinect [19]
by Microsoft in Human Computer Interaction (HCI) and Entertainment, it
has caused substantial revolutionary affects both in marketing as well as
academia areas such as computer vision and image processing. Human ac-
tion and gesture recognition, as a significant component of computer vision,
naturally has benefited and evolved obviously.

Action and gesture recognition in depth videos has its endowed ad-
vantages over that in traditional color or grayscale videos. First, the back-
ground is relative clean since the depth sensor implicitly ignores the com-
plex clutter pattern on the background, which is often the major headstream
where noise comes from. Second, human body or other parts become eas-
ier to be segmented since the 3D spatial information is captured and visu-
alized. Last but not least, the new type of data enables a different area of
information which has rarely been touched by traditional action and ges-
ture recognition research on color or grayscale videos. Although action and
gesture recognition based on depth cameras is still a relatively new topic,
many researchers have paved pebbles to its promising future.

One successful direction is to discover the correlation between action
categories and body part joints, which uses estimated body joints [125] [134]
to obtain a reduced representation of human body structure. Shotton et al.
in 2011 and 2012 [125] [134], proposed to model the body joints estimation
problem from a single depth frame. The authors found modes from census
of per-pixel classification and solved it utilizing Random Forest and Con-
ditional Regression Forests. On one hand, their work has enabled efficient
human body joint extraction from a depth video; on the other hand, it pro-
vided many of other researchers a powerful tool to manipulate this kind of
raw representation to help to solve their specific human action recognition
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problems. Simple features computed from body joints solely are proved to
be effective in human action recognition problem from Human Computer
Interaction (HCI) perspective [154] and Activity of daily living (ADL) per-
spective [176]. In [154], Wang et al. made a very interesting observation that,
comparing with using the universe of body joints, using an action-category
specific subset of them makes more sense.

However, since methods which are relying on pose estimation are vul-
nerable to the failure of such pre-processing by self-occlusion, twisted ges-
ture, or unknown human body layout. All the difficulties, which are com-
mon in real life, are summed up to some researchers getting rid of using
estimated joints [79] [169] [155]. Li et al. selected representative points on
the contours of three orthogonal projections of the 3D point cloud of human
body. In [155], the authors proposed a novel random sampling mechanism
using class separability measure together with a novel feature called Ran-
dom Occupancy Pattern (ROP). This method performed effectively with
sparse coding. Motivated by the idea of Motion History Image [9], our pre-
vious work, Depth Motion Map with Histogram of Gradients (DMM-HoG)
[169], was proposed to model an action as an energy distribution map over
time and also reached good performance in several public datasets [114].
These methods have bypassed the obstacle of joint-based methods because
body part estimation sometimes is not accurate and ambiguous for some
subtle actions. These methods have also enabled gesture recognition from
some part of the whole body, for example, hand gesture recognition.

Hand gesture recognition is a distinct and significant component of hu-
man action and gesture recognition since the information hand gestures
convey is more sophisticated and linguistic than traditional activities. For
example, American Sign Language (ASL) expresses more complicated in-
formation than jumping, hand-waving, running, etc. Since the substantial
difficulty and complexity beneath the problem, related research work, es-
pecially those using depth cameras, is still on its infancy but a lot of work
shows a promising potential. One approach is to recognize hand gestures
using static depth frame as in [110] [112] [177]. In [110], the authors treated
each static depth frame as a regular grayscale image and used a bank of
Gabor filters to capture gradient information and solved the classification
problem using random forests. Different from [110], the authors of [112]
focused on a different type of information: contour; and a different applica-
tion area: hand digits recognition. Other than using gradients and contours,
our previous work [177] as described in Chapter 3| uses a histogram of 3D
normals. For dynamic hand gesture recognition, ROP in [155] also achieved
promising results.

4.1 E’DMM and Dynamic Temporal Pyramid (DTP)

In this chapter, we propose a new representation: Edge Enhanced Depth
Motion Map (E2DMM), to recognize dynamic hand gestures based on depth
video. Moreover, to capture more temporal structure information of hand
gestures, we further propose a saliency prior Dynamic Temporal Pyramid
(DTP) representation. The framework of proposed approach is as shown
in Figure By extracting (E2DMM) and organizing using DTP, the in-
put depth frame sequence transforms to two-layer motion maps. Then
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Figure 4.1: Flowchart of the proposed approach. After edge enhanced depth
motion map extraction and dynamic temporal pyramid (DTP) organization, we
apply Histogram of Gradients (HoG) to generate vectored representation of the
two levels of E°DMM (Iv0 and 1v-1). Finally, a SVM classifier is trained and
utilized for classification.

Histogram of Gradients (HoG) feature is extracted from the two-layer mo-
tion maps and concatenated to generate a vectored representation. A SVM
classifier is used to tackle the classification task. There are two benefits of
such an approach. First, enhancing the edges provides more information
for visually characterizing hand shapes. Second, salience prior temporal
pyramid captures more accurate temporal layout of the depth frame se-
quence. Compared to the state-of-the-art methods [[169] [154] [155] [57] [67],
the proposed method can achieve higher accuracy in a public hand gesture
recognition dataset [115] without more complicated decision models or any
sparse favored dictionary learning, which further manifests the efficiency of
proposed method. The rest of the chapter is organized as follows. Proposed
approach is described in details in Section[4.2] Experimental results and the
comparisons with the state-of-the-art are summarized in Section 4.3}

4.2 Extraction of EEDMM

In this section, we firstly rephrase DMM in a more general form. We then
propose the formulation and computation method of Edge Enhanced DMM
(E’DMM). A novel saliency prior dynamic temporal pyramid structure is
also proposed and compared to traditional temporal pyramid.

4.2.1 Depth Motion Map (DMM)

Depth Motion Map (DMM) [169] is a visual representation of human activ-
ities by accumulating the motion of each frame in a depth video. DMM is a
global descriptor mainly focusing on modeling the spatial energy distribu-
tion of human actions. A DMM of a depth video can be given as:

F(Xig) =D (6(|a}; — 2t = ) + 04) (4.1)
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where X is a depth video given as a collection of depth frames X = z!, ..., 27

and ¢ is a parameter to determine the strength of motion, which is named
“penetration threshold”; o; ; = —e; j is a penalty term to suppress the energy
accumulation in the edge pixels.

DMM accumulates the motion between each pair of consecutive depth
frames to generate an energy distribution map to discriminatively repre-
sent an action. Usually Histogram of Gradients (HoG) operator is applied
on a DMM to generate a concrete feature vector, as shown in Figure (b)
and (d). In this chapter, based on such modeling, we first discuss the dif-
ference and similarity between human action recognition and hand gesture
recognition in depth video and propose edge enhancement process to mu-
tate DMM to E2DMM to adapt to hand gesture recognition. Then a new
temporal pyramid based on temporal saliency is proposed to capture more
temporal structure information.

4.2.2 Edge Enhanced DMM (E’DMM)

According to [169], edge suppression is suitable for dramatic human action
recognition since the contours do not provide useful information to help
distinguishing between different actions, but may introduce variance be-
tween different subjects.

However, static pose or gesture plays a different role in the domain of
hand gesture recognition. In fact, static pose or gesture conveys a signifi-
cant portion of information and a lot of work has been done in this direc-
tion [177] [112] [110]. In the perspective of dynamic hand gesture recogni-
tion, static gesture together with motion provides an integral description of
gesture category. Thus, we formulate Edge Enhanced Depth Motion Map
(E2DMM) computation by changing the edge suppression term to an edge
enhancement term:

9(Xig) =D (8(|zf; — 2t =€) + preiy) (4.2)

where parameter p is a weight to tune the degree of edge enhancement,
as shown in Figure We will demonstrate the effectiveness of the edge
enhancement term and the effect of different selections of p in Section4.3.1]

4.2.3 Dynamic Temporal Pyramid

In this section, we show how to model the temporal structure using saliency
prior dynamic temporal pyramid.

Traditionally, to capture the temporal structure or layout of an action,
one may use temporal pyramid, which is very similar to the idea of Spatial
Pyramid [73]. As shown in Figure 4.4{(a), temporal pyramid evenly divides
the features into 2 or 4 or more buckets in the temporal dimension. Intu-
itively, since an action may usually have several phases: onset, apex, and
offset while each phase contributes differently to the distinguish power of
the final feature representation. Therefore, dividing the features in the time
domain may help to address such temporal structure information. More-
over, the dimension of final feature representation is proportional to the
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total buckets the pyramid uses, e.g., in Figure 4.4{(a), it uses a final feature
vector with dimension 7 times to that only uses level 0 feature.

Therefore, we propose to use a new temporal organization method tak-
ing advantage of the energy distribution, which can be easily computed by

modifying Eq.

E(X)=x{5" > ((al; -2t = o)+ preiy) (4.3)
(’L‘,j)EMtXNf,

where E(.) is a vector computed as the Cartesian product of sums of non-
zero entries in frame t. E(.) is plotted as blue curve (the magnitude of the
curve at a certain time represents the spatial integral of E(.) in a certain
frame) in Figure 4.5|and its integral over time is plotted as red curve.

As a result, other than trying to use more space to store different rep-
resentations of different temporal segments, we tend to use a separate fea-
ture space to summarize those frames with more significant information in
terms of energy. Experimental results show that this organization is more
suitable for temporal information capture and saves space which means
less computation cost.

Detailed parameter discussion as well as settings will be conducted in
Section[4.3] HoG is applied as in [169] to generate feature vectors. To eval-
uate the distinguish power we simply use linear Support Vector Machine
(SVM) classifier without any sophisticate manipulating such as dictionary
learning.

4.3 Experimental Results

In this section, we first introduce the public dataset we use for evaluation
as well as its statistics. Then evaluation of EZDMM and comparison with
the state-of-the-art methods are described.

4.3.1 Experimental Setup

In the experiments, we use MSRGesture3D dataset [115], which was cap-
tured using a Kinect camera. The dataset is for dynamic American Sign
Language (ASL). There are 12 gesture categories from two letters z and j
to words: “Z", “J", “Where", “Store", “Pig", “Past", “Hungary", “Green",
“Finish", “Blue", “Bathroom", and “Milk". There are 10 different subjects
involved and each person performs each category 2 to 3 times. There are
336 samples in total, each of which is a depth sequence. The dataset is pre-
segmented with only hand appeared in the depth videos

To extract E°DMM, the input is a depth sequence and the output is a
feature vector with a fixed length of dimension. In all our experiments,
we normalize the patch sizes of EZDMMs to 100x100. We use the off-the-
shelf HoG generator in [25] with patch size 8, orientation bins 8, and all
four normalization methods[T] The dimension of final feature vector is 6400
after applying our proposed dynamic saliency prior temporal pyramid.

Following the benchmark setting as in [155]], the performance evalua-
tion is processed by using leave-one-subject-out strategy, which means each

'For more details related to parameters, please refer to [25].
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time one subject is chosen for test while the SVM classifier is trained on the
data composed by the remaining 9 subjects. The performance is calculated
as the average classification accuracy after all subjects are tested.

4.3.2 Evaluation of the Proposed Method

In this section, we explore the discriminative power of proposed descrip-
tor for dynamic hand gesture recognition and the effects of several param-
eters: penetration threshold and degree of edge enhancement (e, p). Our
default setting of (e, p) is (10, 0.1), where the € has unit of mm. The effects
of different parameter settings can be visualized in term of classification ac-
curacy as shown in Figure From Figure we can observe that with
proper edge enhancement (p = 0.1), the performance is better (1.5%) than
no-enhancement (p = 0.1) and edge suppression [169] (p = —1). Thus, we
select a stable penetration threshold € = 10 and edge enhancement degree p
= 0.1, as default parameters.

While adding level -1 for dynamic temporal pyramid representation, we
firstly compute the frame index which has the highest peak in the energy
distribution, then we search to the left till: 40% of total energy is included
OR reaching the starting index, as left bound of level -1 window; we search
to the right till: 40% of total energy is included OR reaching the ending in-
dex, as right bound of level -1. The level -1 uses another 3200 dimension
feature vector which is then concatenated with level 0. In total, the dimen-
sion of final feature vector is 6400. We empirically set different weights for
level 0 and -1 with 2 and 1. The overall accuracy after applying this is 90.5%
for our proposed method, which is used for comparison with the state-of-
the-art approaches. Comparison of proposed dynamic temporal pyramid
framework and traditional temporal pyramid framework (level 0 and level
1 as shown in Figure[#.4(a)) is shown in Table[.T|with the same weights set-
ting. Proposed DTP outperforms traditional temporal pyramid (TP) with
1.6% and 1.8%, respectively, in overall accuracy both in un-weighed and
weighed cases.

Table 4.1: Comparison between proposed Dynamic Temporal Pyramid (DTP)
and traditional Temporal Pyramid (TP).

Proposed DTP | Traditional TP
un-weighted 88.07% 86.45%
weighted 90.53% 88.70%

4.3.3 Comparison with the State-of-the-arts

In this section, we compare our method with several other state-of-the-art
methods in term of accuracy. The confusion matrix is as shown in Figure
4.7 Our method performs well in most classes and the worst one reaches
74%.

We compare the proposed method with several state-of-the-art methods
such as [57] [67] [155] [169] as listed in Table Our proposed method per-
forms best (90.5%) in term of averaged classification accuracy. Compared
with DMM in [169] without edge enhancement, proposed E°DMM together
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with dynamic temporal pyramid outperforms the previous one with 2% ac-
curacy.

Compared with Random Occupancy Pattern feature together with Sparse
Coding in [155], our approach outperforms the performance in [155] with
about 2% and more details can be seen from Figure Besides, our method
performs rather stable while the worst accuracy in “j" is 74%, which is much
higher than the worst cases in [155], 57% (in class “green" and “where").
The results demonstrate that our method is more general and suitable to
represent dynamic hand gestures of different categories.

Table 4.2: Comparison of proposed method and other methods.

Method Accuracy
CNN [57] 0.69
Occupancy Features [67]] 0.805
Silhouette Features [67] 0.877
ROP [155] 0.868
ROP-SC [155] 0.885
DMM [169] 0.882
Proposed no TP 0.899
Proposed + TP 0.887
Proposed + DTP 0.905

4.4 Discussion

In this chapter, a depth map-based holistic descriptor is proposed. It is
demonstrated that focusing and magnifying hand contours can improve
dynamic hand gesture representation accuracy. In addition, a energy-based
temporal pyramid-based pooling method is proposed to capture more tem-
poral information. We also notice that the structure of temporal pyramid
is fixed and needs to be pre-defined by hand. In the future work, our di-
rection will be relaxing this constraint and delegating the decision power
of pyramid structure to the algorithm. Therefore, the model can be further
applied in action segmentation and recognition for longer videos.
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Figure 4.2: Illustration of edge suppression in DMM [169] computation of ac-
tion “Two Hands Wave" in [114]. (a) DMM without edge suppression. (b) DMM
after edge suppression in Eq. (c) and (d) are Visualizations of HoG Repre-
sentations of (a) and (b), respectively. (e) is the difference in feature space of (c)
and (d) . The contour of human body can be obviously observed without edge
suppression, which causes ambiguity as shown in (e).
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Edge Enhanced
__.Energy Accumulation

(b)

Figure 4.3: (a) A depth video showing the gesture “Where" in American Sign
Language (ASL). (b) Accumulative Motion Maps and corresponding visualiza-
tions of HoG of different selection of p. When p = -1, it degenerates to DMM and
when p > 0, it is in the form of E2DMM.

(2) (®)

Figure 4.4: Illustrative comparison between (a) traditional temporal pyramid
and (b) our saliency preferred dynamic temporal pyramid structure. Compared
to the fixed branching in (a), the branching in (b) is dynamically determined
based on the energy distribution.
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Figure 4.5: Illustration of how to dynamically select “level -1" based on the en-
ergy distribution over time. Blue curve shows the energy of each frame. Red
energy shows the integral energy over time. Cyan dashed line shows the frame
with highest energy and purple dashed line shows the chosen window for “level
-1". X-axis is frame index and Y-axis is the relative magnitude of each curve.
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Figure 4.6: Performance evaluation of E2DMM on dynamic hand gesture dataset
of different parameter settings. X axis: penetration threshold ¢; Y axis: per-
formance in term of classification accuracy. Blue, red and green colored curves
indicate degree of enhancement -1, 0, and 0.1 respectively. Notice that when
degree of enhancement is -1, it actually represents traditional DMM [[169].
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Figure 4.7: The confusion matrix of the proposed method on dataset Gesture3D.
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Figure 4.8: Class-wise accuracy comparison of proposed method and Random
Occupancy Pattern with Sparse Coding (wang2012robust-SC) in [155]. Obvi-
ously, besides that our method outperforms method in [155] with 2%, proposed
method is more stable, which means our representation is more general for dif-
ferent action classes.
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Chapter 5

Subject Adaptive Human
Affection Recognition

Overview. After introducing two depth-based descriptors for human ac-
tion and hand gestures, we introduce and propose a multi-modality method
in this chapter. The proposed method fuses both facial expression and body
motions, depth and RGB channels for human affection recognition. Affec-
tion is a disposition of mind or body, which is often expressed by facial
expressions and body gestures. Some affection categories can be conveyed
solely from facial expressions or solely from body gestures. But it is more
natural and common that facial expressions and body gestures jointly ex-
press an affection.

The success in facial expression recognition provides a plentiful of ap-
proaches to solve the problem in one perspective. Action Units (AUs) for
Facial Action Coding System (FACS) [39] is a good modeling for facial ex-
pressions by decomposing the facial expressions into smaller organ-based
movements, such as drawing brows and opening mouth. Facial expression
recognition based on AUs is successful and has attracted a lot of attentions
[140] [145] [179]. In addition, recognizing human emotions from body ges-
tures is also a growing research area in recent years [123]]. Especially after
the debut of Kinect depth camera [19], the new type of sensor together with
its technologies provides powerful tools for human activity analysis. The
depth channel makes it easier to segment human from clutter background
and therefore research based on this novel information channel has been
conducted on an unprecedented scale [154] [175] [125].

However, the difficulty in facial expression recognition is always pro-
portional to the degree of subjective variance. As illustrated in Figure
subjective variance in image space is much larger than expressional vari-
ances. In the domain of Face Recognition (FR), the subjective variance
is inter-class variance and expressional variance is intra-class class vari-
ance. However in the domain of Expression Recognition (ER), the roles
of the two kinds of variances are reversed and therefore this phenomenon
brings benefits to FR but harms to ER. Approaches are proposed to reduce
the with-in class variance and increase the between-class variance, such as
Linear Discriminant Analysis (LDA), or Fisher’s Linear Discriminant [36].
Sparse Representation based Classification (SRC) [159] provides an infor-
mative way to image classification. In SRC, a query image is coded us-
ing a sparse dictionary whose bases (columns) are training samples with
or without sparsity constraint; then the query image is reconstructed by
the bases with sparse coefficients as well as sparse residuals. In [166], the
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Figure 5.1: For facial expression, subjective (intra-class) variance is much larger
than inter-class variances (expression). It brings benefits for expressional invari-
ant face recognition but difficulties to subjective invariant expression recogni-
tion. This phenomenon is less severe for body gestures in Depth channel.

authors combined SRC and Fisher Discriminant criteria to propose an al-
gorithm to learn a structured dictionary and providing informative recon-
struction residual for class recognition. A low-rank regularization con-
straint is added to FDDL is also demonstrated to be useful in FR [78].

In this chapter, we utilized the classification scheme proposed in [166],
which uses the residuals from class-wise reconstructions as classification
criteria. We argue that instead of using all training samples for sparse re-
construction with the huge subjective variance, it makes more senses to
select a subset of subjects using FR first and recognize affection then. Then
we propose a joint affection recognition combining facial expressions (from
RGB channels) and body gestures (from the Depth channel) with subjective
adaption and joint decision making based on reconstruction confidence in
sparse representation. The contributions of our work have two aspects:

1. First, we propose a subject adaptive sparse representation approach
by combining the idea from [159] and [166] and reconstruct the query
image from subject related subgroups.

2. Second, we address the joint recognition problem using the confi-
dence computed from the residuals of sparse representation and ex-
periment results demonstrate that the combination can be effective
without additional computational cost.

Additionally, we also provide a combinatory dataset for joint affection recog-
nition with both facial expressions and body gestures. Both color images
and depth images are collected for multi-modal recognition.

An overview of the proposed framework is illustrated in Figure
Face patches and body gesture patches are extracted from RGB channels
and depth channel of the input video respectively. We firstly apply Ro-
bust Alignment (RASL) [107] to align the frames in each video sequence.
Then representative frames (queries) are selected based on “apex” posi-
tion, where expressional intensity is highest as discussed in [16]. Subjective
adaption is to select a group of most similar subjects based on SRC based
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Figure 5.2: The workflow of our framework. After selecting representative
frames from aligned frame sequence, we apply subject selection for a given test-
ing subject. Affection class is recognized for testing queries with selected train-
ing data using sparse representation based classification. Then a joint decision
from expression model and body gesture model is made based on confidences
calculated from class-wise reconstruction residuals.

face recognition. The query image is then reconstructed from the selected
subjective dictionary. Fisher Discriminative Sparse Representation Classifi-
cation (SRC-FD) is used for class inference. The final decision of affection
class is made according to the confidence score based on class wise recon-
struction residuals.

The organization of the rest of this chapter is as following. Section|5.1{in-
troduce how we align frames and select the most representative ones from
them. Proposed subject adaptive affection recognition and joint decision
making framework is introduced in Section We also describe our new
collected affection recognition data set in Section 5.3{and proposed frame-
work on this data set is evaluated and discussed in Section 5.4l

5.1 Pre-processing

Given a sequence of face patches, we firstly need to align them and select
the most representative frame out of them. The misalignment in the se-
quence is introduced by both human movement and noise in face detection.
To align them, we apply the RASL [107] algorithm which uses sparse and
low-rank matrix decomposition. Sparse learning based frame alignment
takes advantages of the inner structure of the given sequence of similar
frames (e.g. face patches of the same subject) and reduces the noises with
rare occurrence. For representative frame selection, we select the middle
frame of the apex area [16] according to expression intensity.

As illustrated in Figure 5.3} RASL [107]] smooths the expressional inten-
sity curve by representing the “intermediate” frame with “apex” or “neu-
tral” frame. The red curve indicates the intensities of un-aligned sequence
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Figure 5.3: Alignment and representative frame selection. The first row with red
boundary shows the original un-aligned face patches, one can observe variances
due to poses and minor changes. The second row with blue boundary shows
the aligned face patches via RASL [107], one can observe that differences due
to factors other than expressions are eliminated. Expressional intensity curves

are shown in the bottom. Selected representative frame is indicated by yellow
dashed box.

and blue for aligned sequence. Yellow dashed box shows the final selected
representative frame. For body gestures, the pre-processing step is the same
as facial expression.

5.2 Subject Adaptive Joint Affection Recognition via
Fisher Discriminant Sparse Representation

In this section, we firstly review sparse representation based classification
(SRC) and Fisher Discriminant. Then our proposed two layered sub-
ject adaption framework for affection recognition is described. Finally, a
joint recognition framework is proposed based on the class-wise recon-
struction residuals.

5.2.1 Sparse Representation Classification with Fisher Discrimi-
nant

Sparse representation based classification (SRC) was proposed in by
Wrightet al.. Given C as the set of class labels, we have A = [A¢,, Acy, ..., Ac,]
as the dictionary of training samples. In our approach, A is the matrix of
vectored frames, i.e., Ac,cc = [vec(z$?), vee(2S), ..., vee(zC1)], where xjcl is
the j" image (face path or gesture patch) of class i. Given a query image ¢
and its vectored instance y = vec(q), the SRC via /;-minimization is given
as:

& = argmin [|of|; st |y — Aafla < A (5.1)
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Therefore, Classification rule is given as:

identity(y) = argminrc, (y) (5.2)

i
where class-wise reconstruction residual ¢, (y) is given as:

ro;(y) = lly — Ade; (@)l (5.3)

where J¢; is the characteristic function that selects the coefficients associ-
ated with that class.

According to FDDL [166], the SRC classification rule can be re-written
as an “SRC-FD” form:

ag, = argmin |lall; st |y — Agalla <A (5.4)
(e

where Ac, is the sub-dictionary associated with class C;. Thus the class-
wise residuals in Eq. [5.3)is re-written as:

re; (y) = ||y - ACi (abz)||2 (55)

Noted that Eq. corresponds to FDDL with global cost weight as 0.
We called this classification method as Fisher Discriminant SRC (SRC-FD).
Comparing Eq. 5.3 and Eq. the latter one is more intuitive. The classi-
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Figure 5.4: Timing and avg. reconstruction errors on Simulated data with 10,000
training samples and 1 query instance. We can observe that time consumed
decreased as the number of partitions increases.

fication is actually to find the optimal space spanned by bases of a certain
class which minimize the reconstruction error. In addition, the residual
formula in SRC-FD makes the inference much efficient, which is critical in
applying SRC to real applications. To illustrate this argument, we test the
l;-minimization using Least Angle Regression [30] on a simulated dataset
which has 10,000 instances and each instance is of dimension 1000; a query
instance is given to reconstruct. The simulated data is randomly generated
and each instance is normalize to unit [; norm. We partition the training
set into n non-overlapping subsets and the query is reconstructed on each
subset. The overall computation time and averaged reconstruction error for
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different n are as illustrated in Figure With the number of partition in-
creases, the computation time decreases. This is because /1 minimization is
not linearly proportional to the number of training instances. However, us-
ing a larger dictionary can achieve better reconstruction error. In our work,
since the absolute reconstruction error is not a concern per se, SO we use the
classification form as in Eq.

5.2.2 Subject Adaptive Affection Recognition

Both SRC [159] and FDDL [166] achieve impressive recognition rates in face
recognition (FR) and have been demonstrated to be robust to varying illu-
minations, occlusion and expressions. However, subjective robust expres-
sion recognition (ER) is harder than expressional robust face recognition.
The reasons are two-folded: 1) in term of pixel-wise variance, the distance
between subjects of the same expression is much larger than the distance
between expressions of the same subjects, as shown in Figure 2) be-
havior habits of different subjects make the subjective variance much larger
and the expressions harder to model. The two reasons jointly make ER a
harder problem than FR.

The similar phenomenon also exists in gesture recognition. Instead of
facial appearance, subjective appearance variances in body gestures are due
to subjective body sizes, types and clothes. However, because 1) the body
gestures are always much more drastic than facial expressions and 2) we ex-
tract body gesture information from Depth channel which ignore much of
the appearance variances (e.g., different clothes), this phenomenon is actu-
ally not crucial at all. Therefore, the effect of applying the subject adaptive
framework on gesture recognition is limited to overcome subjective behav-
ioral variance.

In this chapter, we propose a two layer recognition structure to pur-
sue subjective robust affection recognition. The first layer is actually a
face recognition problem. The motivation of the first layer recognition is
straightforward: given a query image of an affection, it is more naturally
to identify who is the subject and check if previous records exist in our
training data, if so, using the data of the same subject is more efficient and
accurate. However, it is unrealistic to assume all the subjects have already
been included by the training dataset. Therefore, we define the first layer
recognition step as to find a fixed number of most similar subjects such
that the identity information (appearance, behavioral habits, efc.) can be
approximated using the instances from the selected subjects.

The first layer recognition is as illustrated in Algorithm [2| To reach bet-
ter consensus subjects selection, we use a batch of queries (from the same
subject) each time, i.e., |Y'| > 1. An upper bound limit on maximal avail-
able subjects (V) is also given. The propose algorithm selects a subgroup
(A*) of training instances (A) for expression recognition using SRC-FD with
l1-minimization. One may doubt that it is not valid to know that the given
batch of frames are from the same subject. We concede that sometimes it is
the case but in reality, an affection recognition system can always capture
more than one frames from the same subject and select similar subjects in
training set as an off-line initialization. In the other hand, algorithm P|is still
functional when |Y| = 1.
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Algorithm 2: Subject Adaptive sub-dictionary selection.

Input: training instance matrix A4, testing instance matrix Y, subject
number limit N
Output: subject adaptive sub-dictionary A*
A* = empty;
forycY do
for S; € Sdo
& = argmin, ||afl; sty — Ag,alla < N
rs, = ly — As,all;
end

S = argming, rg,;

vote(S) +=1;

end

n=1;

while n < N and lallzeros(vote) do
s = argmaxg, vote(S;);
Ar = [A*>As];
vote(s) = 0;

end

return A*
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Based on the selection of A* (which can be represented as A* = [A}, 43, ...,

where A7 is the class-wise subset of A*), we can determine the affection
class of each query y according to Eq. |5.4/and

Figure[5.5illustrates the proposed 2-layer recognition framework. When
a query image is given, the first layer recognition process seeks at most N
(N = 2 in this example) subjects whose samples can best approximate the
query image. After we have selected the subset of subjects (colored as green
rows in the training data matrix), the selected subset is further partitioned
into C classes, i.e., subsets with affection labels. The second layer recog-
nition seeks the “row” which can best approximate the query image (final
decision and selected subset are colored as red boxes).

5.2.3 Joint Decision Making via Confident Reconstruction Prior

When there are multiple models have the same set of class labels, as in this
chapter, facial expression model and body gesture model, how to effectively
combine them to make a joint decision is an issue. One can combine the
models in an early phase by feature concatenation or make a joint decision
only based on the decision scores given by different models. In this chapter,
we apply the latter one since the early fusion in feature representation level
can be overwhelmed by the dominant feature channel, if there exists one.
In our work, we have two models: facial expression model and body
gesture model. Each model uses the same classification rule based on Sparse
Representation (SRC). Since the decision in each model is made according
to the smallest residual in term of Iy norm. It is straightforward to derive
the confidence score of an decision, denoted as F'(.) by the margin between
the smallest residual and the second smallest residual. The assumption un-
der the confidence score formula is that a “confident” decision should be

A7),
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Figure 5.5: Illustration of our two-layer affection recognition framework. The
first layer is to select a subset of subjects which can best approximate the query
image(s). The selected rows (colored as green) are used for second-layer affec-
tion recognition using SRC. The action-wise approximations are colored as blue.
The final decision is to find which class can best approximate the query image.
The final decisions are shown in red.

made easier with a more comparative significant smallest reconstruction
error. Then the confidence scores of both models are used for weighing the
reconstruction error and we make the joint decision by selecting the small-
est weighted sum of the class-wise reconstruction residuals. The procedure
is as shown in Algorithm 3]

5.3 Face and Gesture RGBD Dataset

In this section, we introduce a new Face and Gesture RGBD dataset (FG-
RGBD) we collected for affection recognition with 1920 affection samples.
In [43], the authors presented a widely used bi-modal public dataset for
combinatory recognize affective behavior categories from both facial and
gesture model. However, as recent success in Kinect and related research in
the depth channel, there is a trend that researchers are mining more com-
plementary information from this novel information source instead. There
are a lot of datasets have been presented for using depth channel as a coun-
terpart for research topics and have proved their effectiveness, such as MSR
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Algorithm 3: Joint Decision Making from Face and Gesture.

Input: Facial expression dictionary A*/ and body gesture dictionary
A™9, a query y = [y, yq]

Output: Affection label C' of y
1 for C; € C do

2 af = argmin, ||a|1  s.t.|jy — AafaHg <\

3 a9 = argmin,, ||all1 s.t.|jy — Aa_gOzHQ <X
s |l =y - A S|y
Ci ™
s | r8 =y — ALPas]ls
6 end

7 conf! = F(r!)/(F(rf) + F(r9));

8 confd=F(rd)/(F(rl) + F(rv));

9 C = argming, Téi x conf! + Ta x conf9;
10 return C

Gesture 3D, MSR Action 3D, and MSR Daily Activity 3D [114]. However, to
the best of our knowledge, there is not such a dataset for affection recogni-
tion jointly from face and gesture combining both RGB channel and Depth
channel. To fulfill this vacant slot, we thus present a Face and Gesture
RGBD dataset for affection recognition (FG-RGBD) dataset which contains
videos from both RGB channels and depth channel from a Kinect camera.
Basic statistics are introduced briefly in this section.

There are ten affection categories in our FG-RGBD dataset, they are:
“uncertain”, “angry”, “surprise”, “fear”, “anxiety”, “happy (cheering)”, “happy
(clapping)”, “disqust”, “boredom” and “sad”. There are twelve subjects are
recruited to perform the ten categories of affections according to a simple
instruction. The subjects were asked to perform each affection in 4 different
records (video clips), each record (video clip) the subjects were asked to re-
peat 4 times. The dataset contains a significant subject-variance because of
two reasons: 1) the instruction used to direct the subjects has no more than
two sentences for each action, so the subjects have a big freedom to perform
the actions spontaneously, which is more close to reality. 2) The subjects are
from different races and genders: there are 1 American-African, 2 Latinos,
4 Caucasians and 5 Asians; there are 2 women and 10 men.

In our FG-RGBD dataset, both RGB frames and depth frames are pro-
vided, skeleton joint estimations computed from off-the-shelf software are
also provided yet not used in this work. There are in total of 480 videos as
well as 1920 affection samples collected.

In this work, the 1920 samples are divided into training set with 960
samples and testing set with 960 samples while none of the subjects appears
in both training and testing sets. Resolutions for RGB frames and depth
frames are 1280 x 1024 and 640 x 480, respectively. Some sample frames
from the FG-RGBD dataset are shown in Figure
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Figure 5.6: Example frames from proposed FG-RGBD dataset. Top, middle, and
bottom panels are for “uncertain”, “angry”, and “happy (cheering)” respectively.
RGB frames and enlarged face patches are shown on the upper and bottom rows

of each panel.

5.4 Experimental Results

In this section, we use FG-RGBD dataset to evaluate tasks for facial expres-
sion recognition and body gesture recognition and joint affection recogni-
tion. Quantitative results in term of recognition rates are reported and com-
pared with several baselines and state-of-the-art methods. Qualitative re-
sults in terms of cross-subject facial expression and gesture reconstruction
are also illustrated for future discussion.

5.4.1 Selection on subject limit N

In this part, we discuss the effect of subject limit IV selection in subject adap-
tive phase. As can be inferred from Figure if we select a small N, the
reconstruction error should be large but the time consumed in testing phase
is reduced. Although reconstruction error is not a concern per se in this
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Table 5.1: Performance comparison of different methods.

] Approach \ Exp. \ Gest. \ Joint ‘
Logistic Regression | 38.49% | 46.35% | 54.89%
FDDL [166] 43.39% | 61.25% | 64.84%
SRC[159]-FD 46.72% | 62.34% | 69.3%
Proposed Method | 48.80% | 62.66% | 69.7%

work, a over-relaxed reconstruction error can bring bad recognition accu-
racy. Therefore, we need to find a good tradeoff when selecting N.

As illustrated in Figure with the increasing N, recognition rate in-
creases. But after N = 8, it becomes stable. Two examples of “happy” are
shown for illustrating the progress of reconstruction. With the increase of
subjects available, the reconstruction error can be reduced from a “hybrid”
reconstructed face.

1 1 1 1 1
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Figure 5.7: Recognition increases with N grows but after some certain value, it
does not change. In this curve, the recognition rate reaches maximum as 48.8%
when N = 8. An example of original query face y and reconstructed face using
selected subjects (A*c,) are shown. We can observe that with the increase of IV,
the reconstructed face is de-personalized. Two samples of original query faces
and reconstruction sequences with varying N are shown in red and green boxes
(N = 1,5,8,11, respectively). It can be observed that the reconstructed faces
“evolve” to be more similar to the original queries.

5.4.2 Affection Recognition Performance Evaluation

In this part, we evaluation our affection recognition framework and com-
pare our system with state-of-the-art methods in term of recog-
nition rate. In our experiments, we conduct “leave-one-out” cross-subject
tests for all methods and report the averaged recognition rates. We use the



Chapter 5. Subject Adaptive Human Affection Recognition 56

face detector in [97] to localize face patches in RGB channels. The extracted
face patches are normalized to 150 x 150 resolution and aligned by RASL
[107]. We extract representative frame in the low-rank part of the aligned
face sequence (for details, please refer to [107]). The selected face patch is
down-sampled to 30 x 30 and vectored as feature vector. The subject limit
we select for facial expression channel is 8, but in average there are only 5
to 6 subjects are selected. As for body gesture model, we apply the same
procedure as for face patches using [107], then the body gesture patch is
normalized to 38 x 38 and vectored to be the feature vector for body ges-
ture. For single model evaluation, the subject limit is also set to 8. In all our
l; minimization process, we force the reconstruct coefficients o < 0.

Table5.1/shows the comparative results of several state-of-the-art meth-
ods and proposed framework. We also compare with a baseline method,
logistic regression, since logistic regression can explicitly output classifica-
tion probabilities of each class label. In Joint recognition, we apply the clas-
sification probability of facial expression model and body gesture model
to the joint decision. As for FDDL, we directly use the published code for
evaluation. Joint recognition with FDDL is accomplished by early fusion of
facial expression frame and body gesture frame.

From Table we observe that proposed method outperforms other
methods, especially in facial expression recognition part. We also observe
that in joint recognition, if we relax the subject limit constraint in body ges-
ture channel, the joint recognition result is better. We report our best per-
formance in Table

Figure illustrates the confusion matrices for affection recognition
from facial expression, body gesture and joint decision making. We observe
that the gesture recognition model solely perform superior than facial ex-
pression recognition model, especially between classes “happy (cheering)”
and “happy (clapping)” since the facial expressional attributes are very simi-
lar while gestures vary drastically. Body gesture model performs much bet-
ter in classes “surprised”, “happy (cheering)”, and “sad” since their gestures
are much more distinct with others. However, this model is a little am-
biguous in distinguishing between classes “anxiety” and “happy (clapping)”
because both gestures have similar attributes; similarly, classes “happy (dis-
gust)” and “boredom”, because both gestures contain action attribute like
“raising hands in front of chest”. Although facial expressional recognition
rate is lower than body gesture recognition rate in almost every class, we
can observe that the information contained in each model is quite comple-
mentary to each other: thus jointly recognizing affection classes reaches
much higher recognition rates, such as in class “anxiety”, “happy (clap-
ping)” and “disgust”.

5.5 Discusssion

In this chapter, a multi-modality affection recognition framework is pro-
posed by applying a two-layer recognition framework. The proposed method
can handle zero-shot facial expression recognition by searching the nearest
person in the existing data pool. Although the framework can partially
counter the effects of subjective differences, it is still problematic when the
query sample is too distant from all training samples. In the future work,
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the framework will be combined with subspace learning technique to han-
dle such cases more adaptively and accurately.
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Figure 5.8: Confusion matrices for (a) facial expression model, (b) body ges-
ture model, and (d) proposed joint recognition result. Obvious improvement
is achieved in joint recognition infers that facial expressions and body gesture
model contains very complementary discriminative information.
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Chapter 6

Human Activity Attribute
Learning based on Deep Neural
Networks and Graph Lasso

In this chapter, we discuss two aspects in human activity analysis: 1) au-
tomatic feature learning and 2) mid-level action attribute learning. For
the first task, we propose a multi-stream feature encoding pipeline using
deep learning for automatic feature learning. For the second task, a graph-
guided sparse coding framework is proposed to jointly learn different ac-
tion attributes while following the two constraints, affinity and sparsity. In
this chapter, we evaluate the proposed framework on both traditional ac-
tion recognition and zero-shot action recognition.

In human recognition, information received from all channels can ac-
tivate their corresponding neurons, which enable the high-level neurons
in a deep network to accomplish the abstract recognition task (e.g., face
recognition) [101]]. Inspired by this observation, we propose a uniform deep
feature learning architecture, which can automatically learn homogeneous
features from heterogeneous channels. These learned features are named
as Deep Activations, since each feature element acts like a neuron that can
be activated to capture some properties of the learning. Leveraging this
deep learning network, our system is able to treat each information chan-
nel identically. In other words, only the Deep Activations are visible to
the high-level learners such as the attributes proposed shortly. As a result,
deep learning models have been successfully applied to large-scale visual
recognition tasks using multiple layers of convolution filters [75| 122, 27].

Although the deep learning network has been very successful in vi-
sual recognition, the deep features are usually treated as mid-level features
[129], and function like signal filters, which affect the recognition perfor-
mance and limit their applications. Therefore, inspired by [83]], instead
of directly mapping deep features onto action labels, a set of pre-defined
action attributes serves as mid-level representations. These attributes can
boost recognition and enable new applications such as zero-shot learning.
As human bodies/joints are easier to track than open source videos in [83]],
we argue that action attributes are more appropriate for actions in depth
videos. To our knowledge, our work is the first attempt to leverage “at-
tributes” to recognize actions from depth videos.

In object attribute learning, Jayaraman et al. [55] propose to use “groups”
to define the relationships among object attributes. However, since object
attributes are much more fine-grained than action attributes (e.g., “furry”

s

and “brown”), they can be organized into “groups” such as “color”, “shape”
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Figure 6.1: Illustration of the proposed joint action attribute learning algorithm.
Instead of treating each action attribute independently, we apply a semantic
graph to guide the joint action attribute learning algorithm to preserve the re-
lationship among action attributes (e.g. “arm below torso” may share common
information with “arm motion” and “torso motion”.)

and “texture”, but it is not helpful to coarsely group action attributes based
on human bodies such as “arm”, “head”, “torso”, etc. For instance (see
Figure , the action attribute “arm below torso” is related to “arm above
head” as both describe positions of upper limbs, but it is also related to
“torso motion” because both are related to the body part “torso”. Therefore,
we argue that an undirected relation graph is better to capture the seman-
tic/ geometric relationships among action attributes compared to “groups”.
Actually, to some extent, the relation graph also groups attributes if they are
close on the graph. But it captures more complex relationship beyond the
“groups”. Our experiments further verify that attribute detectors trained
with the proposed graph perform much better than detectors trained with
“groups”.

In summary, as illustrated in Figure our system takes the hetero-
geneous visual information received from the 1D, 2D and 3D channels as
inputs, and then leverage the deep neural networks to automatically learn
the homogeneous deep activations. Building on the deep activation, our
system further jointly learns the attribute detectors by leveraging graph-
based constraints. These attributes enable zero-shot learning and further
boost the action recognition.

Our Contributions: 1) we propose a uniform framework to learn homo-
geneous deep activations from the heterogeneous information sources. It is
superior to most previous work on recognizing human actions from depth
videos, which heavily relies on hand-designed low-level features. 2) Our
system jointly learns attribute detectors by incorporating the attribute rela-
tion graph as constraints, which de-correlates some attributes, and as a re-
sult enables the detectors to “learn the right thing”. The relation graph cap-
tures the semantic/geometric relationships among action attributes, which
is superior to “groups” based constraints for action recognition. To the best
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Figure 6.2: Overview of the proposed deep activation-based action attribute
learning modeling. (a), (b) and (c) Multiple Convolutional Neural Networks
are trained on different dimensional representations of the given depth videos
such as 1D skeleton joint coordinates, 2D depth motion maps and 3D video vol-
umes. The CNNs are trained in a supervised manner where action labels are
used. (d) The second-last layer neuron activations from multiple CNNs are col-
lected as Deep Activations. (e) and (f) Semantic preserving joint attribute learn-
ing algorithm is proposed by leveraging the prior knowledge of relations among
attributes.

of our knowledge, this chapter is the first to leverage deep learning features
to jointly learn action attribute detectors constrained on the relation graph
to de-correlate attributes for action recognition from depth videos. The pro-
posed algorithm are evaluated on three benchmarked datasets, and experi-
mental results demonstrate the effectiveness of the proposed framework by
achieving the state-of-the-art performances on both attribute detection and
zero-shot action recognition.

6.1 Architecture of Learning Deep Activations

This section elaborates the architecture of each deep CNN in our multi-
stream deep neural network framework. An overview of three types of
CNN architectures is illustrated in Figure Note that the numbers of
dimensions in this figure are trained on the MSR Action3D dataset [79]. For
different datasets, these numbers may vary. |I|

1D Representation: In the 1D-Temporal-CNN model, the inputis a 1D
sequence where the dimension is the frame number of the depth video.
Each element in the sequence represents the skeleton joints in correspond-
ing depth frame. Each coordinate of a skeleton joint is compared with 1) its
two counterparts in the previous and initial frame and 2) the anchor joint
in the current frame and the differences are used for representation. Thus
the dimension of each joint is 6 and for each skeleton is 120 (20 joints). An

The actual numbers of dimensions shown in the figure may vary in different datasets.
Here the numbers of our models trained on MSR Action3D dataset [79].
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Figure 6.3: Overview of architectures for each of deep CNNs employed in pro-
posed algorithm. Top row is for 1D-Temporal-CNN and the middle and bot-
tom rows are for 2D-Spatial-CNN and 3D-Volumetric-CNN. Legend for layers
is shown in the top-right corner. Convolution filters of each layer are shown as
red cubes or rectangles. Dimensions of feature maps, deep activations and filters
are shown accordingly.

abstract feature extraction layer is composed by one temporal convolution
layer and one max-pooling layer. Three abstract layers and an additional
3-layer multilayer perceptron (MLP) are added. The deep activation layer
here denotes the second layer in the MLP, which is composed by abstract
features learned from input and supervised by its action label.

2D Representation: To capture the spatial energy distribution of an ac-
tion, Depth Motion Map (DMM) [169] is employed for each depth sequence
as the 2D representation. The input of 2D-spatial-CNN is a 128 x 128 depth
motion map that characterizes the spatial movement during the whole ac-
tion. Then 4 abstraction layers are employed before the MLP.

3D Representation: In many deep learning based action recognition
algorithms [74, 60], the spatial-temporal video volumes can also be a rep-
resentation per se. In our work, the depth spatial-temporal 3D volume it-
self is used as the 3D representation. The input of 3D-Volumetric-CNN
isa 128 x 128 x T (T" = 39 in Figure tensor which is the normalized
video volume itself. The filters are also 3D-tensors which are applied on the
spatial-temporal subvolumes of the depth video to extract features. More
implementation details for 1D, 2D and 3D representations can be found
in the appendices. In this work, each CNN is trained individually in a
supervised manner. By collecting deep activations learned from multiple
representations, the deep activations are desired to be discriminative from
different aspects. Another benefit of using multiple representations is that
it can alleviate the demand of a vast amount of training data for deep CNNs
[178].

We also apply drop-out layers together with each of the convolution
layers in all deep CNN models to avoid feature co-adaptation. The idea of
drop-out is proposed by Hinton et al. [47] to randomly zero some of the
neuron units during training phases. The drop-out layers can effectively
avoid the overfitting caused by complex co-adaptations, where feature de-
tectors are only helpful with a certain internal context. CNNs with ran-
dom drop-out layers show improvements on speech and object recognition
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benchmarks, and better generalization without using very large training
data. The CNNs in our work are trained in a supervised manner, while
the ground truths are action labels. Different with the framework in [178],
which directly learns CNNs on attribute labels, the CNNs of our frame-
work are trained to learn action discriminative deep activations without
the involvement of action attributes. The main reasons are two-fold. On
one hand, training CNNs directly on action labels can ensure the learned
activations are action discriminative. On the other hand, semantic rela-
tions between attributes are difficult to be directly embedded into a CNN.
More favored structure must be designed to learn action attributes. The
deep activations are the activations in the middle layer of MLP in each
CNN. We collect all deep activations together as the final output of the
multi-stream deep CNNs for each depth video sequence. For instance,
as illustrated in Figure the final output of the tri-stream model is a
200 + 1024 + 1024 = 2248 dimensional activation vector.

6.2 Semantic Preserving Multi-task Action Attribute
Learning

This section firstly discusses the characteristics of relations among action
attributes and the similarity / difference with object attributes. Then the for-
mulation of the joint semantic preserving action attribute learning problem
together with an efficient solution is introduced.

6.2.1 Semantic Relations among Action Attributes

Attribute learning is a popular topic in object recognition and face recog-
nition [34, 69, [131]. While modeling co-occurrence between attributes is
helpful in object recognition, attribute learning with de-correlating attribute
pairs can prevent excessive biasing the likelihood function on the train-
ing set [55]. In action recognition, the benefits of using action attributes
have also been initially explored in recent years [83]. However, as most of
previous methods in object attribute recognition, action attributes are of-
ten learned independently without considering the relations among action
attributes. In this chapter, we resolve this problem by embedding the rela-
tionships among action attributes into a joint multi-task attribute learning
formulation.

As object attributes are often fine-grained and have simple semantic re-
lations, simple grouping is often enough to capture the essential informa-
tion. However, action attributes have more complicated semantic relation-
ships than object attributes, thus need a more suitable structure. Human
action attributes often involve one or more body parts, therefore a natural
connection would be built on the body parts that the attributes involve. For
example, as illustrated in Figure the attribute “arm below torso” is re-
lated to body parts “torso” and “arm”, so it is related to attributes “torso
motion” and “arm motion”. In addition, since “arm below torso” is an at-
tribute describing “the position of upper limbs”, it is related to other attributes
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of the same topic, such as “hand above head”. In this work, the relation-
ships among attributes are represented by an undirected graph. An exam-
ple of such graph is given in Figure|6.1|and more detailed semantic graphs
can be found in the appendices.

6.2.2 Joint Attribute Learning

As suggested in [83]], we manually define a number of attributes as well
as their correspondences between each action class. The protocol to label
these attributes is based on motions and relative positions of body parts.
Therefore from the ground-truth action class labels, we obtain the attribute
labels for each training sample. 1 is used to indicate that the attribute is “ac-
tive” and —1 otherwise. In the following, the formulation the joint attribute
learning problem as a multi-task learning problem is proposed.
Formulation: Suppose there is a set of training samples X € RM*¥N
and corresponding attribute labels Y € {—1,1}**¥ where each column
Xiep,v) of X is a learned deep activation and each column Y; in YV is X;’s
attribute label. M is the deep activation dimension, NV and K are the num-
bers of training samples and number of defined attributes, respectively. The
objective is to learn a matrix W € RM>*X. Each column W[ k) in W is the
parameter of the corresponding attribute predictor where W/ X; = Y}*.
Therefore, learning the optimal IV is to minimize the following problem:

W* = argmin L(X,Y, W) + O(W), (6.1)
w

where L£(X,Y, W) is the empirical loss function of predicting attribute la-
bels. In this work, we use |[W? X — Y% as our loss. And O(W) is a regu-
larization term on W to pursue some prior structures such as sparsity.

What are the desired properties of W? Since deep activation vector is
discriminative on action labels and each one has the potential to describe a
semantic concept, so an attribute should have sparse response to the deep
activation vector. As suggested by [55] and [32], the group sparsity en-
forced by I> 1 norm plays an important role in feature selection. Secondly,
to preserve the semantic relationships among attributes, the attributes that
are semantically close should share features while distant ones should com-
pete for features. We advocate this property by using the graph Laplacian of
a predefined attribute graph.

By putting all the concerns aforementioned together, the problem of se-
mantic preserving joint attribute learning can be formulated in the follow-
ing shape:

W* = argmin |[WTX — Y||% + \|W|21 + Str(WLWT), (6.2)
w

where A and 3 are the weights for the row-sparsity and semantic preserving
regularizers, respectively. The first term is the empirical loss for predicting
attribute labels. The second term introduces row-sparsity to the learned
weight matrix, which avoids overfitting and includes feature-selection. The
third term models the relationships among attribute weight vectors based
on the graph.

Optimization: To efficiently and effectively solve the problem (6.2),
two auxiliary variables are introduced to make the problem separable, which
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give the following program:

min [|[PTX —Y||% + \|Q|l2.1 + Btr(WLWT)
W.P,0 (6.3)
st. W=P, W=Q.

The program in Eq. (6.3) can be solved in an unconstrained form by the
dual ascent method. To bring robustness to the dual ascent method, we
use Augmented Lagrangian methods (ALM) to generate the augmented

Lagrangian for (6.3):

Ly(X,Y, W, P,Q) = ||[PTX = Y[} + Q]2
+ Btr(WLWT) + (2, P — W)
+ 2P =W+ (2@ - W)

P

(6.4)

where Z; and Z, are Lagrangian multipliers associated with the two con-
straints in Eq. (6.3), and p is a positive penalty. Since the program in Eq.
(6.4) is separable, we can apply the alternating direction method of multipliers
(ADMM) [10] strategy. The solutions of the sub-problems based on ADMM
are shown as follows:
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Figure 6.4: Illustration of the effect of Algorithm@] on a synthetic dataset with 5
attributes (the top row) and MSR Action dataset with 30 attributes (the bottom
row). (a-d) and (f-i) are learned weights for sampled iterations. Columns corre-
spond to attributes and rows correspond to features or deep activations. Warmer
colors indicate higher absolute values in weight matrix, the more the attribute
relies on the feature. (e) The underlying semantic graph of the synthetic dataset.
(j) The result generated without graph involved for comparison. (k) and (1) show
two examples of graph-guided effects, please see text for details.
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W sub-problem: With unrelated terms discarded, this sub-problem be-
comes a classic least squares problem and the optimal W **1) can be calcu-
lated easily by:

WD — argmin L,(W, P(t)a Q(t))
w

= argmin Btr(WLWT) + BHP(t) -W+ ugt)H%
W 2 (6.5)

+ £l - W+u§”r\%
= p(PO + QW +u{V 4 4D (28L + 2p1) 71,

where ug =(1/ p) Y and u(t) (1/ p) 2 ) are scaled dual variables which

make the representat1on more compact by combining linear and quadratic
terms. Note that the matrix inverse (28L + 2pI)~! only needs to be com-
puted once.

P sub-problem: Similar to the W sub-problem, the P sub-problem is
also a classic least squares problem:

P(t+1) = argmin EP(X; Y) W(t+1)a P7 Q(t))
P
= argmin |PTX - Y%
" (6.6)
+ gHP — Wt 102
= @XTX + pD) T 2XTY 4 p(W D — )],

Please note that the terms (2X7 X + pI)~! and 2X7Y also need to be com-
puted only once.
Q sub-problem: The closed form solution of Q1) can be obtained by:

Q(t+1) — argmin Lp(w(t-i—l)’ P(t+1)’ Q)
= argmin \|Q|2,1 + 4\@ WD D)2, 67)
Q

= ST ),

©

where Se>0( ) represents the shrinkage operator [82].
In addition, the two scaled dual variables u; and us need to be updated
using corresponding residuals:

gt+1) _ (t) 4 pt+D) _ p(t+1)
(t+1) _ t+1) t+1 (6.8)
5 D QU D),

For clarity, we summarize the optimization procedure of the deep activation-

based attribute learnmg algonthm (DAAL) in Algorlthm Al The algonthm
terminates when (|| P(*) Ollr +1QW O r) < 6(| PO Olp +
1Q®) — WO ) where § = 10 %, or when the predefmed max1mal number
of iterations is reached.
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Algorithm 4: DAAL
Input: Deep Activation Matrix X, Attribute Ground-truth Y
Initialization: Randomly initialize W (*),P(®),Q(®), Set ugo) and ugo) to

be zero matrices. p = 1.5, =0

1 while not converge do

2 update W1 via Eq. (6.5)

3 update P+ via Eq. l@h

4 update Q1) via Eq. 1@)

5 update u(1t+1), ugtﬂ) via Eq.

6 t=t+1

7 end
Output: Optimal solution W* = W ®)

Table 6.1: Attribute detection scores (mean average precision) and zero-shot ac-
tion recognition rates on three benchmark datasets, higher is better.

Tasks Detection scores (MAP) Zero-shot learning (%)
Datasets MRA UTA MRP MRA| UTA | MRP
Methods S U S U S U 120 120 120

no-regularize 4057 | 4913 | 4880 | .3620 | .5305 | .5254 || 50.27 | 53.40 | 55.89

lasso .8283 | .5105 | .9473 | 4293 | 9894 | .6414 || 67.82| 80.94 | 93.28

all-sharing [32] | 4291 | .4794 | .6085| .3989 | .5590 | .5809 || 49.48 | 73.07 | 81.82
group-lasso [55] | .9356 | .5236 | .9051 | .4329 | .9985 | .6405|| 70.81 | 81.53 | 93.27
proposed 9667 | .5356 | .9687 | 4304 | .9994 | .6426 || 72.03 | 81.89 | 94.69

6.3 Experimental Results

Effectiveness of the Algorithm: To better understand our joint attribute
action attribute learning process, a simulation is conducted on five attributes
with 1000 features. The semantic relationships among these attributes are
shown in Figure (e). One can consider the attributes to be {1: “arm-
upward motion”, 2: “arm-downward motion”, 3: “arm-motion”, 4: “arm below
torso”, 5: “leg motion”}. Learned weights for sample iterations are shown
in Figure (@) to (d), from which we can observe that the semantic re-
lationship among attributes are more obvious with more iterations, note
that warmer colors indicate higher absolute weights and each column cor-
responds to the weight vector for an attribute. In (d), attribute “1”7,“2” and
“3” share many features, “3” and “4” share some features and “5” barely
shares features with other attributes.

In addition, a similar experiment is conducted on a real dataset, MSR
Action Dataset [79]]. 284 samples are used with 2248 deep activations and
the activation-attribute map is visualized for sampled iterations in Figure
(f) to (i). In (k), we show the learned pattern showing that “arm in-
front-of torso” and “arm above head” tend to share features with arm-related
motions while (1) “arm below torso” tends to share features with torso related
motions. For comparison, the weights learned on the same set of features
without graph involved are illustrated in (j).



Chapter 6. Human Activity Attribute Learning based on Deep Neural

Networks and Graph Lasso 68

6.3.1 Experiment Setup and Datasets

Datasets: There are three datasets for depth based action recognition used
in the experiments, including the MSR Action 3D dataset [79] (MRA), the
UTA Action 3D dataset [162] (UTA) and the MSR Action Pairs dataset [103]
(MRP). The MRA dataset contains 20 gaming actions, such as “two arms
waving” and “golf swing”. Each action is performed by 10 different sub-
jects and the subjects perform each action 2 to 3 times in the same location.
The UTA dataset contains 10 actions which cover movements of hands,
arms, legs and upper torso. Each action is performed by 10 different per-
sons. The MRP dataset contains 6 pairs of actions that each pair of actions
has opposite temporal orders, such as “push chairs” and “pulling chairs”.
Different from the MRA dataset, UTA and MRP allow the subjects moving
around while performing actions. We define 30 action attributes for MRA,
19 for UTA and 16 for MRP, where they share some common attributes such
as “arm-motion”, etc.

Deep Activations: For the MRA and MRP datasets, since the skele-
ton joint locations are available, we apply all three streams of deep CNNs
as illustrated in Figure For the UTA dataset, only the DMM-based 2D
CNN and the video-volume-based 3D CNN streams are applied because
the skeleton joints are not available. For the MRP and UTA datasets, since
the temporal order plays an important role and the 2D representations is
temporal order invariant, multiple CNNs are trained for 2D representa-
tions following the idea of temporal pyramid. For thorough lists of action
attributes, their relationships, and CNNs used in each dataset, please refer
to the appendices.

Baselines: For attribute detection and zero-shot learning, the proposed
method is compared to four related baselines. All empirical loss functions
are same as in Eq. for uniformity. The four baselines include (1) “non-
regularize”: is single-task learning using least-squares loss without any reg-
ularization term. (2)“lasso” is l1-regularized. (3)“all-sharing” is a multi-task
learning method with 5 ;-regularized. (4) “group-lasso” is using the same
regularize terms as in [55]. We set the default parameter values of A and 3
for each baseline (if existed) to 1.

6.3.2 Attribute Detection and Zero-shot Action Recognition

This section shows the evaluation of the proposed joint attribute learning
method on all three datasets with two tasks: 1) attribute detection and 2)
zero-shot action recognition using only the learned attributes. For the first
task, we employ two splitting ways for training and testing sets: 1) “Seen”:
this is the same as the “cross-subject” splitting protocols as in [154], [162]
and [103]], where half of the subjects are used for training and the remain-
ing half for testing. All action classes appear during training. 2) “Unseen”:
the protocol introduced in [83] as “leave-two-out” scheme, where all com-
binations of action classes are considered. Since some combinations may
contain attributes that do not appear in the training set, we leave these com-
binations out and keep the rest. For the MRA dataset, there are total of 104
combinations which fulfill this condition. For the UTA dataset, there are
20 such combinations and for the MRP dataset there are 64 combinations.
Since the training on the 3D volumetric deep CNNSs is time-consuming, we
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Figure 6.5: The average accuracies of zero-shot action recognition test on the
MRP dataset using deep activations based on 1D, 2D and both representations.

only train CNNSs for each combination using 2D spatial and 1D spatial mod-
els for “Unseen” tasks, if available.

Table [6.1] shows the action attribute detection results in terms of mean
average precisions (MAP) and zero-shot action recognition in terms of recog-
nition rates. Our method outperforms other baselines in most tests. The
poor results obtained by “no-regularize” indicate that the training process
is easy to overfit. We observe that “group-lasso” performs stably during
all tests while “all-sharing” and “lasso” do not always perform well, which
suggest that solely pursuing sparsity may result in biased attribute estima-
tions. Preserving the semantics in attributes is beneficial for attribute de-
tection. In most cases, our method significantly outperforms “group lasso”
which is proposed in [55]. This is because our method is more suitable in
modeling relationships among action attributes. The right panel of Table
lists the zero-shot learning action recognition results. Our method gen-
eralizes well in all datasets when dealing with zero-shot action learning,
which demonstrates that our method learns better and more discriminative
attribute vectors. By comparing attribute learning results and zero-shot
learning results, we notice that higher MAP scores in attribute detection
may not necessarily lead to better classification results in zero-shot action
recognition, especially when they are very close.

Figure |6.5/ shows the class-wise average accuracies comparison of us-
ing deep activations learned from 1D, 2D, and 1D+2D CNNs. We observe
that deep activations learned from multi-stream CNNs perform better than
single streams. It is interesting to observe that 2D model performs better
than 1D model except for action pair “lift up box” and “place down box”,
since this pair of actions involves drastic motion “bent”, which is easy for
joint-based models.

6.3.3 DAAL Boosting Action Recognition

In this section, we compare the action recognition accuracies with some
state-of-the-art methods. All the results for three datasets are shown in Ta-
bles [6.2}6.3, and In all experiments, the same protocols used in [154],
and [103] is followed, where half of the subjects are used for train-
ing and the other half of subjects for testing. We evaluate deep activations,
learned action attributes and their combination.

From Tables[6.26.3] and[6.4, one can notice that the deep activation vec-
tors are very discriminative, which demonstrate the effectiveness of our
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Methods Accuracy
Bag of 3D points [79] 74.70%
HOJ3D [163] 79.00%
STOP [150] 84.80%
ROP [155] 86.50%
Actionlet [154] 88.20%
HON4D [103] 88.89%
DSTIP [162] 89.30%
Pose Set [[153] 90.00%
SNV [168] 91.64%
Moving Pose [173]] 91.70%
deep act. (Ours) 92.30%
attr. (Ours) 87.18%
deep act. + attr. (Ours) 93.40%

Table 6.2: Comparison of action recognition rate on MSR Action 3D with other
methods using the protocol in [154].

Methods Accuracy
Posture Word[162] 79.57%
DSTIP [162] 85.80%
deep act. (Ours) 86.87%
attr. (Ours) 78.79%
deep act. + attr. (Ours) 87.88%

Table 6.3: Comparison of action recognition rate on UTA Action 3D dataset with
other methods using the protocol in [162].

multi-stream deep architectures. Compared to previous features, the learned
attributes are very compact (only 16~30 dimensions) and discriminative in
action labels. By combining the learned activations and attributes together,
our proposed framework achieves the best performances on all three datasets,
because the attributes transfer knowledge from other classes to further com-
plete the information for action classification.

6.3.4 Evidence of Learning the Right Things

In this section, we conduct an experiment to show what the attribute learner
learned from deep activations. For visualization purpose, only 2D repre-
sentations are used in this experiment. Given a 2D representation, we use
a patch with random values to occlude it and use pre-trained deep CNN
to generate the deep activation vector. Then the learned attribute classifier
is employed to generate an attribute vector. By comparing the generated
attribute vector with the ground-truth attribute vector, we propagate the
deviation to the locations where the patch is. By densely sampling multi-
scale occlusion patches, we can accumulate an error map, which implies
the responsible region of every attribute. Some results are shown in Figure
By comparing results generated by “group lasso” (top) and ours, our
method locates more accurately for regions responsible for a specific action
attribute than “group lasso”. For example, in action “hand clapping”, the
attribute detector for “arm-motion” in “group-lasso” concentrates on the
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Methods Accuracy
Skeleton + LOP [154] 63.33%
[154] + Pyramid 82.22%
HONA4D[103] 97.67%
SNV [168] 98.89%
deep act. (Ours) 98.89%
attr. (Ours) 87.22%
deep act. + attr. (Ours) 99.44%

Table 6.4: Comparison of action recognition rate on MSR Action Pairs dataset
with other methods using the protocol in [103].
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Figure 6.6: Sample results showing the responsible regions for attributes from
UTA dataset. The top row shows the results generated by [55], the bottom row
shows ours.

lower-body and ours covers more on the hand area. This experiment fur-
ther demonstrates that our proposed method is more suitable for feature
selection in action attribute learning and it can locate the right part for a
specific attribute.

6.4 Discussion

The main direction of our future work will be to develope a more sophisti-
cated and suitable cost function which can integrate the attribute learning
cost to the network training. Therefore the whole network can be re-trained
more effectively. In addition, the architecture of the networks is still not
deep enough, which limits the potential of learning more powerful rep-
resentations. In the future work, the deep activation learning phase and
the attribute learning phase will be integrated together into a holistic neu-
ral network which can be tuned end-to-end. Finally, the deconvolutional
techniques will be also integrated into our framework to shed light on the
learned saliency maps as shown in Figure
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Chapter 7

Deep Learning-based Video
Content Description

In previous chapters, we have discussed about how to model the mappings
from visual signals (images or videos) to a discrete set of pre-defined la-
bels. In this chapter, we focus on automatically generating meaningful and
informative human-level English descriptions of input visual data. More
specifically, we propose a multi-channel sequence-to-sequence video cap-
tioning framework based on recurrent neural networks.

Automatic visual content understanding and describing have become
a fast-growing research area in computer vision for the recent decade. Ef-
fective understanding visual medias can significantly improve the perfor-
mance of computer programs to automatically analyze and organize the
online media. With the recent ground-breaking progress in large-scale vi-
sual recognition and deep neural networks, an explosive amount of tech-
niques have been proposed in object recognition [23, 122], scene under-
standing [33, |41] and action recognition [74, 143]. These findings success-
fully broaden the horizon of visual recognition research. Combining with
the rapid progress of natural language processing, visual content describ-
ing has drawn more and more attention in the field of computer vision and
machine learning. How to bridge the gap between visual content and nat-
ural human language has become the motivation of many research topics,
such as image and video captioning.

Automatic image captioning deals with both images and textual data
and generates natural sentences to summarize input image content. Gen-
erating descriptive sentences for images requires knowledge from multiple
domains such as computer vision, natural language processing, and ma-
chine learning. Inspired by the recent renewed interests in deep learning
techniques, there are many image captioning frameworks proposed [171,
15,90} 59, (151} 14]. The paradigm for generating captions for images takes
two steps: 1) Encoding stage: the visual input (an image) is processed by a
feature extraction layer (encoder). 2) Decoding stage: a language model is
applied to decode the input feature encoding to a pre-defined vocabulary.
The output sentence is generated based on the probabilistic distribution
over the vocabulary using the language model. Recurrent neural network
(RNN) has been proven to be an effective choice for the decoder because
RNN is capable to address the temporal dynamics in output sentences.

Video captioning is a similar problem with image captioning and the
encoder-decoder framework is also applicable for this problem. However,
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Figure 7.1: Illustration of our proposed video captioning framework. Two chan-
nels of input frames are utilized: motion history images (MHIs) and RGB video
frames. Firstly, raw features are extracted from each input channel frames us-
ing 3D convolutional neural networks. The feature extraction phase generates
sequential features of arbitrary lengths. Secondly, the sequence of features is
encoded using RNNs with LSTM cells for each channel. Then a fusion layer is
employed to combine the encoded features from both LSTM encoders. Finally
the fused features are fed into a LSTM-based language decoder to be decoded
into a sequence of words. “<EOS>" represents the “end of sentence” token.

different from static images, videos contain much more semantic informa-
tion related to temporal dynamics. In [1]], the authors explored to automati-
cally assign conceptual tags to YouTube videos by learning from both visual
and audio features. The authors of treated the problem as an activity-
recognition problem. They built hierarchical semantic trees to organize
detected entities such as actors, actions, and objects. Zero-shot-learning-
based language models were applied on the learned hierarchies to assign
a short sentence to summary the detected potentials. Similarly, semantic
triplets (subject-verb-object) were also used in to organize detections of
objects and activities for sentence inferencing. Quadruples were utilized
in to include more information from the context and scene for more
accurate descriptions. Other efforts made to improve the performance of
automatic tagging include video tag augmentation [98], video clustering
[51], and video re-ranking [157]. Inspired by the successful utilization of
LSTM-based RNN’s in image captioning, there has been a lot of work using



Chapter 7. Deep Learning-based Video Content Description 74

RNN s for video captioning. In [149], Venugopalan et al. proposed to ap-
ply average pooling over image features extracted from each video frame
to obtain a video feature. Then the video feature was encoded to feed into
a LSTM-based RNN language model for sentence decoding.

In this chapter, we propose a novel framework for video captioning
task. The main idea is illustrated in Fig. To include more temporal
motion-related information from the input video sequences, two channels
(motion history images and raw video frames) are employed as video in-
puts. Our proposed framework integrates three different types of neural
networks to perform automatic video captioning:

1) 3D-CNN: instead of using object-detection-oriented feature extraction
networks (such as VGG and AlexNet), we employ 3D convolutional neural
networks (3D CNNis) to extract spatial-temporal features from video clips.
2) RNN Encoder: since the length of each video is arbitrary, the generated
3D CNN features are also of arbitrary lengths. A recurrent neural network
(RNN) with long-short-term-memory (LSTM) cells is employed to map the
sequential inputs to a fixed-dimensional encoding space. To jointly learn
the encoding from two input channels, one LSTM encoder is assigned to
each channel and the two encoders forms a parallel system. The fusion
layer is a fully-connected layer which maps the LSTM internal states to the
encoding space and the encoded vectors are concatenated.

3) RNN language model: the RNN language model defines a probability
distribution of the next word in a sequence based on both the context and
the current word. In our model, the context encoded in the form of LSTM
internal state and initialized by the learned encoding vector.

In addition, we also explore the potential utilization of the proposed
video captioning framework in automatic video-based American Sign Lan-
guage (ASL) translation. ASL is a visual gestural language which is used
by many people who are deaf or hard-of-hearing. Automatically generat-
ing textual descriptions from ASL videos can significantly benefit the ASL-
using population to communicate with non-ASL users. To the best of our
knowledge, there has been no such effort to link ASL translation with video
captioning before. We have collected a large-scale dataset from YouTube
uploaded by ASL signers and gained annotations by aligning the video
clips with subtitles. The proposed network is able to gain ASL-oriented
knowledge from the dataset and to generate meaningful sentences from
ASL videos.

The contributions of this work have three aspects:

* A sequential LSTM encoder framework is proposed to learn to embed
video sequences addressing both spatial and temporal information.

* Our framework can handle multiple streams of input sequences and
automatically learn how to combine.

* We are the first to explore video captioning in the area of ASL trans-
lation and provide a novel dataset in this area.

The rest of this chapter is organized as the following. Section[7.T|elaborates
the architecture of the proposed framework. Then the datasets used and
proposed by this chapter are described in Section Section [7.3| discusses
the experiments.
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7.1 Method

The framework of our proposed method is illustrated in Fig. The whole
framework is composed of four core modules: 1) 3D CNN-based feature ex-
tractor. 2) Sequential feature encoder. 3) Parallel fusion layer. 4) Sentence-

generation language module. Both the feature encoder and the language
module are based on RNNs with LSTM cells.

7.1.1 LSTM-based RNNs

Recurrent neural network (RNN) is a category of neural network containing
an internal state. RNN is able to encode a dynamic temporal behavior due
to its connections between units form directed cycles. The internal state
of RNN can be treated as a state of memory, which contains information
of both current input and the previous memory. Therefore, RNN has the
capability to “remember” the history of both previous inputs and outputs.
RNN is widely applied in prediction frameworks which is dependent on
context, such as machine-translation [2]. A RNN cell can be formatted as:

ht = O'(Whhtfl + le‘t), (71)

where h; and x; denote the hidden state and input encoding at time step
t, respectively; W), and W, denote the parameters assigned to each state
vector. o(-) denotes the sigmoid function.

However, RNN often suffers from modeling long-term temporal depen-
dencies [7]. A modification called long-term-short-memory (LSTM) is pro-
posed for better long-term temporal dependency modeling with more so-
phisticated internal states and connections. A typical LSTM cell can be for-
matted as:

it = o(Wizy + Uihy—1 + b;)

or = o(Woxy + Uphi—1 + o)

fi = O'(Wf$t +Ushi—1 + bf)
Cy = tanh(Wexy 4+ Ushy_1 + be)
Ci=fioCi1+i0C

ht = o1 © tanh(Cy),

(7.2)

where © is element-wise product; o(-) denotes the sigmoid nonlinearity-
introduce function; z; is the input encoding at each time step ¢ to the LSTM
cell, W, Wy, W, W, U;, Uy, Ue, and U,, are weight matrices assigned to pa-
rameters of input gate, forget gate, cell state and output gate, respectively;
bi, by, b. and b, are bias vectors for corresponding gates and states; i, oy, fi,
C and h; denote the state values of input gate, output gate, forget gate, cell
state and hidden state, respectively. C; represents the candidate cell state
before combining with the previous cell state (C;—1) and the forget gate.

In our work, the LSTM cells are the building blocks of two types of
RNNSs: 1) feature encoding RNN and 2) sentence decoding RNN (language
model). The illustrations of both RNNs are shown in Fig. The two types
of RNN cells are connected as illustrated in Fig. The feature encoding
RNN is responsible to encode the sequential inputs from video features;
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Figure 7.2: Illustration of two types of recurrent cells for feature encoding and
sentence decoding, respectively. Both cells contain an internal LSTM cell. At
each time step, feature encoding recurrent cell takes an input video feature (v;)
and sentence decoding cell takes an input as the word-prediction (w;) from the
previous time step. Note that the MLPs in both cells act as look-up tables which
map the input vector to the internal input vector ().

and the sentence decoding RNN is responsible to decode the output from
encoding RNN to a sequence of words.

7.1.2 Feature encoder

Suppose the input video sequence V' = {c1,ca,...,cr} is composed of T
short video clips. Without loss of generality, the length of each video clip
|lci|| could equal to 1 to represent individual frames. The video sequence
can be encoded with a feature extractor ¢ (such as C3D [143] and VGG-net
[128]), thus the video can be represented as: ¢(V') = {v1, vz, ..., vr}, where
v = ¢(ct) denotes a video feature vector for a video clip.

Therefore, the input video can be encoded into a sequence of feature
vectors {v; }. For the feature encoding RNN as illustrated in Fig. [7.2|(a), one
video feature v; is fed into the RNN cell with a multiple-layer-perceptron
(MLP). The MLP can represent any multi-layer neural network, and in our
case the MLP indicates a fully-connected layer followed by a ReLU layer.
Note that the MLP acts like a look-up table, mapping the input feature vec-
tor into a continuous RNN embedding space. At each time step ¢, the RNN
cell takes input from both the previous cell and the video sequence; it en-
codes the input vectors using an internal LSTM cell and output hidden state
h; and cell state C; to the next cell. The behavior of the internal feature en-
coding LSTM cell (LST MF) can be formatted as:

[ht, Ct] = LSTMFE(ht_l, Ct—h MLP(U,:)) (73)

Parallel fusion layer. Our framework is designed to handle video en-
codings from multiple channels of the input video, such as RGB frames and
motion history images (MHI) as shown in Fig. Because different chan-
nel of video encoding contains different information, each channel should
have its own feature encoding so that the intrinsic characteristics can be
encoded. In our framework, to connect the output encoding vectors from
feature encoding RNNs and the input of sentence decoding RNN, a parallel
paradigm to conduct the mapping is employed:

ENC(V) = MLP(hy) ® MLP(hy), (7.4)
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where ENC(V') denotes the final video encoding of the input video V' and
@ denotes vector concatenation; hr and h/T denote the final state vector
of two streams of RNN encoders. Note that the dimension of ENC(V)
matches with the dimension of RNN encoding space in the language model
decoder.

7.1.3 Language model

A general language model is usually designed to compute the probability
of a sequence of words:

p(wr, wa, ..., wg) = plwg|wrg—_1,,,w1) - ... - p(wa|wy) - p(wn), (7.5)

where w; is the i*" word in the output sentence.
In video captioning scenario, the language model is designed to com-
pute the modified probability:

p(wla w2, "'7wK7Y) = p(wK|wK—1a 5y W1, Y)p(UJQ|U}1, Y)p(wlv Y)a (76)

where Y = ENC(V) represents the encoded video.

In our framework, the language model is implemented with a RNN-
based sentence decoder, as shown in Fig. [7.2|(b). More specifically, the RNN
decoding cell at each time step computes the probability by providing the
previous output words and the video encoding as following;:

plwilwi—1,,,w1,Y) = p(w|hy) = SM (hy)
[he, Ct) = LST M (e, hi—1,Ce—1)

Y, ift =1
T+ =
! MLP(1(wi—1)), otherwise,

(7.7)

where SM (-) represents a soft-max layer and 1(-) denotes the 1-hot-vector
representation of the word index. Note that the MLP learns the mapping
from word-index to the RNN internal space. The output word w; is sam-
pled according to the probability distribution computed by the soft-max
layer.

7.1.4 Video representation

In this section, the procedure of obtaining video representations, i.e. ¢(V),
is discussed.

Spatial-temporal feature extraction. In [149], the video representation
is obtained from mean-pooling of static image feature vectors of each frame.
However, videos are more than combinations of individual frame. Only
including static image features can capture the visual appearance such as
objects and scenes, but discard the information of temporal motions. For
example, in the example of Fig. information about “panda” could be in-
cluded in visual appearance features, but information about “sliding” will
more likely be included in motion features. To capture sufficient spatial-
temporal features, our framework employs two strategies: 1) two channels
of raw video representations are included: motion history images and RGB
video frames. MHI focus on temporal motions and RGB frames focus on
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spatial appearances. 2) For each short clips in each channel (16 frames),
temporal-spatial features are computed via a 3D convolutional neural net-
work (C3D [143]). The C3D networks are pre-trained on action recognition
dataset so that they are capable to capture discriminative spatial-temporal
features.

Context embedded video representation. Before feeding the extracted
C3D features into video encoding RNNs, an additional pooling layer is
added to provide more context information to the video representation:

o(V) = {vo,v1,...,vr}

_Jmax_pool(vy, ...,vr), ift=0 (7.8)
L C3D(cy), otherwise,

where v; represents the input for video encoding RNN at each time step ¢
and ¢; represents the corresponding video clip.

Therefore, at time step ¢t = 0, the encoding RNN is fed with the “con-
text” vector, which is the max pooling vector over all C3D feature vectors.
In this way, the video encoding RNN starts with the holistic knowledge
about the whole video before taking the sequential inputs representing each
video clip.

7.2 Datasets

7.2.1 Microsoft video description corpus

The Microsoft video description (MSVD) corpus is a video snippet-based
dataset, which focuses on describing simple interactive events, such as driv-
ing, cooking, etc. Each video snippet is collected from YouTube. There are
about 1,658 video clips in this corpus which are available by the time of
our experiments. Each video snippet lasts from multiple seconds to several
minutes. Human annotators were asked to describe the video snippet us-
ing one sentence from any language. Since each video snippet was assigned
to multiple annotators, there are multiple sentences for one video snippet.
Here, our chapter only focuses on English descriptions. Among the 1,658
video snippets, 300 are used as testing and the rest are for training.

7.2.2 Movie Description Datasets

In this chapter, two movie description datasets are employed: Max Planck
Institute for Informatics Movie Description Dataset (MPII) and Montreal
video annotation dataset (MVAD). Both of the MPII dataset [118] and MVAD
dataset [141] are collected from Hollywood movies. MPII dataset contains
over 68,000 video snippets from 94 High-definition movies and MVAD
dataset contains 49,000 video snippets from 92 movies. The text annota-
tion from the MVAD dataset is from Descriptive Video Service (DVS), a
linguistic description that allows visually impaired people to follow the
movie. Besides DVS, the MPII dataset also employs movie scripts to en-
rich the text annotations. Both datasets are very challenging compared to
the MSVD dataset in several aspects: 1) movie videos have more complex
scenes and varied backgrounds. 2) The text annotations are sourced from a
combined corpus, therefore the linguistic complexity is much higher than
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well-structured sentences as in the MSVD dataset. The MVAD and the
MPII datasets belong to the recent Large Scale Movie Description Challenge
(LSMDC). We report evaluation on the public testing set, where the MPII
dataset has 3, 535 testing video/sentence pairs and the MVAD has 6, 518.

7.2.3 American Sign Language video description corpus

To the best of our knowledge, previous automatic ASL recognition frame-
works only focus on hand gesture or facial expression recognition. We fur-
ther explore the utilization of video captioning framework for ASL recog-
nition. Since there is no proper public dataset for this task, we propose a
new dataset, ASL-TEXT, collected from YouTube. This proposed dataset is
focused on describing videos of ASL signing, and it contains about 20, 000
video-sentence pairs. The ASL-TEXT dataset is very challenging in two
aspects: 1) the scenes are complex but irrelevant, and the only relevant in-
formation is from human facial expressions and body gestures. 2) The sen-
tences are extracted from YouTube subtitles, some of which are generated
by automatic voice recognition. Therefore the language complexity and
variation are even higher than the previous mentioned movie description
datasets.

The resource of ASL on YouTube comes in several categories, such as
ASL lessons, ASL songs, and ASL instructions provided by public institutes. We
manually search on YouTube with multiple textual queries such as “ASL”,
“American Sign Language”, and “ASL Lessons”, etc. The search results are
further manually filtered using several criteria: 1) the search results should
be correct ASL signing. 2) The subtitles associated with the video snippets
should be available. 3) There should be only one frontal-view signer in
the video. To further rule out unnecessary background noises, face detec-
tion is applied on each video frame and the video frames are then centered
and cropped according to the face detection results. Some examples of the
dataset are shown in Fig. [7.3](d).

Table 7.1: Comparative statistics of the propose ASL-TEXT dataset with the
MSVD and MPII datasets.

‘ #-sentences ‘ #-words ‘ vocab. size ‘ avg. length

MPII 68,375 679,157 21,700 3.9s
MVAD 56,634 568,408 18,092 6.2s
ASL-TEXT 22,527 178,637 11,193 5.4s

Following the convention in MPII and MVAD datasets, each video is seg-
mented into several short snippets. Since each video in our dataset has
caption (or subtitle) available, we segment the videos so that each video
clip corresponds to one sentence in the caption text. As a result, the ASL-
TEXT dataset contains 22, 527 video/sentence pairs and the average length
of video clips is 5.4s. The sizes of vocabularies in the three datasets are com-
parable but the ASL-TEXT dataset has less words. The ASL-TEXT dataset
is more challenging because the averaged word frequency is much lower
than in the other two datasets.
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7.3 Experimental Results

7.3.1 Experimental setup

Metric. In this chapter, we mainly evaluate the proposed framework using
the METEOR evaluation metric [24]. Compared to other n-gram-based met-
rics such as BLEU [105], METEOR is more appropriate to evaluate sequen-
tial predictions. METEOR scores the predictions by aligning them to more
than one reference sentences, which are based on exact, stem, synonym,
and paraphrase matches between words and phrases. Therefore METEOR
takes more linguistic and semantic information into consideration.

Loss function. In each iteration during the training process, a batch of im-
ages is fed into the neural networks, and the language decoder generates
a sequence of probability distributions. A log-likelihood function is ap-
plied for each probability vector and corresponding ground-truth vector
(1-hot-vector). The losses and gradients are then computed by maximizing
the likelihood function. The losses and gradients are averaged and back-
propagated to the preceding network modules for parameter updates.
Training and optimization. For computational efficiency, we assign the
weights for the C3D networks with a pre-trained network and do not apply
fine-tuning. The rest of the modules (LSTM feature encoder, fusion layer,
and LSTM language decoder) are trained end-to-end using stochastic gra-
dient descent. The learning rates for all modules are set to 0.0001. Each
iteration contains a batch of 16 samples. All RNN sizes are set to 1024. The
drop-out rates for both encoder and decoder are set to 0.5. We implement
the networks using Torch?7 [18] and CuDNN. It takes about 1 to 3 days to
converge on the training set using a GeForce TitanX core, depending on the
sizes of datasets.

7.3.2 Video Description Results

MSVD dataset. The comparative METEOR scores of the proposed and
other methods are shown in Table The proposed method significantly
outperforms the baseline factor graph model (FGM [138]) by 6.3%. Com-
paring with mean-pooling methods [149], the improvements are 1.1%~3.3%,
which demonstrate that including more temporal dynamic information is
beneficial. Comparing with the current sequential modeling state-of-the-
arts, temporal attention (TA) [172] and S2VT [148]], our proposed method
performs slightly better (30.2% vs. 29.0~29.8%). Some qualitative results
are shown in Fig. [7.3/(a).

MSVD dataset is more focused on describing static human-object inter-
actions and scenes, such as “someone is doing something in somewhere”.
Comparing temporal-based methods (the proposed, TA [172] and S2VT
[148]) and static-based methods (mean-pooling [149]), there are improve-
ments but limited.

MPII and MVAD datasets. To further comparative evaluate our pro-
posed method with the state-of-the-arts on more temporal-focused datasets,
two movie-based datasets (MVAD and MPII) are employed for comparison.
The proposed framework and other state-of-the-arts are compared in Table
Despite the scores on each of the MPII and MVAD datasets, we also
report the overall scores (weighed by the sizes of testing set). Our result
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Table 7.2: METEOR scores on the MSVD dataset.

Method METEOR (%)
FGM [138] 239
AlexNet [149] 26.9
VGG [149] 27.7
AlexNet-COCO [149] 29.1
GoogleNet [172] 28.7
GoogleNet + TA [172] 29.0
GoogleNet + 3D-CNN + TA [172] 29.6
AlexNet(Flow) + S2VT [148] 24.3
AlexNet + S2VT [[148] 27.9
VGG + S2VT [148] 29.2
VGG + AlexNet(Flow) + S2VT [148] 29.8
Proposed 30.2

(7.06) outperforms Visual-Labels (6.55) and VGG (6.31) by 0.51 and 0.75, re-
spectively. It is beneficial to explicitly model the temporal dynamics of the
input videos.

Compared to the previous state-of-the-art sequence-to-sequence model
(S2VT [148]]), our framework outperforms by 0.25. The experimental results
demonstrate that our framework can avoid feature entanglement so that it
can better model the temporal structures of videos.

Table 7.3: METEOR scores (%) on the Movie Description datasets, higher is bet-
ter.

Method MPII [118] | MVAD [141] | Overall
SMT [118] 5.6 - -
Visual-Labels [117]] 7.0 6.3 6.55
VGG [149] 6.7 6.1 6.31
Temporal Attention [172] - 4.3 -
S2VT [148] 7.1 6.7 6.81
Proposed 7.0 7.1 7.06

7.3.3 ASL-TEXT

Since there is no other result available on our ASL-TEXT dataset, we evalu-
ate the proposed framework on this new dataset comparing among differ-
ent network configurations. There are two aspects to be investigated in this
comparative evaluation. Firstly, since our fusion layer can assign different
dimensions to each feature channel, the impact of assigning different por-
tions to RGB and MHI is discussed. Secondly, the impact of RNN sizes for
both feature encoders and language decoders is discussed. 20, 527 training
samples and 2,000 testing samples from ASL-TEXT are used and the ME-
TEOR scores of different configurations are shown in Table In Table
(RGB)% denotes the parameter of how much percent of the encoding
feature dimensions is assigned to RGB channel; (RN Ngnc, RNNpgc) de-
notes the RNN sizes for encoder and decoder. There are two observations
can be made from Table 1) for each row, the METEOR score increases as
the RNN sizes increases but after an optimal size setting, the performance
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a woman is slicing some leaves

(b) MPII Dataset

she looks at him with wide tearfilled eyes someone lies her head back

(c) MVAD Dataset

/ 4 %
) i —— ) ="

someone takes a bite of her sandwich and he stops

they sit on the surface

(d) ASL-TEXT dataset (proposed)

and how the progran What is Medi
will talk about the foll Who can get M

i ve got the love of jesus in my heart who can get medicare
gt: i 've got the wonderful love of my blessed redeemer way ~ gt: what is medicare
down in the depths of my heart

Figure 7.3: Qualitative results of the proposed video captioning framework on
four datasets: (a) MSVD, (b) MPII, (c) MVAD and (d) ASL-TEXT. The bold sen-
tence under each pair of images is the predicted caption and for ASL-TEXT the
ground-truth text is also attached.

starts to decrease. 2) Assigning different dimensions to different feature
channels has little impact on the performance. Observation 1 shows that
the ASL-TEXT dataset is more complex than other datasets because even
moderate RNN sizes such as (512, 512) is sufficient to over-fitting. Obser-
vation 2 demonstrates that our framework can automatically learn an op-
timal combination of multiple feature channels. Therefore there is no need
to manually tune the weight of different feature channels.

Table 7.4: METEOR scores on the ASL-TEXT dataset of different configurations.

(RNNgnc, RNNpgc)
(128,128) | (256,128) | (256,256) | (512,256) | (512,512)
§ 10% 3.9 4.7 4.3 4.2 3.6
6 30% 4.1 3.8 4.7 3.5 3.9
& | 50% 3.7 4.7 3.5 39 3.9
90% 3.7 3.7 3.5 4.5 4.0

Some qualitative results of the proposed framework have been shown
in Fig. For simple scenes and interactive actions in Fig. (a), our
system can accurately generate descriptive sentences. For more complex
scenarios as in movies (Fig. (b) and (c)), our system can predict well on

the main actions (such as “sit”, “eat” and “enter”) but make errors in ob-
jects. For ASL recognition, it is promising to observe that the system has the
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A

potential to build relationships between key words (such as “love”, “medi-
care”, “WH-sign” and “single/married”) and videos. The results demon-
strate that exploring temporal structures and combining multiple feature
channels are potentially beneficial for video captioning even in complex vi-
sual content and sentence structures.

o R

someone is driving someone looks around the bedroom

someone walks over to someone someone is in her dress blues

and have planned and trained for all types of disasters
gt: works gt: inside your dwelling not just the kit for going

Figure 7.4: Some failed examples. Upper panel (a-d) is from the movie descrip-
tion datasets. Lower panel (e,f) is from the ASL-TEXT dataset. We can observe
that complicated static scenes, too-blurry frames, and too-short clips can lead to
bad results.

7.4 Discusssion

In this chapter, we mainly focus on solving the problem of how to automat-
ically integrate multi-modality input with LSTM-based video description
framework.

However, the current framework often results in over-simplified sen-
tences when the input video is too complicated. Some of the failure cases
have been shown in Figure [7.4, As shown in Figure (a), the output
sentence is “someone is driving”, which only captures the most trivial in-
formation. For video clips with almost-static scenes (b and e), the output
sentences are also not accurate due to lack of motion information. As for
too-complex scenes such as shown in (d), the algorithm also fails to gen-
erate useful descriptions because the objects contained in the video are too
small and uncommon. Too-blurry frames as shown in (f) will also lead to
inaccurate results.

To handle these difficulties, we will concentrate on combining dense
image captioning framework with video captioning in the future work. The
purpose of introducing dense captioning is to capture more detailed object
and scene information. We believe that with more detailed information
captured by dense captioning, the resulted sentences will be more diverse
and descriptive.
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Chapter 8

Discussions and Future
Directions

This dissertation concentrates on human activity analysis. More specifi-
cally, we start by describing two kinds of depth-based descriptor, one is a
local depth image-based descriptor and the other is a holistic depth video-
based descriptor. The two descriptors shows their effectiveness in human
action and hand gesture recognition. Then we investigated how to com-
bine both RGB and depth, facial expressions and body gestures for combi-
national human affection recognition. A two-layer sparse representation-
based classification scheme is proposed to eliminate subjective variances.
To bridge the gap between raw visual features and abstract action labels,
this dissertation then discussed a framework for human action attribute
learning based on deep activations. Finally, a multi-stream sequential encoder-
decoder language modeling framework is discussed for automatic generat-
ing sentences for human action and related scenarios.

Depth map-based image descriptor for human action and hand ges-
ture recognition. We firstly proposed a novel discriminative 3D descrip-
tor (H3DF) which can effectively capture and model the rich surface shape
information of the depth maps. Applying orientation normalization, ro-
bust coding and concentric spatial pooling, our H3DF descriptor is robust
to translation, view angle and scaling changes. Local H3DF is also able
to evolve into denseH3DF for modeling more local patterns. To tackle the
task of dynamic hand gesture and human action recognition from depth
video sequences, two temporal extension approaches are developed: Dy-
namic Programming-based temporal partition and N-gram-based method.
The two approaches are applied to build augmented descriptors with ro-
bust representative description. We have extensively evaluated the effec-
tiveness of the proposed H3DF descriptor on four public datasets includ-
ing static hand gesture recognition from single depth image, dynamic hand
gesture and human action recognition from depth sequences. The exper-
imental results demonstrate that our proposed approach outperforms or
achieves comparable accuracy to the state-of-the-art for action and hand
gesture recognition.

Holistic depth video descriptor for human action recognition. An
edge enhanced depth motion map framework is proposed to model dif-
ferent hand gestures from their visual effects. Then we have designed a
new dynamic temporal pyramid organization approach to capture tempo-
ral structure to compensate the information loss due to building energy
map by integrating discrete energy from each frame along temporal di-
mension. For classification, we apply a Support Vector Machine with linear
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kernel. Experiments demonstrate that our method achieves better perfor-
mance compared to the state-of-the-art methods while using relative simple
classifier rather than involving complicate dictionary learning techniques.
In addition, our proposed method is more general among different hand
gesture categories.

Multi-modality human affection recognition. Affection recognition
from the perspective of facial expression and body gesture combination in
RGB-D videos is discussed. To address the issue that subjective variance in
affection recognition is always larger than inter-class variance, we have pro-
posed a novel subject adaptive algorithm to mining category-related vari-
ance by using sparse representation with Fisher discriminant. Instead of
using all training data for each testing query, we firstly select a subject adap-
tive subset using sparse representation based classification. Then affection
class is recognized in the selected subject adaptive subset of training data.
To jointly recognize affection class from facial expressions and body ges-
tures, we propose a confident reconstruction based joint decision making
strategy. We also presented a novel dataset which contains 10 different af-
fection categories and 12 subjects, which is challenging due to large subjec-
tive variance. Our proposed recognition framework and joint recognition
approach is evaluated on the dataset. Experimental results demonstrate
that joint recognition results can be improved by combing two complemen-
tary discriminative models.

Deep learning and human action attribute recognition. A novel joint
action attribute learning algorithm for depth videos which is based on multi-
stream deep neural networks is proposed. To model complex semantics in
action attributes, an undirected graph is integrated in the formulation of
attribute learning. Extensive experiments demonstrate that the proposed
method is effective in learning action attributes for depth videos. Experi-
ment results based on our method outperform existing state-of-the-art meth-
ods in action attribute detection, zero-shot action recognition and conven-
tional action recognition.

Multi-stream sequence-to-sequence video description based on RNN.
In this chapter, we have proposed a novel video captioning framework
based on a two-stage encoder-decoder system. The encoding part is com-
posed of a multi-channel LSTM-based RNNs which can capture the tempo-
ral dynamics in video clips by allowing arbitrary-length input sequences.
The decoding part is a LSTM-based language model which can decode the
input video feature vector to a sequence of English words. A fusion layer
is inserted between the encoder and decoder to automatically learn the op-
timized combination of multiple channels. To capture spatial-temporal in-
formation in the videos, we apply 3D convolutional neural networks pre-
trained for action recognition (C3D) to extract features from both MHIs and
raw RGB video frames. The whole network can be trained end-to-end using
back-propagation. The proposed model is extensively evaluated on three
public video description datasets comparing with the state-of-the-art meth-
ods and outperforms their performances. Furthermore, we collect an ASL
recognition dataset and propose to apply video description framework in
the area of automatic ASL recognition.

Future directions Our future work will be continuing research on hu-
man activity analysis. We believe that it is promising to focus on exploring
and exploit the utilization of high-performance deep learning techniques in
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continuous human action segmentation, recognition and description. The
future of our research directions will cover the following three topics:

* American Sign Language related recognition and human computer
interaction research.

* Modeling the temporal saliency of human activities using deep learn-
ing and other techniques.

¢ Exploring the exploiting the utilizations of other modalities, such as
audio and text.
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Appendix A

Publications During Ph.D.
Study

1. C. Zhang and Yingli Tian, Automatic Video Captioning via Multi-
channel Sequential Encoding, European Conference on Computer Vi-
sion (ECCV), 2016 (Submitted).

2. C. Zhang and Yingli Tian, Automatic Video Description Generation
via LSTM with Joint Two-stream Encoding, ICPR, 2016 (Submitted).

3. C. Zhang and Yingli Tian, Multi-modality American Sign Language
Recognition, IEEE International Conference on Image Processing (ICIP),
2016 (Submitted).

4. Z. Liu, C. Zhang, Y. Tian, 3D-based Deep Convolutional Neural Net-
work for Action Recognition with Depth Sequences, Elsevier Editorial
System for Image and Vision Computing, 2016.

5. C. Zhang, Y. Tian, X. Guo, J. Liu, DAAL: Deep Activation-based At-
tribute Learning for Action Recognition in Depth Videos, Interna-
tional Journal of Computer Vision (IJCV), 2016 (Submitted).

6. C. Zhang and Yingli Tian, BCA: Bi-symmetric Component Analysis
for Temporal Symmetry in Human Actions, IEEE International Con-
ference on Multimedia and Expo (ICME), 2016.

7. C. Zhang and Yingli Tian, Histogram of 3D Facets: A Depth Descrip-
tor for Human Action and Hand Gesture Recognition, Computer Vi-
sion and Image Understanding, Vol 139, pp. 29-39, Oct, 2015.

8. C. Zhang and Yingli Tian, Subject Adaptive Affection Recognition via
Sparse Reconstruction, IEEE Workshop on Vision Meets Cognition, in
conjunction with CVPR, 2014.

9. S. Wang, H. Pan, C. Zhang, and Y. Tian. RGB-D Image-Based De-
tection of Stairs, Pedestrian Crosswalks and Traffic Signs, Journal of
Visual Commu nication and Image Representation (JVCIR), 2013

10. C. Zhang, X. Yang, C. Yi, Y. Tian, Q. Yu, A. Tamrakar, and A. Di-
vakaran. CCNY-SRI @ TRECVid 2013 intED: a Human Interactive
Event Detection System, NIST TRECVID Workshop, 2013

11. C. Zhang, and Y. Tian. Edge Enhanced Depth Motion Map for Dy-
namic Hand Gesture Recognition, CVPR 2013 International Work-
shop on Human Activity Understanding from 3D Data (HAU3D)
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12.

13.

14.

15.

16.

17.

C. Zhang, X. Yang and Y. Tian. Histogram of 3D Facet: A Charac-
teristic Descriptor for Hand Gesture Recognition, IEEE International

Conference on Automatic Face and Gesture Recognition (FG 2013),
2013.

C. Zhang, and Y. Tian. RGBD Camera-based Activity Analysis (In-
vited Paper, Oral), Asia Pacific Signal and Information Processing As-
sociation (APSIPA) Annual Summit and Conference, CA, 2012.

C. Zhang, and Y. Tian. RGB-D Camera-based Daily Living Activity
Recognition. Journal of Computer Vision and Image Processing, Vol.
2, No. 4, December 2012.

C. Zhang, M. Shabbir, Y. Tian, and D. Stylianou. Computer Vision-
based Mathematics Learning Enhancement for Children with Visual

Impairments. International Workshop on Biomedical and Health In-
formatics (BHI), 2012.

X. Yang, C. Zhang, and Y. Tian. Recognizing Actions Using Depth
Motion Maps-based Histograms of Oriented Gradients. International
Conference on ACM Multimedia, 2012

C. Zhang, Y. Tian, and E. Capezuti. Privacy Preserving Automatic
Fall Detection for Elderly Using RGBD Cameras. International Con-
ference on Computers Helping People with Special Needs (ICCHP),
2012.
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