
Comparative Study of Coarse Head Pose Estimation  
 

Lisa M. Brown and Ying-Li Tian 
IBM T.J. Watson Research Center 

Hawthorne, NY 10532 
{lisabr,yltian}@us.ibm.com 

 
 

Abstract 
 

  
For many practical applications, it is sufficient to estimate 
coarse head to infer gaze direction. Indeed for any application 
in which the camera is situated unobtrusively in an overhead 
corner, the only possible inference is coarse pose because of 
the limitations of the quality and resolution of the incoming 
data. However, the vast majority of research in head pose 
estimation deals with tracking full rigid body motion (6 
degrees of freedom) for a limited range of motion (typically 
+/-45 degrees out-of-plane) and relatively high resolution 
data (usually 64x64 or more.) In this paper, we review the 
smaller body of research on coarse pose estimation. This work 
involves image-based learning, estimation of a wide range of 
pose, and is capable of real-time performance for low-
resolution imagery. We evaluate two coarse pose estimation 
schemes, based on (1) a probabilistic model approach and (2) 
a neural network approach. We compare the results of the two 
techniques for varying resolution, head localization accuracy 
and required pose accuracy. We conclude with details for the 
implementation specifications for resolution and localization 
accuracy depending on system accuracy requirements. 
 
Keywords: head pose estimation, gaze direction estimation, 
head tracking, face tracking. 
 
1. Introduction 
  Head pose estimation is an important task in human 
awareness. Examples of applications include dynamic 
face recognition and facial expression analysis, gaze 
direction estimation, model based coding for 
compression and animation, i.e., for low bit rate video 
teleconferencing and graphical avatars, and hands-free 
human computer interaction. For many practical 
applications, it is sufficient to estimate coarse head 
pose to infer general gaze direction. For most real 
world applications in which the camera is situated 
unobtrusively in an overhead corner, the only possible 
inference is coarse pose because of the limitations of 
the quality and resolution of the incoming data.   
   In this paper, we review and compare the work in 
coarse head pose estimation. Depending on the 
application, coarse head pose information may be all 
that is needed. However, in many situations, coarse 

pose is needed as a prelude to fine pose estimation. We 
refer to this as “multi-scale” head pose estimation. 
    
2. Background  
   The majority of work in head pose estimation deals 
with tracking full rigid body motion (6 degrees of 
freedom) for a limited range of motion (typically +/-45°  
out-of-plane) and relatively high resolution data (usually 
64x64 or more.) [1,3,4,6,7,15] In addition, such systems 
typically require initialization to a 3D model. There is a 
tradeoff between the complexity of this initialization 
process, the speed of the algorithm and the robustness 
and accuracy of pose estimation. Although these systems 
are beginning to achieve real-time computational 
efficiency, they rely on frame-to-frame estimation and 
hence are sensitive to drift and require relatively slow 
and non-jerky motion. All of these systems use relatively 
high-resolution imagery, measure pose for a limited 
range (approximately +/- 45° out-of-plane rotations), 
require some initialization and are sensitive to drift. 
Because these systems require initialization and failure 
recovery, coarse pose estimation can play an important 
role in making these systems robust. 
   For situations in which the subject and camera are 
separated by more than a few feet, full rigid body motion 
tracking of fine head pose is no longer practical. In this 
case, coarse pose estimation is required.   For this type 
of head pose estimation, systems are needed which will 
bridge the gap between 2D face tracking and 3D rigid 
motion head tracking. These systems need to: 

(1) determine a wider range of pose beyond  
        +/- 45° out-of-plane rotations,  
(2) be insensitive to large motions, slow frame 

rate, and problems of drift,  
(3) not require per person initialization,  
(4) be capable of using low resolution imagery, 
(5) be insensitive to lighting changes and 

background clutter, 
(6) and to run robustly in faster than real-time. 
 

In order to achieve these goals requires learning pose a 
priori from pose-classified ground truth data so that 
pose estimation can be performed on a single image at



 

 Krüger 00 Niyogi 96 Rae 98 Wu 00 Zhao 99 

Range +/-20 s.1 X 
+/-20 s.1 X 

+/-50 s20 Y 
+/-45 s30 X 

+/-75 s25 Y 
+/-45 s30 X 

+/-180 s20 Y 
+/-60 s 10 X 
+/-20 s 20 Z 

+/-90 s 10 Y 
+/- 90 s 10 X 

Accuracy Physical GT 
.5-.8° X/Y test/train on 
same subject 

Approx GT 
Exact 48% 
Near 87% 

Approx GT 
11° for subject 
in training set 

Approx GT  
19-47° Y (depends 
on angle) 13° X 

Physical GT 
 9-10° per axis 

Method Gabor Wavelet Network Tree Structured 
Vector 
Quantization 

Neural Network  Maximum a 
Posteriori 
Estimation 

Neural Network 

Speed Estimated 5-10 Hz, 450 
Mhz Pentium 

11 Hz, SGI Indy 1 Hz includes 
head detection 

3-5 Hz, 450 
 2-processor 
Pentium II 

15 Hz 

Resolution Not discussed 40x30 80x80 32x32 48x48 
Table 1.  Comparison of research in head pose classification based on learning 
 
any time. A small number of researchers have pursued 
this type of methodology and their results can be seen in 
Table 1. These systems are based on either a statistical 
classification or neural network. The table shows the 
range of pose that is measured, in degrees, with the 
associated step size. For example +/-20 s10 Y, indicates 
a range from –20 degrees to +20 degrees with a step size 
of 10 degrees, i.e., rotations of  -20,-10,0,10, and 20 
degrees about the Y (or vertical) axis.  
   As can be seen from the table, these systems can each 
address some of the five above-mentioned requirements. 
However, several still require per person initialization, 
are not real-time, require relatively high resolution, and 
cannot deal with the full range of human head pose. The 
system designed by Wu & Toyama [13] appears to best 
satisfy the requirements. This Bayesian system models 
the probability of each pixel based on a priori data. For 
each pixel, a feature vector, based on the edge density at 
that pixel, is computed for ground truth data. The pose is 
estimated by maximizing the a posteriori probability. 
The system is near real-time, can run on images whose 
resolution is as low as 32x32, and can estimate a full 
range of poses including the back of the head. 
   In Table 1, we also report the accuracy claims for each 
project.  We refer to physical ground truth (GT) if an 
external physical sensor was applied such as the electro-
magnetic sensor used in [15] or the robotic arm used by 
[5]. Approximate ground truth (GT) refers to manual 
human annotation, which, not surprisingly, is not as 
accurate. Since we are reporting results on classification 
methods, each method is limited by the pre-defined step 
size between classes. The method of [5] reports the 
highest accuracy; this result is achieved by using the 
same subject (a doll) for training as testing, a very small 
step size, and a unique representation based on a Gabor 
wavelet network. However, this method performs fine 
head tracking based on high-resolution data. The other 

four methods in the table perform coarse pose 
estimation. 
   We did our best to report the accuracy as presented by 
the investigators. However, since each system classified 
pose into a different set of ranges, it is very difficult to 
compare these values. For this study, we would like to 
systematically make this comparison, quantify the 
accuracy achievable for very low resolution and the 
sensitivity to head localization error.  
 
3. Comparative Study 
   We have chosen to explore the relative merits of two 
different approaches to coarse head pose estimation: a 
probabilistic model approach (PM) based on the work of 
[13] and a neural network approach (NN). In the 
following two sections of the paper we will describe 
each of these two methods in detail. We will then 
compare the performance of these two approaches based 
on the resolution of the images, the head localization 
accuracy and required output accuracy.  
   For both approaches we have used the CMU Pose, 
Illumination, and Expression (PIE) Database of Human 
Faces for our ground truth data [11]. This database 
contains images of 68 people under 13 poses, 43 
different illumination conditions and 4 different 
expressions. In our study, we only use 9 poses of neutral 
expressions, from –90 to +90 degrees about the vertical 
axis and natural room lighting. 
    Different poses were acquired by the simultaneous 
acquisition of different static cameras positioned around 
the room. Subjects were asked to look directly at the 
center camera. Therefore, frontal pose was defined by 
the subject. This clearly introduced some error in 
absolute pose measurements. 
   We semi-automatically extracted the rectangular 
bounding box for each image using normative head size 



information, skin color detection, and eye/nose 
positions. The bounding box information can be found 
on our website[deleted reference for blind review]. 
 

4. Probabilistic Model Approach 
   The probabilistic model approach we used was based 
on the work of [13]. This method builds a probabilistic 
model for each pose using several image-based features 
and determines the pose of an input image by computing 
the maximum a posteriori pose. Their algorithm uses an 
3D ellipsoidal model of the head to represent the pose 
information. 
   Because our ground truth data is 2D imagery from a 
small number of poses, we did not use a 3D model to 
represent the information. Our storage requirements are 
minimal and since we ultimately determine the 
maximum a posteriori pose using 2D images, a 3D 
model would only decrease the accuracy.  
   Before computing image-based features, the head is 
located. The images are converted to grey-scale, 
histogram equalized and reduced to the same resolution. 
Each pixel in each image-based feature, is assumed to be 
independent and normally distributed. The mean and 
covariance is computed based on the training data. 
   Wu & Toyama use 4 image-based features: 
convolution with a coarse scale Gaussian and 
convolution with  rotation-invariant Gabor templates at 
four scales. They experimented with other sets of 
features based on Laplacians, with and without the 
Gaussian and this was found to work the best. We used a 
similar set. For our rotation-invariant Gabor templates, 
we used the sum of 4 orientations (0,45,90,135 degrees). 
We found the most effective set of features to be 
composed of convolution with a 3x3 Gaussian mask, and 
convolution with 3 rotation-invariant Gabor templates 
with frequencies  0.5,0.25, 0.0125 and scales of 1,2, and 
4 respectively.  
    The first four images of Figure 1 show the average 
image for each of the four features based on the first 34 
faces in the PIE database for a pose of 22.5 degrees 
(frontal is 0 degrees.) The rightmost four images show 
the respective standard deviation images. 
 

 
Figure 1. Average images (left) and standard 
deviation images (right) for each of 4 features for 34 
faces in the PIE database, near frontal view 
 
   To determine pose, we compute the maximum a 
posteriori pose �* given the observation Z, using Bayes 
rule: 
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For the tests performed here in which only static images 
are used, we assume )(θp  is constant. Since )(Zp  is 
also constant, the MAP estimation reduces to maximum 
likelihood estimation, 
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in which we take the product over all features j and all 
image locations i. This assumes feature and pixel 
independence, which of course, is not valid. 
   Since we assume each pixel/feature is normally 
distributed, the above equation can be simplified by 
taking the logarithm and finding the pose that has the 
minimum value of the expression, 
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given the mean � and standard deviation � of the ith pixel  
and the jth feature for each pose. However, since the 
underlying distributions are clearly not normally 
distributed, we can improve the accuracy of our 
estimation using a so-called robust statistic.  
   The choice of M-estimate depends on the distribution 
of the errors; in our case, this is the scaled difference 
between the measurement and mean.   We experimented 
with double or two-sided exponentially distributed errors 
which results in using an M-estimate based on 
minimizing the mean absolute deviation (rather than the 
mean square deviation) and Lortentzian distributed 
errors. Our best results were achieved using a mean 
absolute deviation without scaling, with a fixed cap on 
error size. The fixed cap used (120) was the same for all 
tests. We also found it useful to re-scale each feature 
image to capture the most relevant information. A fixed 
re-scaling was performed for both training and testing. 
    
5. Neural Network Approach 
   Neural networks (NN) have proven to be a useful tool 
for face localization, face detection, facial expression 
recognition, hand posture recognition, head orientation 
estimation etc. [2,8,9,10,12,14]. Rae and Ritter [9] used 
three networks to do color segmentation, face 
localization, and head orientation estimation 
respectively. The inputs of their neural network for head 
orientation estimation are a set of heuristically 
parameterized Gabor filters extracted from the head 
region (80x80). Their system is user-dependent – it 
works well for a person included in the training data but 
performance degrades for unseen persons. Zhao & 
Pingali [14] also presented a head orientation estimation 
system using neural networks. They used two NNs to 
determine pan and tilt angles separately. Our system is 



most similar to Zhao’s system. We also histogram 
equalize to reduce the effects of variable lighting 
conditions.  
   After the head is located, the head image is converted 
to gray-scale, histogram equalized and resized to the 
estimated resolution.  Then we employ a three layer of 
NN to estimate the head pose. The inputs to the network 
are the processed head image. The outputs are the head 
pose angles. We trained one NN to 9 pan angles from   
–90° to +90° in steps of 22.5.° 
 
6. Results 
   We compare the results of the two techniques for 
varying resolution, specified pose accuracy, and head 
localization accuracy. We also tested the sensitivity to 
head tilt and the generalizability to different data. We 
conclude with details for the implementation 
specifications for resolution and localization accuracy 
depending on system accuracy requirements. 
 
6.1 Data 
From the CMU PIE database, we use 9 poses of neutral 
expressions, from –90 to +90 degrees about the vertical 
axis with natural room lighting. Of the total of 68 
subjects, the first 34 subjects were used for training (306 
images). The remaining 34 subjects were used for testing 
(306 images). Therefore, no subject appears in both 
training and testing sets. Figure 2 shows an example of 
the 9 poses in CMU PIE database. 

 
Figure 2. Nine head poses in CMU PIE database from 
-90°°°° to +90°°°° in steps of 22.5°°°° 
6.2 Sensitivity to Different Resolutions 
To analyze the sensitivity of the head pose estimation to 
the image resolution, we down sampled the head region 
from the original image to six different resolutions: 
64X64, 32X32, 24X24, 16X16, 12X12, and 8X8. We 
did not test images less than 8X8 because it becomes 
impractical to detect the head when the head size is too 
small. We first tested both approaches on 9 poses from –
90° to +90° in step of 22.5°. The recognition rates of the 
two approaches for different resolutions are shown in 
Table 2. 
   The probabilistic model approach achieved the same 
level of recognition performance as the neural network 
approach when the head  is 16X16 pixels or larger. 
When the resolution is lower than that, the recognition 
rates of the neural network approach are kept at the same 
level but they decreased rapidly for the probabilistic 
model approach.  

Table 2: Recognition rates for 9 poses for different 
resolutions by the probabilistic model (PM) 
approach and the neural network (NN) 

Resolution 64 32 24 16 12 8 
PM 88% 91% 91% 85% 82% 75% 
NN 89% 91% 88% 87% 87% 88% 

   
   In order to get the best results, the different window 
sizes of Gabor templates are required for different 
resolutions in the probabilistic model approach. We used 
3X3 window for 8X8 head image, 5X5 window for 
12X12 head image, 7X7 window for 16X16 head image, 
and 11X11 window size when the head size is larger. 
For the neural network method, we tested various 
numbers of  hidden units to obtain the best performance. 
We found that 8 hidden units are enough.  
   The average accuracy for the probabilistic model 
approach and the neural network approach for 32X32 
head resolution is 3.6° and 4.6° respectively. However, 
since this measure is dependent on the discretization of 
classification space (number of poses and step size 
between poses) it is difficult to compare the performance 
with the results from previous investigations. 
   We tested both approaches on a 770MHz, single-
processor Pentium III PC. The procedure of head pose 
estimation (including resizing the image, conversion to 
gray scale, and intensity normalization) runs at 31 Hz for 
the probabilistic model approach and 399 Hz for the 
neural network.   
 
6.3 Sensitivity to Specified Pose Accuracy 
In this experiment, we tested the two methods on 5 poses 
from –90° to +90° in steps of 45°.  The results for the 
two approaches are shown in Table 3. The recognition 
rates for 5 poses are much higher, as expected, than the 
accuracy for 9 poses (Table 2) for both the probabilistic 
model approach and the neural network method.  
 
Table 3: Recognition rate for 5 poses for different 
resolutions by PM and NN approaches 

Resolution 64 32 24 16 12 8 
PM 95% 97% 95% 96% 89% 89% 
NN 95% 96% 95% 97% 96% 96% 

 
6.4 Sensitivity to Head Localization Accuracy 
As shown by [14] head pose estimation is sensitive to 
head localization. In general, head pose estimation 
proceeds after the head is found using a head finder 
algorithm. In our case, we apply head pose estimation on 
live video after background subtraction, and silhouette 
extraction. This is followed by finding extremities and 
ultimately the head using curvature information. If the 
head region is segmented incorrectly head pose 



estimation degrades. It was conjectured that this 
degradation is particularly sensitive to asymmetric 
cropping, i.e., when the face was no longer centered in 
the image. 
  Therefore, we decided to evaluate the sensitivity of the 
two systems to different head localization errors. All the 
tests are based on the 32X32 resolution images for 9 
head poses. As shown in the Figure 3, five types of the 
head localization errors are tested: (a) asymmetric width 
error  (nose side only) (b) symmetric width error (c) 
asymmetric height error (chin side only) (d) symmetric 
height error (e)  symmetric width and height error. The 
learning procedure is based on the original head image 
(the solid rectangular). The performance of the two 
different approaches are shown in Figure 4a-e 
corresponding to the 5 types of head localization errors. 
Along the x-axis is the  width/height error ranging from 
–20% to 20%; negative error indicates a smaller head 
region. We found that: 
(1) Both methods were more sensitive to a smaller 

head region than a larger head region.  
(2) Both methods were more sensitive to the width 

change than the height change.  
(3) The NN method is more sensitive to the head 

localization error. 
 
6.5 Sensitivity to Head Tilt 
When we examined the results of our tests, we observed 
that all the head pose results for a particular subject 
(subject id 34) in the CMU PIE database were incorrect.  
This subject appeared to be looking down rather than 
straight at the camera, leading us to believe that both 
methods were sensitive to head tilt. We evaluated both 
methods using additional data from the PIE database 
acquired of each subject from cameras placed above and 
below the center (frontal). In each group, there are 68 
images from different subjects. We found that both 
methods were very sensitive to  head tilt – recognition 
drops by nearly half. The recognition rates decreases 
even more dramatically for head tilt down.  
 
6.6 Generalizability to Different Data 
We also performed preliminary tests of both approaches 
on live video taken in our laboratory. Background 
subtraction was performed, followed by head region 
detection using silhouette information. The original head 
region was on average 30x30 pixels. The training data 
used was the same 34 images from the PIE database. 
Example frames are shown in Figure 5.  Pose is shown 
in the dial at the top of each frame. In Figure 6, a plot of 
the pose estimation results of the two approaches is 
shown. The PM method appears to favor non-frontal 
poses. Despite considerable localization inaccuracy (see 
frame in upper right of Fig 5) and different lighting 

conditions, the PM method is able to estimate pose 
accurately in most cases. The NN method more 
accurately estimates the frontal pose (frames 130-160) 
but is noisier; we believe this is because it is more 
sensitive to the head localization error.  

.  
Figure 3. Five different head localization errors 
 

 
Figure 4. Recognition rate for different head 
localization errors 
 
7. Conclusions 
In this paper, we reviewed coarse pose estimation 
techniques and compared a probabilistic model approach 
and a neural network method. In order to compare 
results, researchers need to train and evaluate their 
methods on standardized data with the same 
discretization of classification space. “Average 
accuracy” is difficult to interpret without this 
information. We analyzed the different accuracies and  
sensitivities of two approaches using the CMU PIE 
database.  
   The probabilistic model approach was more robust to 
head localization accuracy but did not perform as well 
on very low-resolution head images.  The neural 
network method was able to perform pose estimation 
even for images as small as 8X8 pixels. At this 
resolution, the neural network was able to determine 
head pan angle class 88% of the time for 9 poses with a 
step size of 22.5°. For 5 poses with a step size of 45° 
recognition was 96%. The neural network was also 



considerably faster running at over 300Hz on a standard 
PC.  Both methods were very sensitive to head tilt.  
   Since the PIE database contains data for varying 
lighting conditions and facial expressions including 
instances of subjects wearing glasses, we plan to 
perform further tests to evaluate system sensitivity to 
these conditions. 
   In our initial tests, the PM approach appeared to be 
more extensible to data acquired under different 
conditions. We conjecture that there is a tradeoff 
between model complexity, extensibility and accuracy.  
In general for head pose estimation and tracking (fine or 
coarse), there is a consistent tradeoff between complex 
models i.e., 3D geometric models with elaborate 
initialization or specialized training sets, accuracy, and 
lack of extensibility – i.e. to people who do not fit the 
model, for which initialization is not as good or for 
individuals or lighting conditions which differ from the 
training set. 

Figure 5. Results from lab 
 

 
Figure 6. Pose estimation for lab sequence  
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