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Abstract 

In this paper, we propose a novel algorithm to detect text information from natural scene images. Scene 

text classification and detection are still open research topics. Our proposed algorithm is able to model both 

character appearance and structure to generate representative and discriminative text descriptors. The 

contributions of this paper include three aspects: 1)  a new character appearance model by a structure 

correlation algorithm which extracts discriminative appearance features from detected interest points of 

character samples; 2)  a new text descriptor based on structons and correlatons, which model character 

structure by structure differences among character samples and structure component co-occurrence; and 3) 

a new text region localization method by combining color decomposition, character contour refinement, and 

string line alignment to localize character candidates and refine detected text regions. We perform three 

groups of experiments to evaluate the effectiveness of our proposed algorithm, including text classification, 

text detection, and character identification. The evaluation results on benchmark datasets demonstrate that 

our algorithm achieves the state-of-the-art performance on scene text classification and detection, and 

significantly outperforms the existing algorithms for character identification. 

 

Keywords — Text detection, Scene image, Character appearance, Structure modeling, Structure difference, 

Structure component co-occurrence, Character identification 

 

1. Introduction 

Text information plays a significant role in many applications including assistive navigation, image-based 

search, object recognition, scene understanding, and geocoding, etc., because it provides more descriptive and 

abstract information beyond intuitive perception of other objects. However, extracting text from natural 

scene images must solve three challenging problems. Firstly, it is difficult to predict the fonts, sizes, colors, 

and deformations of text characters and strings in natural scenes. They appear in multiple patterns and are 

attached onto all kinds of surfaces, such as signage boards, walls, cars, and objects. Further, they are often 

captured under variant illuminations and view angles. Secondly, in a camera-captured scene image, text 

regions with low frequency of occurrences are usually embedded into complex backgrounds. Many objects in 

background resemble text characters. Thirdly, it is difficult to define a general text structure model. Unlike 

face which is constantly composed of eyes, nose, cheeks, and chin, and human body which is constantly 

composed of head, torso, and limbs, text consists of all different words with a set of character combinations. 

Thus when we need to consider text as a general class in contrast to background outliers, it is difficult to 

develop a universal text descriptor. Although many optical character recognition (OCR) systems [38, 39, 40] 

were well developed to identify text characters in document images, text classification and detection in scene 
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images are still open research topics.  In this paper we focus on total 62 text characters including 10 digit 

numbers and 26 English letters with both upper and lower cases. 

The task of text extraction from scene images can be divided into three steps [35]: text detection to extract 

text regions from camera-captured scene images, text segmentation to binarize text body within text regions, 

and text recognition to reveal the text information. This paper focuses on text detection to effectively extract 

image regions containing text. Figure 1 summarizes the whole framework of the proposed algorithm. To 

eliminate background outliers and extract scene text characters in various patterns, our algorithm combines 

layout analysis and text classification. We adopt color decomposition, character contour refinement, and 

string line alignment to crop out a set of image patches may contain text from scene images. These image 

patches are defined as character candidates. Then we design a new representative and discriminative text 

descriptor to model character appearances and structures. A text classifier is learned from text descriptors of 

training samples to predict the true positive text patches in character candidates. 

The main contributions of our proposed algorithms include three aspects: (1) a new structure correlation 

based character appearance model to obtain discriminative appearance features of text characters; (2) a 

novel text descriptor calculation by structons (e.g. structure difference modeling) and correlatons (e.g. the 

clustering centers of structure component co-occurrence vectors), which are obtained from structure 

difference modeling and structure component co-occurrences respectively; (3) a group of spatial layout 

analysis that combines color uniformity and character contour refinement to localize candidate text 

characters from scene image and adopts string line alignment to refine detected text regions.  

 

 
 

Figure 1. The whole framework of our proposed algorithm. Top row presents the process of layout analysis to generate 

character candidates in scene images with complex backgrounds, and bottom row presents the modeling of character 

appearance and structure to generate representative and discriminative text descriptor. 

 

2. Related Work 

Many research efforts have been made to detect text regions in natural scene images [3, 8, 33]. The text 

detection algorithms can be roughly divided into two categories: rule-based algorithms and feature-based 

algorithms. The first category depends on spatial layout analysis based on text character contours. In this 

category of algorithms, a set of layout rules related to pixel-level process are defined. The common layout 

rules are involved in edge density, corner distribution, color uniformity, stroke width consistency, and string 

line alignment. An image region containing text usually possesses high edge density and gradient variation 

because of regular character contours in this region. In [23], horizontal and vertical scanning was performed 

on edge map derived from Laplacian operator to extract the rows and the columns with more edge pixels. 

Chen et al. employed maximally stable extreme regions which are obtained from enhanced edge map to find 

out character candidates in scene image [2]. However the constraint of edge density cannot handle complex 

background interferences which also generate high edge density such as foliage, grass and decoration texture 

in natural scenes. To solve the problem, some algorithms modeled the regional distributions and neighboring 

geometrical properties of corner pixels to extract the character contour. In [28], a circular template centered 

at each corner was built to calculate statistics of neighboring edge points, and the distributions of edge points 



were used as layout rules. In [37], a set of constraints such as area, saturation, and orientation, was defined 

on the basis of corner points to extract text regions from static video frames. In [26], zero crossing was 

performed in the map of gradient difference to calculate refined text regions. By the combinations of edge-

based, corner-based, and gradient-based rules, text information can be extracted in well-organized patterns, 

like the video text. However, more robust rules are required to handle complex scene text with multiple 

patterns. It is observed that either strokes of a single text character or characters of a single text string in 

natural scene are most likely presented in same color. Thus if a scene image is decomposed by grouping the 

pixels in similar colors, the pixels belonging to a character or a string should be assigned into the same layer 

[10, 21]. Many text detection algorithms employ this rule to separate text information from background 

outliers in different colors [4, 19, 27]. Moreover, scene text mostly appears in the form of text strings rather 

than a single text character. In general, string is composed of a group of character members in uniform color, 

similar size, and approximately sequent alignment, while most background outliers do not have this property. 

Thus some previous algorithms heuristically searched edge map of scene image for aligned character 

contours, which would be grouped into text string lines and then evolved into text regions. In [29], a run-

length searching method was proposed for merging the horizontal and vertical neighboring text characters 

into string lines. In [20], string lines in natural scene images were rectified by integrating 2D Euclidean, affine, 

and projective transformations. In [33], an adjacent character grouping method was proposed to search for 

sibling characters at each contour and then group them into string lines. However, string line alignment 

cannot eliminate all background outliers, such as lattices and brick walls. In addition, stroke width 

consistency is usually employed to localize the contour of character. As the basic elements of character 

structure, stroke can be used to define effective layout rules related to width consistency. In [7], horizontal 

scanning was performed to record the intensity variations around edge pixels, and calculate stroke width by 

the distance between two consecutive intensity impulses with equal magnitudes and opposite directions. In 

[8], stroke width transform was proposed to map each pixel into the width of its located stroke, and group the 

pixels corresponding to similar width into candidate text character. 

Pixel-level layout analysis is effective on the design of text detectors, but it usually depends on hard-

assigned parameters, which are non-adaptive to complex background interferences of natural scene images. 

In addition, the layout rules used in above algorithms were all developed by subjective selection, while some 

latent features of character structure are ignored. To model the inner structure of text characters, the second 

category of text detection algorithms depend on structure-related text descriptors extracted by specific local 

descriptors and filter responses. Kim et al. [11] considered text as specific texture and analyzed the textural 

features of characters by SVM models. Then a continuously adaptive mean shift algorithm was used to derive 

the refined boundaries of text regions. Chen et al. [3] employed 5 representative Haar-like filters on the map 

of intensity and gradient, joint histogram of intensity and gradient, and edge linking to extract features of 

character structure. Then an Adaboost model was applied to train text classifier from these features. Ma et al. 

[18] applied the Canny edge detection to multi-scale images to generate multiple edge maps, where HOG and 

LBP features were extracted to model character structures. Kumar et al. [12] proposed global matched 

wavelets to model text structures, and applied Fisher models and SVM models to generate text classifier. In 

[34], statistics of Gabor filter responses were applied on character strokes to extract text descriptors. In [15], 

a word shape coding algorithm was designed for document image retrieval, which modeled character 

structure by a group of components according to topological features and measured document similarity 

based on the frequency of occurrences of the structure components. Wang et al. [31] adopted HOG features to 

model character structures and normalized cross correlation to measure character similarity. In [30], they 

further applied a random ferns model to detect accurate character locations based on the scores of feature 

points in scene images. 

 

3. Character Appearance Modeling by Structure Correlation 
 



To build a robust text classifier which can effectively distinguish text characters from non-text background 

outliers, we model the character structure to extract text descriptors. Structure modeling of text character is 

based on appearance features, which are extracted from character samples by using state-of-the-art interest 

point detectors and feature descriptors. In this section, we will present a structure correlation algorithm to 

extract more discriminative appearance features of text characters. 

 

 
 

Figure 2. Detected interest points in red and their neighboring windows in cyan. The left is obtained from multi-scale 

saliency detector and the right is obtained from Harris corner detector. 

 

To extract appearance features, we first detect interest points and their neighboring windows over a 

character sample. As shown in Figure 2, multi-scale saliency detector [13] and Harris corner detector [9] are 

employed to detect interest points in a character sample. Multi-scale saliency detector prefers blob parts, 

such as strokes and holes, in a character. Harris corner detector prefers corner points around the ends of a 

stroke and the joints of neighboring strokes in a character. The salient and corner points correspond to 

characteristic components of text characters, so we can extract characteristic appearance features of text 

characters. However, these appearance features are still not discriminative enough to classify text characters 

from non-text background outliers, because the interest point windows cover only stroke fragments of the 

character sample, in the form of bars or arcs. These stroke fragments cannot provide global modeling of 

character appearance. To solve this problem, we propose a model to calculate the correlation between local 

interest points and their counterparts of the character sample, and generate more complex and characteristic 

structure (see Figure 3), where discriminative features can be extracted to model character appearance. 

 

 
 

Figure 3. Two structure correlation examples. The cyan squares represent original detected interest point windows, and 

the red squares represent their corresponding symmetric counterparts. We extract the original windows and one of their 

symmetric counterparts (marked by red dash line), and calculate their correlated windows under absolute difference and 

reciprocal of sum. 



 

For an interest point window   , we use 3 symmetrical windows    (     ) as correlated counterparts 

of    . They are generated with respect to horizontal midline, vertical midline and center of the image patch 

respectively, as shown in Figure 3. To combine the structure layout of    and its correlated counterparts, we 

define 4 types of structure correlations as Eq. (1), including sum, absolute difference, reciprocal of sum, and 

reciprocal of absolute difference. The 4 types of structure correlations could efficiently fuse the structure 

components of interest point window    and its 3 symmetrical counterparts, and ensure the values of the 

fused windows within a reasonable range.  
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Structure components generated by the fused windows can provide more discriminative appearance 

features of text character, although these components do not belong to original character structure. Then 

state-of-the-art feature descriptors, such as SIFT [14], HOG [5], and LBP, are employed to extract appearance 

features from the fused windows. Experimental results (see Section 6.1) prove structure correlation can 

significantly improve the performance of text classification. 

 

4. Character Structure Modeling by Structon and Correlaton 

Based on the appearance features, we model character structure and calculate representative text 

descriptor, which is a feature vector to be used as observation point in learning text classifier.  In this section, 

we will introduce the training sets to be used in our experiments (Section 4.1). Then a set of visual words is 

calculated from the appearance features to describe the representative features of character structure 

(Section 4.2). Based on the visual words, we model structure differences (Section 4.3) and structure 

component co-occurrences (Section 4.4) for character samples to generate robust text descriptors. Figure 4 

shows a flowchart of character structure modeling. 

 

 
 

Figure 4. A flowchart of character structure modeling based on appearance features in training set. 

 

4.1. Training Set 

First of all, a training dataset is built for learning text classifier, in which we use image patches of text 

characters as positive samples (character samples), and non-text regions of scene images as negative samples. 

In our algorithm, all the 62 categories of text characters are considered as a complete class, since we do not 

have to obtain accurate identification among character categories in text detection. The training dataset is 

divided into three subsets, which are named as Synthesized Training Set, Template Training Set, and Collected 

Training Set. The first subset consists of synthesized characters, and the last two subsets consist of scene text 

characters and non-text background outliers. The difference between Template Training Set and Collected 



Training Set lies in the choices of character samples according to difficulty of structure modeling. Some 

examples of the character samples from the three datasets are presented in Figure 5.  

Synthesized Training Set is to build visual words of character structure. It originates from the dataset of 

synthesized characters proposed in [32], which consists of about 66,000 normal characters in various fonts, 

which covers the 62 character categories. All the characters are synthesized by GIMP, so they have regular 

structure patterns with clean background. We select about 20,000 characters to build our Synthesized 

Training Set. Template Training Set is to model character structure by structure difference and structure 

component co-occurrence. It originates from Chars74K-GoodImg Dataset, which is composed of all 62 

categories of text characters cropped from scene images. They appear in multiple fonts, sizes, colors, and 

orientations. We select about 2,400 scene characters not influenced by low resolution, excessive deformation 

or ambiguous occlusion, to be positive samples of Template Training Set. Therefore, the character samples in 

both Synthesized Training Set and Template Training Set present clear and regular structure patterns. The 

Collected Training Set is to extract text descriptors and learn text classifier. It originates from the scene 

images in ICDAR Robust Reading Dataset, which will be described in Section 6.2. In this dataset, there are 

about 4,000 character samples with more challenging structure deformations and background noises. Our 

ultimate text classifier learned from these datasets is able to distinguish scene characters from background 

outliers. 

 

 
 

Figure 5. Character examples in our training set: Synthesized Training Set (top row), Template Training Set (middle row), 

and Collected Training Set (bottom row). 

 

4.2. Visual Words for Modeling Character Structures 

On the basis of bag-of-words model, we project the appearance features of each character sample into a 

histogram of visual words, for modeling text character structure. The codebook of visual words is built from 

Synthesized Training Set, where we select about 21,000 synthesized character samples. Compared to text 

characters cropped from scene images, synthesized characters provide more accurate and complete structure. 

We extract appearance features by structure correlations at the detected interest points of synthesized 

character samples, and apply  -means clustering to all the extracted appearance features from the dataset. 

The clustering centers of appearance features are used as visual words of character structures. In our 

experiments, appearance features derived from Harris corner detector will generate 64 visual words, and 

those from Multi-scale saliency detector will generate 48 visual words. They compose a vocabulary to 

represent a universal description of character structures.  

For each sample in Template Training Set and Collected Training Set, we can extract its appearance features 

and quantize each feature into the closest visual word. Then the sample is projected into a visual word 

histogram. However, it is improper to apply the visual word histograms directly to scene text classification for 



three reasons. First, visual words only correspond to representative appearance features of regular character 

structure patterns from synthesized images, but the character samples from scene images have variant 

appearance patterns, structure deformations, and background interferences. Second, although text characters 

are regarded as a whole class, the structure differences between different categories of characters cannot be 

ignored, because they generate different visual word histograms. Third, negative samples in the training set 

have no formal structure definitions from the perspective of visual word. Negative samples in training set 

might be image patches cropped from any objects, textures, or background noises in scene images. Thus 

visual word histograms could not be an effective text descriptor for accurately distinguishing positive 

character samples from negative samples.  

 

4.3. Structons: Character Structure Difference Modeling 

To solve the above problems and obtain more robust text descriptor, we model structure differences based 

on visual word histograms. Structure difference keeps consistent under character deformations and 

background noises. Here, we focus on the structure difference between text characters and non-text 

background outliers. To model character structure, we build structon from visual word histograms of 

character samples in Template Training Set. At first, we calculate the visual word histograms of all character 

samples by quantizing their appearance features into the nearest visual word. Then, K-means clustering is 

applied to build a set of   structons, which are used as structure representation of text characters, as shown 

in Figure 6. The set of structons is denoted as  . Next, for each negative sample in Template Training Set, we 

employ the same process to extract its appearance features and project it into a visual word histogram. 

However, clustering mechanism cannot generate accurate structure representation of non-text background 

outliers in negative samples, because their structure characteristics are undefined and negative samples are 

impossible to cover all background outliers. 

To model structure difference based on the structons of text characters and visual word histograms of 

negative samples, we employ the information-theoretical metric learning (ITML) [6] to learn a proper 

distance metric for measuring the distances between them. ITML is defined based on a Mahalanobis distance 

as Eq. (2),  

 

                
          (2) 

 

where   is a semi-positive definite matrix, and    and    represent two vectors corresponding to text 

structons or visual word histograms in our algorithm. In Eq. (2),    defines a distance metric. If   is an 

identity matrix, Mahalanobis distance will transform into regular Euclidean distance. ITML is to learn a 

matrix   over the structons by using Bregman's cyclic projection algorithm, such that the inter-class 

Mahalanobis distances are maximized, while the intra-class Mahalanobis distances are minimized.  

We divide the visual word histograms of negative samples randomly into 40 groups, and each group 

   contains   elements, the same number as character structons. Then we learn the Mahalanobis distance 

metric between the character structons and each of the groups by Eq. (3), and calculate the distance metric 

maximizing the distance sum from structons to all the groups, as Eq. (4). Experimental results (see Section 6.1) 

demonstrate that Mahalanobis distance based on ITML learning improves the performance of text 

classification compared to regular Euclidean distance associated with   as identity matrix.  
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In our experiments,   is set to be 128, so the total number of structons from positive samples and negative 

samples is 256. Figure 6 depicts the processes of text descriptor calculation from a sample in Collected 

Training Set. At first, we extract its appearance features by structure correlation and project them into a 

visual word histogram. Next, according to Mahalanobis distance associated with the learned matrix   , we 

calculate the distances between the histogram and each of the 256 structons, generating a 256-dimensional 

feature vector of structon distances as text descriptor, to be used for learning text classifier. 

 

 
Figure 6. The process of calculating text descriptor by structure difference modeling based on structons, which are 

calculated from visual word histograms of the samples in Template Training Set. 

 

4.4. Correlatons: Character Structure Component Co-occurrence 

Structure component co-occurrence proved to be effective on image retrieval and object modeling [24]. It 

encodes spatial arrangements of interest points where appearance features are extracted. Two or more 

structure components are very likely to come up together. We define correlatons to model the structure 

component co-occurrence of a character sample based on visual word histograms. In this process, appearance 

features are projected into visual word histograms in a more tolerant way to be adaptive to structure 

deformations and background noises. We quantize appearance feature into 4 nearest visual words by 

different weights. The nearest visual word is still assigned 1, but the second nearest is assigned 0.7, the third 

nearest is assigned 0.4, and the fourth nearest is assigned 0.2. The generated histogram is defined as tolerant 

visual word histogram (TVH).  

To model the spatial arrangement of the detected interest points in a character sample, the sample is sliced 

into four parts by a horizontal and a vertical division (see Figure 7). We calculate TVHs for the 4 parts and 

cascade them into a complete TVH denoted as   . At this TVH   , the values at each pair of visual words are 

compared to model visual word co-occurrences. We define a measurement of visual word co-occurrences by 

Eq. (5). 
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where      denotes the number of assignments at the  -th visual word,         is to measure the frequency of 

co-occurrences at a pair of visual words      and     , and    is a balance coefficient which is set as 3 in our 

experiments. This formula defines that larger and closer assignment values in the histogram represent higher 

probability of co-occurrences.  

 

 
 

Figure 7. The process of calculating text descriptor by structure component co-occurrence based on correlatons, which 

are calculated from cascaded TVHs of the samples in Template Training Set. 

 

By Eq. (5), each training sample generates a co-occurrence matrix     based on its TVH. For further process, 

this co-occurrence matrix is transformed into a co-occurrence vector by cascading all its rows. However, due 

to the computational complexity, we do not directly use the co-occurrence feature vector as text descriptor, 

but model the differences of visual word co-occurrences between training samples in Template Training Set 

and those in Collected Training Set. We generate co-occurrence vector from Template Training Set by applying 

K-means algorithm to cluster them into correlatons, which are defined as the clustering centers of co-

occurrence vectors. In our experiment,   is set to be 128 and we obtain a total of 256 correlatons from 

positive and negative samples. Then, similar to structon-based text descriptor, for any sample, we calculate 

the distance from its co-occurrence vector to each of the   correlatons, generating a correlaton-based text 

descriptor in 256 dimensions. Figure 7 illustrates the whole process of structure modeling based on structure 

component co-occurrences. 

 

5. Layout Analysis 

In our algorithm, layout analysis is to find out character candidates from scene images. It is carried out 

twice, before and after text classification respectively. The first time is to decompose the edge map of scene 

image into multiple layers according to color uniformity, and find out proper contours as character 

candidates in each layer. The second time is to refine the predicted characters from text classifier to obtain 

accurate text regions with aligned characters. This section will describe the involved algorithms of layout 

analysis in our algorithm. 

 



5.1. Color Decomposition 

Color uniformity exists in both scene text characters and their located surfaces in natural scenes, so we 

infer that edge pixels in the same character are generated from similar color-pairs. Here a color-pair is 

defined as a vector of respective RGB values of two colors. To represent an edge pixel by color-pair and 

spatial position, we denote it by                            , where the first 6 elements denote color-pair 

and the vertical coordinate    is repeatedly extended to 3 dimensions for keeping consistent with the RGB 

colors. 

To extract character candidates from background outliers, we cluster edge pixels in similar color-pairs and 

close spatial positions, which are generated by color difference between text and its located surface. Firstly, a 

color-pair is calculated at each edge pixel   . In original scene image, we create a      neighborhood 

centered at    , in which the two neighboring pixels with maximum color difference are selected to compose 

the representation    of edge pixel   . Secondly, given all edge pixels from the scene images as    

           , where     represents the total number of edge pixels. Gaussian Mixture Model (GMM) is 

employed to cluster the edge pixels into multiple layers. We apply expectation maximization (EM) algorithm 

to estimate the parameters of GMM model. EM is able to estimate the parameters leading to maximum 

likelihood under in complete data. In our process, we expect to use a mixture of   Gaussian distributions to 

describe the color-pairs and spatial positions of edge pixels, where their representations   are regarded as 

observation points. But the mean and variance of the   Gaussian distributions in the mixture model are 

unknown. Thus EM is applied to maximize the expected likelihood by Eq. (6). 
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where   represents the observation points,    represents the weights of the i-th Gaussian distribution in the 

mixture model, and    represents the parameters of the i-th Gaussian distribution including means and 

variances. When EM process is converged to an optimized GMM model    , each edge pixel    will be assigned 

to the  -th Gaussian distribution where it generates maximum likelihood such that        
          

   for all 

     . We set     in our experiments, so the edge pixels will be assigned to 5 different layers. Some 

examples of color-based edge map decomposition are displayed in Figure 8. 

 
 

Figure 8. (a) Original scene image and corresponding edge map. (b) Edge map decomposition based on the color-pairs 

and spatial positions of the edge pixels. 

 

5.2. Character Contour Refinement 



We search for object contours to localize character candidates at each layer of edge pixels. A simple method 

is to find out the groups of connected edge pixels [33]. However, due to the illumination variation and the 

estimation error of GMM-based clustering, contours of an object (probably text character) are usually broken 

into several segments by small cracks. In this case, we propose a heuristic construction method to extract 

object contours under proper crack tolerance. Firstly, we initialize an empty contour   and start the edge 

pixel search. Secondly, we randomly select an edge pixel    and insert it into the contour by          .  

Thirdly, an       neighborhood is built centered at    , and we check if there are any other edge pixels 

within the neighborhood except    . If no, the construction process ends and we output the constructed 

contour  . If yes, we select the nearest edge pixel    to    and insert it into the contour by          . Then 

we go to the third step and start a new iteration by creating a new       neighborhood centered at     (see 

Figure 9(a)). To avoid duplicate edge pixel selection, a selected edge pixel will not be set as background pixel 

in further process, as the green pixels shown in Figure 9(a). By using the neighborhood tolerance, we can 

restore the broken contours. In our experiments, we set    as 9. In addition, we observe that a text character 

mostly has a closed contour, where the first inserted edge pixel is very close to the last inserted edge pixel. To 

reduce the time complexity, we set a threshold 36 over the distance between two end edge pixels to remove 

the open contours. At each of the remaining contours, a rectangle bounding box is assigned to generate the 

image patch of character candidate. The image patch is then input into text classifier to predict whether it is 

text patch or not. The image patches with positive predictions will compose text regions. 

 

5.3. String Line Alignment 

After text classification, we perform string line alignment on the predicted text patches to further remove 

the false positive detections. For a text patch   , we search for a sibling     with similar height, horizontal 

alignment, and proper ratio between distance and width, as shown in Figure 9(b). We define the three rules 

by Eq.  (7),  

 

 
 

Figure 9. (a) Character contour refinement, where green points represent the selected edge pixels in previous iterations 

and two square neighborhoods are created by using     and    as centers respectively. (b) In the top row, two object 

contours in black bounding boxes satisfy the layout rules in string line alignment; in the bottom row, two object contours 

in green bounding boxes do not satisfy one of the layout rules in string line alignment. 

 

         and         
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where     and    represent the height of     and    respectively,    and    represent the width of     and    

respectively, and         and       represent patch center coordinates of     and    respectively. The rules 

ensure that     comes from a text string with more than 2 aligned character members. If no such sibling 

satisfies all the rules, the text patch    will be removed as false positive. In the end, all the remaining text 

patches will be merged into text regions. 

 

6. Experiments 

We carry out three groups of experiments to evaluate the effectiveness of our proposed algorithm. Firstly, 

text classification is performed to evaluate text descriptor by distinguishing image patches of text characters 

from those of background outliers. Secondly, we combine layout analysis and text character classification to 

perform text detection from scene images in 3 benchmark datasets. Thirdly, we use the proposed text 

descriptors to perform character identification among the character categories. 

 

6.1. Text Classification 

Text classification is to evaluate the appearance features based on structure correlation, and the structon-

based and correlaton-based text descriptors. These experiments are performed on a set of image patches, in 

which image patches accommodating text characters in compatible sizes are used as positive samples and the 

other patches are as negative samples. The performance of text classification is measured by recall and 

precision. We define recall as the ratio between the number of correctly predicted positive samples and the 

total number of truth positive samples, and define precision as the ratio between the number of correctly 

predicted positive samples and the total number of samples being predicted as positive. Recall and Precision 

are associated with true positive rate and false alarm rate respectively. 

 

 
 

Figure 10. Evaluation results of text classification. Text descriptors derived from structure correlation perform better 

than those directly derived from interest point windows. In addition, text descriptor presented by left figure is calculated 

from appearance features under Harris-Corner detector and HOG descriptor, and the right one is obtained from 

appearance features under Harris-corner detector and SIFT descriptor. 

 

To evaluate the structure correlation, we extract two groups of appearance features from the samples in 

training set. In one group, structure correlation is performed to combine the symmetric counterparts of 

interest point windows to extract appearance features. In the other group, appearance features are directly 

extracted from interest point windows. Then the extracted appearance features of each sample are projected 

into a visual word histogram, and then SVM-based cross validation is performed on the visual word 

histograms of all samples. In this process, we divide the samples in Template Training Set into 5 subsets, of 

which four are used for training the SVM-based text classifier and one is used for testing. 5 iterations of 

performance evaluations are performed in turn for cross validation, and the average value is calculated as 

evaluation results. By setting thresholds of the SVM prediction probability, we generate curves to illustrate 



the true positive rates and false positive rates in text classification, as depicted in Figure 10.  The evaluation 

results demonstrate that structure correlation is able to generate more discriminative appearance features 

and achieve better performance under all the involved feature descriptors. 

 

 
 

Figure 11. Evaluation results of text classification through text descriptors obtained from character structure modeling. 

We perform 6 experiments by using the combinations of 2 interest point detectors and 3 state-of-the-art feature 

descriptors. 

 

To evaluate the text descriptors obtained by character structure modeling involved in structons and 

correlatons, text classification experiments are further performed on the image patches in Collected Training 

Set. We select about 4000 text patches as positive samples and 12500 non-text patches as negative samples. 

The positive samples are cropped ground truth text regions from scene images of ICDAR Robust Reading 

Dataset (see detailed introduction in Section 6.2). The negative samples are collected from non-text regions 

of scene images, in which we prefer the neighborhoods of text regions and the objects usually appearing 

together with text. 



In our experiments, 2 types of interest point detectors including multi-scale saliency detector and Harris 

corner detector, and 3 types of state-of-the-art feature descriptors including HOG, SIFT, and LBP are adopted 

to extract appearance features of text characters. Figure 11 illustrate the respective experimental results of 

text classification by the “Recall / 1-Precision” curves. The cyan curves represents that visual word histogram 

is directly used as text descriptor. The green curves represents that the structon distances are added into text 

descriptor. The blue curves represents that the correlaton distances are added into text descriptor.  

The experimental result demonstrates that the structure difference modeling and structure component co-

occurrence are able to improve the performance of text classification. It also shows that text descriptor from 

Harris corner detector performs better than that from multi-scale saliency detector in text classification, so 

we could infer that character structure depends more on the junctions of neighboring strokes. Furthermore, 

HOG descriptor performs a little better than SIFT and LBP over corner points, while SIFT descriptor performs a 

little better than HOG and LBP over salient points. It is probable that SIFT descriptor is mostly associated with the 

feature points extracted by SIFT detector which relies on the local extremes of multi-scale Difference of Gaussians, 

so SIFT is more compatible with Multi-scale saliency points than Harris-corners points. LBP was mostly used for 

texture classification, but character structure generates much less discriminative variations of binary patterns as 

texture. 

 
 

Figure 12. Evaluation results of text classification from Corner detector and HOG descriptor under the different numbers 

of structons/correlatons. 

 

To evaluate the text descriptor from different structons/correlatons sizes, we perform text classification 

over 64, 128, 256, 512 and 1024 structons/correlatons respectively. All the text descriptors in this 

experiment are based on corner detector and HOG descriptor. The experimental results illustrated in Figure 

12 show that the larger number of structons/correlatons can improve the accuracy of text classification, but 

the accuracy improvement after 128 or more is limited. We use 256 structons and 256 correlatons to build 

the proposed text descriptor (see Section 4), as a result of trade-off between accuracy and efficiency. 

 

6.2. Text Detection 

We perform text detection in 3 benchmark datasets and extract the text regions from each scene image. It 

requires the close cooperation between layout analysis and text classification. We carry out text detection in 

Robust-Reading-2003 Dataset, Robust-Reading-2011 Dataset, and Street View Text Dataset. In all the text 

detection experiments, we adopt Harris Corner Detector and HOG Descriptor to generate the text classifier. 

To measure the performance of our algorithm, we use precision and recall calculated from the area 

comparisons between detected text regions and ground truth text regions. Their intersections are true 

positive text regions successfully extracted from natural scene background. Precision   is defined as the ratio 



between area of intersection regions and that of detected text regions, recall   is obtained from the ratio 

between area of intersection regions and that of ground truth regions. In addition, f-measure based on 

harmonic sum is defined in Eq. (8) to fuse precision and recall. 

 

  
                  

                
 (8) 

 

The Robust Reading Dataset (RRD2003) was collected for text detection competition in the conference 

ICDAR 2003 [16]. It contains about 500 natural scene images, with the resolutions ranging from 640×480 to 

1600×1200. In the scene images of RRD, text information appears in signage boards or object captions. Both 

indoor and outdoor environments are covered in this dataset, and there is no drastic illumination change in 

most scene images. RRD contains about 2000 ground truth text regions in total. Table 1 presents the 

evaluation results and the comparisons with previous algorithms on RRD2003 dataset. It demonstrates that 

the performance of our algorithm is comparable with state-of-the-art algorithms. Some examples of detected 

text regions are shown in Figure 13. 

The Robust-Reading-2011 Dataset (RRD2011) was collected for text detection competition in the 

conference ICDAR 2011 [25]. It contains about 400 natural scene images and 1694 ground truth text regions. 

They have similar resolutions and contexts as the scene images on RRD2003. We use both of them to evaluate 

our algorithm. Table 2 presents the evaluation results and the comparisons with previous algorithms on 

RRD2011 dataset. Our algorithm is comparable with the previous algorithms. 

 

Table 1. Evaluation results of text region detection on RRD2003 dataset. We compare our results with several previous 

algorithms in [8, 16, 17]. 

 Precision Recall f-measure 

Ours 0.71 0.62 0.63 

B. Epshtein 0.73 0.60 0.66 

H. Becker 0.62 0.67 0.62 

C. Yi 0.71 0.62 0.62 

A. Chen 0.60 0.60 0.58 

Ashida 0.55 0.46 0.50 

HWDavid 0.44 0.46 0.45 

Wolf 0.30 0.44 0.35 

Q. Zhu 0.33 0.40 0.33 

 

Table 2. Evaluation results of text region detection on RRD2011 dataset. We compare our results with several previous 

algorithms in [25]. 

 Precision Recall f-measure 

Ours 0.76 0.68 0.67 

Kim 0.62 0.83 0.71 

Yi 0.58 0.67 0.62 

TH-TextLoc 0.58 0.67 0.62 

Neumann 0.53 0.69 0.60 

TDM_IACS 0.54 0.64 0.58 

LIP6-Retin 0.50 0.63 0.56 

KAIST-AIPR 0.45 0.60 0.51 

ECNU-CCG 0.38 0.35 0.37 

Text-Hunter 0.26 0.50 0.34 

 



The Street View Text Dataset (SVT) [30, 31] was collected from Google street view. It is more challenging 

than RRD, because the scene images in this dataset come from outdoor environments with illumination 

variations. The text characters usually have low resolutions and are embedded into complex background 

outliers. It contains about 350 scene images and 900 ground truth text regions in total. On SVT, due to more 

complex background interferences, more false positive detections are generated, so the precision is much 

lower than that in RRD. We obtain the performance as precision 0.36, recall 0.63, and f-measure 0.37. Figure 

14 depicts some examples of detected text regions from the scene images on SVT dataset.  

 

 
 

Figure 13. Some examples of text region detection on RRD2003 dataset, where the detected regions are marked in cyan. 

 

 
 

Figure 14. Some result examples of text region detection on SVT dataset, where the detected regions are marked in cyan. 



 

Some examples of detection failures are depicted in Figure 15. Most of them are caused by signage with 

single-character, non-uniform color, lower resolution, or over-exposure, which cannot generate complete 

character boundary for layout analysis and character candidate selection. Some others are caused by non-

regular text such as hand-written fonts and art fonts, since they cannot be correctly predicted by text 

classifier learned from machine print text fonts. 

 

Figure 15. Some failure examples of text detection, which are caused by text with single character, low resolution, over-

exposure, non-uniform color, and non-regular print fonts. 

6.3. Character Identification 

The structon and correlaton based text descriptors are designed to distinguish text characters from 

background outliers in scene images. However, we find that they can further be applied to character 

identification within the 62 categories. We cascade the text descriptors obtained from Harris-corners, multi-

scale saliency, maximally stable extremal region and random selected feature points, and employ them to 

evaluate the performance of character identification over Chars74K training dataset. The evaluation process 

is based on the method described in [1]. In the first round, 15 character samples are selected from each class 

as training samples. In the second round, 5 character samples are selected from each class as training samples. 

In each round, we create several groups of training samples and testing samples and perform SVM-based 

cross validation among them. Then the average values of all iterations of cross validations are calculated as 

final evaluation results. Table 3 presents the results of character identification, where the two rounds are 

denoted as Chars74K-15 and Chars74K-5 respectively. The experimental results show that our proposed text 

descriptor outperforms the previous algorithms [30, 31] for character identification. 

 

Table 3.  Results of character identification on Chars74K dataset, which demonstrates that our proposed text descriptor 

outperforms previous algorithms  

 

Text Feature Descriptors Chars74K-5 Chars74K-15 
Structon + Correlaton+SVM 49.8 66.7 

HOG+NN 45.33±0.99 57.5 
MKL / 55.26 

GB+NN 36.9±1.0 47.09 
SC+NN 26.1±1.6 34.41 



7. Conclusion 

We have proposed a text detection algorithm by combining layout analysis based on character candidate 

localization and text classification based on extracting character structure features. Our algorithm effectively 

addresses the three challenging problems in scene text detection: character category uncertainty, structure 

pattern variation, and background outlier elimination. At first, we have proposed a structure correlation 

model to extract discriminative appearance features of characters by local descriptors. Then in order to 

handle structure deformations and background noises widely existing in scene character samples, we define 

structons and correlatons to model the character structures based on the visual words constructed from 

synthesized characters with regular structure patterns. Structons is to model structure differences among 

positive character samples. An ITML distance metric is adopted to learn a Mahalanobis distance to measure 

the structon distances. Correlaton is to model structure component co-occurrences by tolerant visual word 

histograms. A co-occurrence measurement is defined to calculate the visual word co-occurrences at character 

samples. Experimental results demonstrate that structons and correlatons can effectively improve the 

performance on text classification. It proves that our algorithm of character structure modeling extract robust 

text descriptors to distinguish text from background outliers. To detect text regions in scene images, we have 

presented layout analysis involved in color-difference-based decomposition, gap-tolerant character contour 

extraction, and horizontal string alignment. By fusion of layout analysis and text classification, we have 

achieved good performance on text detection in comparison with state-of-the-art algorithms and significantly 

outperform the existing algorithms for character identification.  

In future work, we will employ lexicon models to improve the performance of text detection in scene images, 

because it can provide semantic information for heuristic localization of text characters and strings. 

Furthermore we will extend our text detection algorithm into the process of non-horizontal and deformed 

text strings. 
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The main contributions of this paper are summarized as the following points: 

 Distinguishing text characters from non-text background outliers. 
 Detecting text regions from natural scene images with complex background. 
 Identifying scene characters from 62 categories, including 10 digits and 26 English letters in upper 

and lower cases. 
 Proposing structure correlation to model appearance of scene character. 
 Designing a new text descriptor based on structure difference and structure component co-

occurrence of scene character. 
 Combining a group of layout rules involved in color uniformity and string alignment to localize 

candidate image patches that probably contain text. 


