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Abstract

Contrast agents are commonly used to highlight blood vessels, organs, and
other structures in magnetic resonance imaging (MRI) and computed to-
mography (CT) scans. However, these agents may cause allergic reactions
or nephrotoxicity, limiting their use in patients with kidney dysfunctions. In
this paper, we propose a generative adversarial network (GAN) based frame-
work to automatically synthesize contrast-enhanced CTs directly from the
non-contrast CTs in the abdomen and pelvis region. The respiratory and
peristaltic motion can affect the pixel-level mapping of contrast-enhanced
learning, which makes this task more challenging than other body parts.
A perceptual loss is introduced to compare high-level semantic differences
of the enhancement areas between the virtual contrast-enhanced and actual
contrast-enhanced CT images. Furthermore, to accurately synthesize the
intensity details as well as remain texture structures of CT images, a dual-
path training schema is proposed to learn the texture and structure features
simultaneously. Experiment results on three contrast phases (i.e. arterial,
portal, and delayed phase) show the potential to synthesize virtual contrast-
enhanced CTs directly from non-contrast CTs of the abdomen and pelvis for
clinical evaluation.

Keywords: Contrast Enhanced CT, Image Synthesize, Deep Learning,
Generative Adversarial Network

∗Corresponding author. Email: ytian@ccny.cuny.edu, akino@mskcc.org.

Preprint submitted to CMIG July 20, 2022



Figure 1: Illustration of contrast-enhanced CT generation. (a) Actual contrast-enhanced
CT scan with contrast agent (dye) injection in patients. (b) Virtual contrast-enhanced
CT by our proposed framework generated directly from the non-contrast CT.

1. Introduction

1.1. Motivation

Contrast agents are commonly applied in enhancing image-based diagnos-
tic tests such as magnetic resonance imaging (MRI) and computed tomog-
raphy (CT) to highlight blood vessels, organs, and other structures [1, 2].
Regarding the approximately 76 million computed tomography (CT) scans
and 34 million magnetic resonance imaging (MRI) tests performed each year,
half use intravenous contrast agents [3]. Recently, there are concerns about
the safety of contrast dye. Ideally, the injected contrast agent should be
eliminated from the body with no additional effects to patients [4]. However,
these agents may potentially cause high risks for many patients, including
allergic-like reactions at initial exposure, adverse reactions to pharmacologic
toxicity, breakthrough reactions, contrast material–induced nephrotoxicity,
and nephrogenic systemic fibrosis [5, 6]. These are side effects of contrast
dye frequently observed in the clinic, each with a different underlying mech-
anism. In addition, the gadolinium to deposit in bone, brain, other tissues
has been reported [7].
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Researchers dedicately explored ways to reduce side effects or dye deposi-
tion, such as replacing with the macrocyclic agent, minimizing the concentra-
tion, and using natural D-glucose as an infusible biodegradable MRI agent [8].
However, repeated dye injections on insufficient contrast enhancement areas
may cause further harms. Also, these methods require extensive experiments
for safety purposes along with uncertainties due to individual differences. In
contrast, we explore an alternative solution by generating contrast CT images
virtually. A deep learning method enhanced image quality by synthesizing
post-contrast brain MRI images from pre-contrast and post-contrast images
with 10% low-dose (0.01 mmol/kg) of gadobenate dimeglumine [9]. Simi-
larly, this paper attempted to automatically synthesize virtual contrast CT
images for the abdomen and pelvis region to prevent the risks of patients
with kidney dysfunction, as illustrated in Fig. 1. Unlike [9] with additional
low-dose images, we directly generate virtual contrast-enhanced CTs from
non-contrast CTs. This task is more challenging without multi-parametric
images compared to brain MRIs [9, 10]. The CTs with no contrast enhance-
ment that have the post-contrast CTs are denoted as the ’pre-contrast CTs’,
while ’non-contrast CT’ refers to the CTs without post-contrast CTs. Similar
to actual contrast-enhanced CTs, the virtual contrast-enhanced CTs high-
light vascular and organ structures at multiple phases for better delineation
of anatomical structures.

1.2. Challenges for Generating Virtual Contrast CTs

1. Misalignment between pre-contrast and post-contrast CT scans:
In clinical evaluation, post-contrast CT images are obtained after contrast
agent injection at time intervals. The pose movement highly affect the align-
ment on repeated pre- and post-contrast enhanced CT pairs. Two main
types of misalignments are observed between the pre- and post-contrast CT
pairs. The first type is ridged movement which are related to the positional
shifting of the patient’s body in specific directions. This ridged movement
can be aligned by affine transformation via enhanced correlation coefficient
maximization. The second type belongs to the random respiratory difference
caused by body movements (such as bowel peristalsis) and motion artifacts.
The organ location and orientation shifts are hard to solve by image regis-
tration methods. As AI-based methods are data-driven, the misalignments
make the task challenging, especially under per-pixel supervision.
2. The complexity of abdominal and pelvis CT scans: The ab-
dominal and pelvic regions contain more complex organ structures than the
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Figure 2: The proposed detail-aware dual-path framework synthesizes virtual contrast-
enhanced CT images directly from non-contrast CT images. The global path takes three
consecutive whole CT slices as input to extract global structure features. The local path
divides the whole images into four patches to extract more detailed texture features and
generates four corresponding virtual contrast patches. The four patches are integrated
into a whole image for the objective function. In the training phase, a perceptual loss
is employed to compare the virtual contrast-enhanced CT and actual contrast-enhanced
CT. The total objective function combines the cost for both global and local paths for
backpropagation.

brain, spine, and extremities [9, 11]. To synthesize from non-contrast to
post-contrast domain, extracting rich features from limited data can easily
lead to overfitting of the model.

1.3. Summary of Our Contributions

We propose a dual-path generative adversarial network (GAN) to syn-
thesize virtual contrast-enhanced CTs directly from non-contrast CTs by
preserving the texture and enhancing the pixel intensity. The main contri-
butions of this paper are summarized in the following three aspects.
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• We attempt to automatically generate virtual contrast-enhanced CT
scans from non-contrast CT in the abdominal and pelvis region for
the arterial, portal, and delayed phases. This is the first work to ex-
plore all three contrastive phases. We collected a dataset of CT scans
of the abdomen and pelvis region for training and testing, including
pre-and post-contrast CTs for the arterial, portal, and delayed phases
commonly used in clinical practice.

• As shown in Fig. 2, we propose a dual-path GAN-based framework with
a high-resolution generator. The high-resolution layers are applied in
the generator and exchange information across multi-resolution repre-
sentations for high-resolution image synthesis. To leverage the mis-
alignment on repeated pre-and post-contrast enhanced CT pairs, the
perceptual loss [12] is applied to better handle the misalignment com-
pared to per-pixel loss, which can learn the semantic differences of the
contrasting regions by comparing high-level feature representations be-
tween the actual and virtual contrast-enhanced CT images.

• To further improve the enhancement details, we design a dual-path
training schema to simultaneously learn the correlation between the
contrast-enhancement region from the global-path network and the
fine-grained details from a local-path network. A self-supervised schema
is proposed to generate a pre-trained model with rich feature extrac-
tion by employing the large public national lung screening trial (NLST)
dataset [13] without additional annotations. The pre-trained model
helps to overcome the overfitting problem to the model with limited
data. The experimental results demonstrate the state-of-the-art per-
formance in synthesizing virtual contrast-enhanced CTs directly from
non-contrast CTs.

2. Related Work

Medical imaging, such as MRIs and CTs, plays an essential role in medical
diagnosis. To better assist in-clinic diagnosis, several studies on medical im-
age synthesis are reported, such as to synthesis of strawberry-like Fe3O4-Au
hybrid nanoparticles at room temperature that simultaneously exhibited fluo-
rescence, enhanced X-ray attenuation, and magnetic properties [14], generate
photorealistic images of blood cells [15], reconstruct CT from two orthogo-
nal X-rays [16], multi-contrast MRI synthesis [17], cross-modality MR image
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synthesis [18], and brain MRI image synthesis [19, 20, 11]. These approaches
show good diagnosis validity and may provide necessity of multiple data
fusion to improve diagnosis performance [21, 22]. There are existing pixel
intensity transform approaches for virtual medical image generation. Tradi-
tional handcraft samples and feature selection strategies, such as pair-wise
matching of the patches [19] and maximizing the cross-correlation within the
space of diffeomorphic maps [23]. Those methods are specially designed for
certain types of images but are not robust to other imaging types. As convo-
lutional neural networks (CNNs) have shown the advantage for accurate and
effective learning, some methods are introduced for image synthesis. Zhao et
al. [24] proposed a task-specific modification of an encoder-decoder network
and generated corresponding MRI images from the original CT images. The
proposed network is based on a well-known architecture, U-Net [25], which
completes the semantic segmentation task by a skip connection from the
down-sampled layers to up-sampled layers. However, batch normalization
limits U-Net to preserve image intensity features. Moreover, the traditional
MSE and L1 loss functions can easily over-smooth the generated image.
Better feature extraction and effective backpropagate mechanisms should be
applied to synthesize CT images with complex features and image intensity
variance.

In recent years, the generative adversarial networks (GANs) have been
proved as effective methods for virtual image generation in computer vision
and medical imaging fields [26, 27, 28, 29, 30, 31, 32, 33]. Tang et al. [34]
aimed to classify the contrast stages, such as between portal and delayed
phases and applied an unpaired GAN for data augmentation. Bayramoglu et
al. [35] adopted conditional adversarial generative networks (cGANs) to vir-
tually stain the specimens with a non-linear mapping. A few studies were con-
ducted to generate contrast-enhanced brain MRI images [9, 10, 36]. Yurt et
al. [37] proposed a GAN-based method to impute missing MRI sequences.
Bahrami et al. [20] synthesized the 7T MRI images from 3T MRI for higher
intensity by a CNN-based framework adopting the intensity and the tag fea-
tures of the brain tissue as input. Dar et al. [17] proposed a GAN-based
method to generate multi-contrast MRI brain exams. In order to reduce the
potential risk of dye injection, Gong et al. [9] proposed a method to predict
full-dose MRI images by using raw MRI images and gadolinium dose reduc-
tion MRI images. Compared to generating virtual contrast CT images of the
abdomen and pelvis, brain MRI images have less misregistration and have
multiparametric images to provide additional soft-tissue contrast. However,
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synthesizing CT is more challenging without the help of multiparametric im-
ages like MRI [38]. Therefore, contrast agents are more common in CT than
MRI to improve soft tissue differentiation and better depict various struc-
tures. Qian et al.[39] introduced an additional classification of CT and MRI
to help the GAN-based model accurately capture the domain knowledge due
to the intrinsic structure differences between the generation of MRI and CT.
This method mainly focuses on synthesizing images of one modality from
images of another modality. Unlike paper [39], our paper synthesizes images
from the same modality but at different contrast enhancement stages.

Recently, Santini et al. [40] explored the synthetic enhancement on an
attenuation in the cardiac chambers based on non-contrast cardiac CTs.
However, compared to the CTs in cardiac region, the abdomen and pelvis
CT scans are more challenging with more complex structure and features of
organs and tissues. Recently, Kim et al. [41] reconstructed the synthetic
contrast-enhanced CTs (DL-SCE-CT) at portal phase from nonenhanced
CTs (NECT) in patients with acute abdominal pain (AAPa). Choi et al. [42]
evaluated a deep learning model for generating synthetic contrast-enhanced
CT (sCECT) from non-contrast chest CT (NCCT) via Pix2Pix GAN. Liu et
al. [43] proposed a GAN-based model, DyeFreeNet, to reconstruct the post-
contrast enhanced CT at arterial stage. These previous methods developed
deep learning frameworks to enhance the contrasts for only one phase or
required multi-stage training procedures. In this paper, we attempt to gen-
erate virtual contrast-enhanced CT scans of the abdomen and pelvis region
for three contrast enhancement phases (arterial, portal, and delayed phases)
and propose a one-stage end-to-end framework.

Synthesizing contrast CT images from non-contrast CT images is similar
to the image translation task. The input image maps from the source domain
to the target domain. Among the natural scene dataset, the features in the
target domain are common among the data, such as the stripes and colors
of a zebra and the color of cars. However, the contrast enhancement regions
among slices of the same CT in the abdomen and pelvis region are different,
where requires the model to learn various transferred features for a whole
case. Recently, Pix2Pix [44] framework was proposed as an antagonistic
network by calculating the distance between the predicted and the actual tag
of pixels with tightly correlated images. In addition, many efforts have been
performed in transfer learning with unpaired images. CycleGAN [45] learns
the transfer from the input domain to the target domain by verifying the cycle
consistency with inversed mapping. Contrastive learning GAN [46] proposed
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an image-to-image transfer framework to maximize the mutual information
between two domains by an unsupervised contrastive loss [47]. To accurately
generated contrast-enhanced regions in CT scans, we apply the pixel-level
mapping as the baseline model. We further compared the proposed pixel-
level transfer learning framework with the unpaired image-to-image transfer
learning methods: cycle-consistency and contrastive loss-based GAN.

3. Methods

As shown in Fig. 2, we propose a dual-path GAN-based framework to
generate virtual contrast-enhanced CTs from non-contrast CTs. The global
path takes three consecutive CT slices as input to extract global structure
features and outputs one virtual contrast CT slice, as the local path takes
four patches divided from CT images for detailed texture feature extrac-
tion. Section 3.1 introduces the framework for virtual contrast CT synthesis.
Section 3.2 focuses on the perceptual loss acquisition by a contrast-aware
pretrained model. Section 3.3 explains the dual-path training mechanism.

3.1. Framework for Virtual Contrast CT Synthesis

We follow the conditional generative adversarial network (cGAN) to learn
the mapping from the input image to the output image. For a fine-grained
contrast CT enhancement with slight pixel misalignment, we aim at tackling
the problem by combining the pixel-level mapping and the domain adapta-
tion. A generator G learns the mapping between the pre-contrast CT image
x and the actual contrast-enhanced CT image c. The virtual contrast CT
c′ is synthesized by predicting the contrast enhancement level of the pixels
from x, while a discriminator D is trained to distinguish the actual contrast-
enhanced CT image c with virtual contrast CT image c′.

The objective of the proposed framework is shown as Eq. (1):

LGAN (G,D) = Ex,c[LogD(x, c)] + Ex[log(1−D(G(x)))], (1)

where the generator G aims at minimizing the objective while the discrimi-
nator D maximizes it.

The Generator: The generated contrast-enhanced CTs require pre-
serving the structures of non-contrast CTs and highlighting body structures
the same as actual contrast-enhanced CTs. U-net [25] is an encoder-decoder
network and can be used in image synthesis. However, the skip connections,
downsamplings, and maximum pooling layers lead to a lack of details and
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Figure 3: The architecture of the virtual contrast-enhanced CT predictor. 1) The generator
composes five layers of the encoder-decoder network and takes three continuous CT images
as the input. The parallel connections of the layers can preserve both the high-level and
low-level features. 2) The discriminator distinguishes the actual contrast-enhanced CT
and virtual contrast-enhanced CT by extracting the features through two networks with
the input of actual contrast-enhanced CT and virtual contrast-enhanced CT respectively.

over-smooth on the virtual contrast-enhanced CTs. We apply the strong
backbone High-Resolution Network (HRNet) [48] to maintain the high res-
olution by exchanging information across multi-resolution representations.
Fig. 3 shows that the encoder network preserves the high-resolution features
and high-semantic features by backpropagating these features through mul-
tiple layers. The convolutional block L(i) is concatenated with all previous
layers L(i− k), where k is in the range of (1, i− 1).

The encoder network contains convolutional block Ld as d refers the net-
work depth (i.e. network layers) in each block of Ld. The current convo-
lution layer Ld(i) integrates the features from previous layers. Each con-
volution block is composed of a 2 × 2 max-pooling layer, 3 × 3 kernel size
double convolution layer and batch normalization, with rectifying linear unit
(ReLu) as the activation function. In this paper, five convolutional blocks
are implemented. The decoder network adopts the skip connection strategy
by gradually combining the features from high-level to low-level layers. To

9



Figure 4: The framework to obtain the pretrained model on the NLST dataset. 1) Each in-
put CT image is transformed into four image intensity levels with the intensity coefficients
α for [0.5, 1.0, 1.5, 2.0] of the original CT image, used as four image intensity categories
for the pretext task without extra labeling. 2) The intensity-level classification network
composes the generator network followed by three Fully Connected (FC) layers to obtain
the maximum prediction probabilities for each intensity level. The trained generator is
further employed as the pretrained model for the proposed generator.

retain the CT image structures of the non-contrast CT, the input image is
concatenated with the output feature maps, followed by a convolutional layer
to optimize the weight of the image intensity level.

The Discriminator: As shown in Fig. 1, the discriminator consists of
four Convolutional (Conv) blocks with the channel sizes of (64, 128, 256, 512)
and the feature sizes of (256× 256, 128× 128, 64× 64, 32× 32). Each block
contains a 2D Conv layer, followed by a BatchNorm layer and LeakyReLu
with a slope of 0.2. A Conv layer flattens the features from the last Conv
block to one-dimensional vectors. Mapping non-contrast CT domain to vir-
tual contrast CT domain can be considered as an intensity regression task.
MSE and BCEwithlogits losses are applied to optimize the discriminator
by comparing following two feature maps: 1) the feature map extracted from
input CT concatenated with the actual contrast-enhanced CT, which labeled
as ones; 2) the feature map extracted from input CT concatenated with the
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virtual CT, which labeled as zeros.

3.2. Perceptual Loss using Pretrained Network

Pretrained Model: A novel self-supervised training strategy is pro-
posed to train a pretrained model for rich semantic and intensity-aware fea-
ture extraction. As shown in Fig. 4, first, the four-level image intensity
transformation is applied. The non-contrast CT images are multiplied with
the four intensity coefficients (α) levels [0.5, 1.0, 1.5, 2.0], denoted as four
classes [0, 1, 2, 3]. Secondly, pretext task training is introduced to classify
these four-intensity levels. The backbone network structure is the same as
the generator, followed by three fully connected layers and a Softmax layer for
the intensity-level classification. Finally, the last three fully connected lay-
ers are excluded. The CTs of abdomen and pelvic region from large public
NLST dataset [13] are applied for training without requiring extra annota-
tions. This pretrained model is sensitive to intensity variance and can extract
rich contrast-aware features. The loss function is described as Eq. (2):

loss(cj|i) = − 1

K

(K−1)∑
I=0

log(F (G(cj, I)|i)), (2)

where for the input CT slice cj is transformed into K image intensity I levels
by multiplying the coefficient i. The classification network F (·|I) learns the
intensity features. The image intensity transformation G(cj|I) transforms
the input CTs to the four image intensity levels.

Perceptual Loss: Perceptual loss [12] has been very popular in image
style transformation, which provides accurate results by measuring percep-
tual differences in content and style between images at the feature level.
The per-pixel objective functions (MSE and L1) may mislead the model to
focus on structure biases between images. In contrast, the perceptual loss
measures the differences on the high-level features and is more robust than
the per-pixel losses by calculating the mean value on the sum of all squared
errors. Inspired by the high sensitivity of human vision on image intensity
variations, we apply the perceptual loss to learn the content information by
comparing multi-layer feature maps via a pre-trained model.

The pretrained model extracts features from both virtual and actual con-
trast CTs. The input CTs are downsampled with the factors of 2×, 4×, 8×,
and 16× at the last four convolutional blocks. Perceptual heatmaps are gen-
erated by averaging the feature-level differences between virtual and actual
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Figure 5: The illustration for heatmaps of perceptual loss computed by averaging the
feature-level differences between virtual and actual contrast CTs at the last four convolu-
tion blocks.

contrast CTs, shown in Fig. 5. The contrasting regions between the virtual
and actual contrast CT are highlighted on perceptual heatmaps in the kidney
regions.

The objective function of the generator is described as Eq. (3):

G∗ = argmin
G

max
D

L+ λ1LMSE(G) +

j∑
ℓϕ,jfeat(c

′, c), (3)

where the λ1 is hyperparameter to weightMSE loss (set as 1 in the training),
j is referred to the jth convolutional block in range of (1, 4).

3.3. Dual-path Training Schema

It is essential to preserve both the global structures for organs and en-
hancement regions, as well as local contrast-enhanced details for blood vessels
and soft tissue. A dual-path training schema is proposed to allow the network
simultaneously to learn the correlation between the local and global feature
representations. The input CT x for global path (with the size of N ×N) is
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divided into four small patches [x1, x2, x3, x4] with the size of N/2×N/2 for
local path. The four generated virtual CT patches from the local path are
combined as a virtual contrast CT clocal. The global path generates the vir-
tual contrast CT image cglobal. The final objective function of the generator
combines the losses of the dual paths, shown as Eq. (4):

G∗final = λ2G ∗global +λ3G ∗local . (4)

where the λ2 and λ3 are hyperparameters to adjust the weights of the dual-
path network (set as 0.6 and 0.4), G∗ refers to Eq. (3).

4. Experiments

4.1. Dataset

4.1.1. Dataset Collection

CT examinations are obtained using dual-source multi-detector CT (So-
matom Force Dual Source CT, Siemens Medical Solutions, Forchheim, Ger-
many). Patients are positioned supine on the table. First, pre-contrast imag-
ing of the abdomen was acquired from the dome of the liver to the iliac crest
in an inspiratory breath hold by using a detector configuration of 192 × 0.6
mm, a tube current of 90 kVp, quality reference of 277 mAs. After in-
travenous injection of a non-ionic contrast agent 350 mg/ml (1.5 mL per
kilogram of body weight at a flow rate of 4 ml/s), bolus tracking was started
in the abdominal aorta at the level of the celiac trunk with a threshold of 100
HU. Scans were acquired using attenuation-based tube current modulation
(CARE Dose 4D, Siemens).

4.1.2. Dataset Details

The dataset includes pre- and post-contrast CTs of arterial, portal, and
delayed phases. A total of 65 patients are assigned to the study. In the
training and validation, there are 48 cases (5,457 CT slices) for the arterial
phase, 59 cases (6,269 CT slices) for the portal phase, and 55 cases (5,928
slices) for the delayed phase. Five cases (5 patients) with 590 CT slices are
conducted for inference.

4.2. Data Processing

The data processing and pair selection strategy for the pre- and post-
contrast CT scans are introduced as follows.
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Corresponding CT Slice Pair Selection: The steps for pairing the
pre- and post-contrast CT slices are as follows. 1) Select the corresponding
CT images according to the table location; 2) Assign a unique ID to the CT
slices of the same case and the same table location on the axial plane.

Pixel-wise Alignment: Due to the misalignment CT caused by body
movements, it is necessary to calibrate the mismatch between CT image
pairs, which greatly impacts the optimization process. Affine and translation
transforms are employed to align the pre- and post-contrast CT images based
on enhanced correlation coefficient maximization. Additionally, the cases
with very large misalignment (larger than 6 pixels) are excluded. The pre-
and post-contrast CTs with the largest overlapping structures are selected
as pairs.

Window Size Selection: Hounsfield Unit (HU) is applied in CT images
to represent the linear transformation of the measured attenuation coefficient.
The HU value ranges from −1000 (air) to approximately 2000 (very dense
bone). For a better analysis of the abdominal and pelvis areas, the window
width and window level are set to 400 and 30 respectively.

4.3. Implementation Details

4.3.1. Pretrained Model

41, 589 low-dose CT slices from a large public national lung screening test
(NLST) dataset are employed for the pretrained model. The CT images are
transformed at four CT image intensity levels by applying [0.5, 1.0, 1.5, 2.0]
coefficients. The learning rate of training was set to 1e−4 and decreased by
0.1 after 8 epochs, updated by Adam optimizer. Total training includes 10
epochs with a batch size of 2 on a GeForce GTX 1080 GPU using Pytorch
1.0 and Python 2.7.

4.3.2. Model Training

The CTs are resized to 256×256. Three consecutive CT slices (256×256×
3) mimic three RGB channels as the input of the global path network. For the
CT scan with no adjacent section before or after the current slice, the current
slice is duplicated to fill the blank. Fig. 2 shows that the CT image (256 ×
256× 3) is divided into four patches (128× 128× 3) as the input of the local
path. The generator consists of five convolutional blocks with the output
dimensions set to [32, 64, 128, 256, 512]. The decoder network follows the U-
Net skip connection. 32 channels from the last layers are concatenated with
the input, followed by two convolution layers. The generator is initialized
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by the weights of the pretrained model. 5-fold validation is applied to the
training and validation sets to select the hyper-parameter settings gave the
best result. The learning rates are set to 5e−5 for generator and 2e−4 for
discriminator during the training and decreasing by 0.1 after 40 epochs for
a total of 50 epochs with a batch size of 2. The weight decay is set to 5e−4.
Adam optimizer is applied for optimization.

4.4. Experimental Results

4.4.1. Radiologist Evaluation

As shown in Fig. 6, the virtual contrast-enhanced results of our frame-
work and the existing state-of-the-art methods (i.e., unpaired image-to-image
transfer method CycleGAN [45] and unsupervised contrastive loss based
GAN [46]) are blindly assessed by two radiologists based on image qual-
ity and contrast enhancement for overall image quality, organs, and vessels.
Pairs of pre- and actual contrast-enhanced CTs and the pre- and virtual
contrast-enhanced CTs are applied for evaluation. The qualitative rating
was based on a 5-point Likert scale, with the evaluation scores of poor (1),
sub-optimal (2), acceptable (3), good (4), and excellent (5). Since the vir-
tual contrast-enhanced CT images for different phases are required to mimic
contrast enhancement of organs and vessels compared to the non-contrast
CT images, the scores can be considered as “1” for no obvious changes from
non-contrast CT image, “2” as mild virtual contrast enhancement, “3” for
moderate virtual contrast enhancement, “4” for good virtual contrast en-
hancement, and “5” for very good virtual contrast enhancement.

The radiologists’ average assessment of our results is acceptable with the
rate of “3” (see Fig. 6). Note that for the arterial phase, the framework is
trained by CT images mainly highlighted arterial vascular structures. There-
fore, the evaluation scores are slightly higher as more contrast enhancement
is observed for the arteries. Our method outperforms CycleGAN [45] and
Contrastive GAN [46] in all evaluation aspects. Although the contrastive
loss-based GAN achieves comparable results to our proposed method in the
arterial and portal phases, as detailed contrast enhancement urinary tract re-
gions are required in the delayed phase, our approach surpasses the other two
methods with a big margin in generating more precise detail enhancement
and higher image quality.
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Figure 6: The assessments of two radiologists for the arterial, portal, and delayed phases in
three aspects: overall case, organs, vascular structures by applying a 5-level score schema
from 1 (poor) to 5 (excellent). The proposed method (red) outperforms the state-of-the-
art methods: Contrastive GAN (green) [46] and CycleGAN (blue) [45] in all evaluation
aspects.

16



Table 1: The quantitative comparisons between proposed framework with the state-of-
the-art methods CycleGAN [45] and Contrastive GAN [46] for arterial phase (AP), portal
phase (PP), and delayed phase (DP).

Phase PSNR ↑ SSIM ↑ MSE ↓ SNU ↓
CycleGAN-AP [45] 19.16± 1.89 0.66± 0.05 215± 16 0.36± 0.08
CycleGAN-PP [45] 19.07± 1.93 0.69±0.05 244± 23 0.41± 0.12
CycleGAN-DP [45] 17.36± 1.81 0.65± 0.07 257± 38 0.58± 0.17

Contrastive-AP [46] 19.85±3.04 0.674±0.07 198± 22 0.33± 0.25
Contrastive-PP [46] 19.47± 2.74 0.66± 0.07 228± 36 0.49± 0.35
Contrastive-DP [46] 18.42±2.36 0.60± 0.08 246± 14 0.52± 0.41

Proposed-AP (ours) 19.09± 1.88 0.63± 0.05 194±19 0.25±0.09
Proposed-PP (ours) 19.79±1.17 0.65± 0.05 226±29 0.34±0.16
Proposed-DP (ours) 17.23± 1.59 0.65±0.05 244±22 0.46±0.14

4.4.2. Compared to the State-of-the-art Methods

Quantitative evaluations on four metrics are applied to compare virtual
and actual contrast-enhanced CTs. Peak Signal to Noise Ratio (PSNR)
measures voxel-wise differences. The Structural Similarity Index (SSIM) [49]
evaluates the image quality based on non-local structural similarity. The
Mean Absolute Error (MSE) and Spatial NonUniformity (SNU) [50] mea-
sure contrast enhancement accuracy. Table 1 shows the performance of
proposed methods with state-of-the-art comparison for arterial phase (AP),
portal phase (PP), and delayed phase (DP). The proposed method shows a
slightly lower performance at PSNR and SSIM in some phases compared to
CycleGAN [45] and Contrastive GAN [46]. However, PSNR and SSIM can-
not solely represent the performance of contrast-enhancement regions. SNU
and MSE calculate the contrast quality of the virtual images and demon-
strate that our method outperforms other methods at all contrast-enhanced
phases. The advantages of the proposed method are better visualized in
Fig. 7.

Contrast enhancement details are shown in Fig. 7 for our proposed frame-
work (Fig. 7(e)) compared to Contrastive GAN (Fig. 7(c)) and CycleGAN
(Fig. 7(d)). Predominantly enhancement of arterial vascular structures is
observed in the arterial phase. In the portal phase, organ parenchymal and
venous vascular structures (such as portal veins and hepatic veins) are ob-
served. In the delayed phase, while organs and vessels fade out, urinary
excretion of contrast highlights the urinary tract.
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Figure 7: The visualizations of virtual contrast-enhanced CT synthesized by the proposed
framework, compared with the existing state-of-the-art methods [45] [46] in the arterial,
portal, and delayed phases. (a) The pre-contrast CT. (b) The actual contrast-enhanced
CT. (c) The virtual contrast-enhanced CT by Contrastive GAN [46]. (d) The virtual
contrast-enhanced CT by CycleGAN [45]. (e) The virtual contrast-enhanced CT by pro-
posed framework.

Our result is sharper and has no pixelation to view compared to the other
methods. Non-enhancing tissue is more clearly visualized. The proposed
pixel-level mapping shows advantages to generating fine-grained enhance-
ment regions. CycleGAN and Contrastive GAN show poor enhancements in
details or fail to predict virtual contrast CT enhancement, especially at the
portal and delayed phases.
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Table 2: The quantitative evaluation for ablation study without discriminator (w/o Discr.),
without perceptual loss (w/o Perc.), and without dual-path training schema (Dual) in the
arterial phase (AP), portal phase (PP), and delayed phase (DP)

Phase PSNR ↑ SSIM MSE ↓ SNU ↓
w/o Discr.-AP 18.96± 1.72 0.64± 0.05 243± 16 0.31± 0.16
w/o Discr.-PP 19.44± 1.69 0.69±0.05 232± 23 0.37± 0.35
w/o Discr.-DP 16.95± 1.39 0.65± 0.07 296± 38 0.53± 0.12

w/o Perc.-AP 18.36± 1.50 0.63± 0.06 234± 44 0.42± 0.34
w/o Perc.-PP 18.77± 1.43 0.66± 0.08 221± 21 0.39± 0.59
w/o Perc.-DP 16.86± 1.32 0.64± 0.06 257± 16 0.52± 0.38

w/o Dual.-AP 19.05± 3.04 0.67±0.07 198± 22 0.33± 0.25
w/o Dual.-PP 19.47± 2.74 0.66± 0.07 238± 36 0.49± 0.35
w/o Dual.-DP 16.42± 2.36 0.60± 0.08 246± 14 0.52± 0.41

Proposed-AP 19.09±1.88 0.63± 0.05 194±19 0.25±0.09
Proposed-PP 19.79±1.17 0.65± 0.05 216±29 0.34±0.16
Proposed-DP 17.23±1.59 0.65±0.05 244±22 0.46±0.14

4.4.3. Ablation Study

This section describes the ablation study on the perceptual loss, dual-path
training schema, and the discriminator. The quantitative and qualitative
evaluation are shown in Table 2 and Fig. 8.

Effectiveness of the Adversarial Supervision: Per-pixel MSE and
L1 losses may omit high-frequency features and oversmooth texture details.
Adversarial supervision outperforms the model without discriminator on all
evaluation metrics shown in Table 2, especially for MSE and SNU . As
illustrated in Fig. 8, our proposed method (Fig. 8(f)) shows more accurate
intensity enhancement and higher resolution on the virtual contrast CT com-
pared to the method without discriminator (Fig. 8(c)).

Effectiveness of the Perceptual Loss: Table 2 shows that the pro-
posed model outperforms the model without perceptual loss on all evalua-
tion metrics. Compared with the cases without perceptual loss (Fig. 8(d)),
Fig. 8(f) shows better enhancement and fewer artifacts, demonstrating the
benefits of content learning via feature-level differences between virtual and
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Figure 8: The illustration of the qualitative results for the ablation study by applying
discriminator, perceptual loss, and dual-path training schema for the arterial, portal, and
delayed phases. (a) The pre-contrast CT. (b) The actual contrast-enhanced CT. (c) The
virtual contrast-enhanced CT without discriminator. (d) The virtual contrast-enhanced
CT with only the global-path training. (e) The virtual contrast-enhanced CT without
perceptual loss. (f) The proposed virtual contrast-enhanced CT.

actual contrast-enhanced CTs.
Effectiveness of the Dual-path Schema: Experiments evaluate the

model with and without the dual-path training scheme. Fig. 8 shows that
the aorta is well enhanced in the virtual contrast-enhanced CT generated by
the models with and without dual-path schema. However, Fig. 8(e) shows
insufficiently enhanced kidney region by the model trained with only the
global-path network (highlighted by the red arrow). Fig. 8(f) demonstrates
the virtual contrast CT with dual-path schema successfully highlights the de-
tailed kidney region. Table 2 indicates that the model trained with dual-path
training schema significantly outperforms the model with only the global-
path network on all the evaluation scores with a large margin, especially for
SNU .

Additionally, (Fig. 9 shows the loss curves of the baseline model (Fig. 9(i)),
the proposed model with the pre-trained weights and the perceptual loss
(Fig. 9(ii)), and the proposed model with the pre-trained weights, the per-
ceptual loss, and dual-path strategy (Fig. 9(iii))). The training loss (Fig. 9(i)
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Figure 9: The losses in the training (upper) and validation (lower) for i) baseline model [44]
; ii) with pre-trained weights and perceptual loss; iii) with pre-trained weights, perceptual
loss, and dual-path strategy (our proposed methods.)

upper image) shows the baseline network is hard to converge and needs an
early stop. Fig. 9(ii) upper image confirms the model initialized with pre-
trained weights and the perceptual loss is easily converged and effectively
learns the contrasted enhanced features. By training with the pre-trained
model, the perceptual loss, and dual-path strategy (Fig. 9(iii) upper image),
the model shows better convergence. The validation loss of proposed model
shows a small margin between validation and training (Fig. 9(ii) and (iii)
lower image). Fig. 9(iii) shows the loss curve is nice converged by training
50 epochs.

4.4.4. Remaining Challenge

Fig. 10 summarizes the remaining limitations of virtual contrast CT syn-
thesis as following three aspects: 1) poor, patchy, and insufficient enhance-
ment, where the contrast is insufficient; 2) unnecessary enhancement, where
artifacts appear; and 3) no enhancement for regions should be enhanced.

Two main challenges cause the limitations. Firstly, misalignments of CT
pairs on physiologic motion highly affect the accuracy of the enhancement,
especially in the delayed phase. Although the prepossessing step excludes
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Figure 10: The failure example illustrations of virtual contrast-enhanced CT synthesized
by the proposed framework. (a) The pre-contrast CT. (b) The actual contrast-enhanced
CT. (c) The virtual contrast-enhanced CT.

CT pairs with large misalignment and applies the affine transformation to
limit the misalignments within 3 pixels, few remaining misalignments are
still associated with artifacts and unnecessary enhancement. Secondly, the
abdominal and pelvic region consists of complex organs and anatomy. Lack-
ing training samples leads to unsatisfied enhancements or no enhancement
in details on a few virtual contrast CTs.
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4.4.5. Future Work

This paper studies axial CTs as commonly used in routine radiology in-
terpretations. We may explore the performances of coronal and sagittal CTs
in the future. Additionally, we will explore the model that can deal with few
data, such as active learning and few-shot learning for virtual contrast CT
image generation with finer enhancement details. We will evaluate the virtual
contrast CT image quality on downstream tasks, such as nodule detection
and segmentation.

5. Conclusions

We have proved the concept of generating virtual contrast-enhanced CTs
directly from non-contrast CT scans of the abdomen and pelvis via a GAN-
based framework. A dual-path training strategy is proposed to maintain
both the high-level structure features as well as the local texture features
to produce realistic virtual contrast CTs with details. A perceptive loss is
conducted to compare the feature level difference between virtual contrast
CT and the actual contrast-enhanced CT together via a contrast-aware pre-
trained model. The proposed framework has successfully predicted virtual
contrast-enhanced CT density while maintaining the structural information
of non-contrast images and has achieved good performance and demonstrated
promising potential in clinical applications.
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[11] A. Bône, S. Ammari, J.-P. Lamarque, M. Elhaik, É. Chouzenoux,
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synthesis in multi-contrast MRI with conditional generative adversarial
networks, IEEE transactions on medical imaging 38 (10) (2019) 2375–
2388.

[18] B. Yu, L. Zhou, L. Wang, Y. Shi, J. Fripp, P. Bourgeat, Ea-GANs:
edge-aware generative adversarial networks for cross-modality MR image
synthesis, IEEE transactions on medical imaging 38 (7) (2019) 1750–
1762.

[19] X. Cao, J. Yang, Y. Gao, Y. Guo, G. Wu, D. Shen, Dual-core steered
non-rigid registration for multi-modal images via bi-directional image
synthesis, Medical image analysis 41 (2017) 18–31.

[20] K. Bahrami, F. Shi, I. Rekik, D. Shen, Convolutional neural network
for reconstruction of 7T-like images from 3T MRI using appearance and
anatomical features, in: Deep Learning and Data Labeling for Medical
Applications, Springer, 39–47, 2016.

[21] S. Wang, M. E. Celebi, Y.-D. Zhang, X. Yu, S. Lu, X. Yao, Q. Zhou, M.-
G. Miguel, Y. Tian, J. M. Gorriz, et al., Advances in data preprocessing

25



for biomedical data fusion: an overview of the methods, challenges, and
prospects, Information Fusion 76 (2021) 376–421.

[22] Y.-D. Zhang, Z. Zhang, X. Zhang, S.-H. Wang, MIDCAN: A multiple
input deep convolutional attention network for Covid-19 diagnosis based
on chest CT and chest X-ray, Pattern recognition letters 150 (2021) 8–
16.

[23] S. Roy, A. Carass, A. Jog, J. L. Prince, J. Lee, MR to CT registration of
brains using image synthesis, in: Medical Imaging 2014: Image Process-
ing, vol. 9034, International Society for Optics and Photonics, 903419,
2014.

[24] C. Zhao, A. Carass, J. Lee, Y. He, J. L. Prince, Whole brain segmenta-
tion and labeling from CT using synthetic MR images, in: International
Workshop on Machine Learning in Medical Imaging, Springer, 291–298,
2017.

[25] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medi-
cal image computing and computer-assisted intervention, Springer, 234–
241, 2015.

[26] X. Yi, E. Walia, P. Babyn, Generative adversarial network in medical
imaging: A review, Medical image analysis (2019) 101552.

[27] J. M. Wolterink, T. Leiner, M. A. Viergever, I. Išgum, Generative adver-
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Mendonça, et al., End-to-end adversarial retinal image synthesis, IEEE
transactions on medical imaging 37 (3) (2017) 781–791.

[29] A. BenTaieb, G. Hamarneh, Adversarial stain transfer for histopathol-
ogy image analysis, IEEE transactions on medical imaging 37 (3) (2017)
792–802.

[30] Y. Huo, Z. Xu, H. Moon, S. Bao, A. Assad, T. K. Moyo, et al., Synseg-
net: Synthetic segmentation without target modality ground truth,
IEEE transactions on medical imaging 38 (4) (2018) 1016–1025.

26



[31] T. M. Quan, T. Nguyen-Duc, W.-K. Jeong, Compressed sensing MRI
reconstruction using a generative adversarial network with a cyclic loss,
IEEE transactions on medical imaging 37 (6) (2018) 1488–1497.

[32] G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye, et al.,
DAGAN: Deep de-aliasing generative adversarial networks for fast com-
pressed sensing MRI reconstruction, IEEE transactions on medical
imaging 37 (6) (2017) 1310–1321.

[33] D. Nie, R. Trullo, J. Lian, L. Wang, C. Petitjean, S. Ruan, Q. Wang,
D. Shen, Medical image synthesis with deep convolutional adversarial
networks, IEEE Transactions on Biomedical Engineering 65 (12) (2018)
2720–2730.

[34] Y. Tang, H. H. Lee, Y. Xu, O. Tang, Y. Chen, D. Gao, S. Han, R. Gao,
C. Bermudez, M. R. Savona, et al., Contrast phase classification with
a generative adversarial network, in: Medical Imaging 2020: Image
Processing, vol. 11313, International Society for Optics and Photonics,
1131310, 2020.

[35] N. Bayramoglu, M. Kaakinen, L. Eklund, J. Heikkila, Towards virtual
h&e staining of hyperspectral lung histology images using conditional
generative adversarial networks, in: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 64–71, 2017.

[36] X. Yang, Y. Lin, Z. Wang, X. Li, K.-T. Cheng, Bi-modality Medical Im-
age Synthesis using Semi-supervised Sequential Generative Adversarial
Networks, IEEE Journal of Biomedical and Health Informatics .

[37] M. Yurt, S. U. Dar, A. Erdem, E. Erdem, K. K. Oguz, T. Çukur, must-
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